| 1 | // Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/backend/loops.h" |
| 6 | |
| 7 | #include "vm/bit_vector.h" |
| 8 | #include "vm/compiler/backend/il.h" |
| 9 | |
| 10 | namespace dart { |
| 11 | |
| 12 | // Private class to perform induction variable analysis on a single loop |
| 13 | // or a full loop hierarchy. The analysis implementation is based on the |
| 14 | // paper by M. Gerlek et al. "Beyond Induction Variables: Detecting and |
| 15 | // Classifying Sequences Using a Demand-Driven SSA Form" (ACM Transactions |
| 16 | // on Programming Languages and Systems, Volume 17 Issue 1, Jan. 1995). |
| 17 | // |
| 18 | // The algorithm discovers and classifies definitions within loops that |
| 19 | // behave like induction variables, and attaches an InductionVar record |
| 20 | // to it (this mapping is stored in the loop data structure). The algorithm |
| 21 | // first finds strongly connected components in the flow graph and classifies |
| 22 | // each component as an induction when possible. Due to the descendant-first |
| 23 | // nature, classification happens "on-demand" (e.g. basic induction is |
| 24 | // classified before derived induction). |
| 25 | class InductionVarAnalysis : public ValueObject { |
| 26 | public: |
| 27 | // Constructor to set up analysis phase. |
| 28 | explicit InductionVarAnalysis(const GrowableArray<BlockEntryInstr*>& preorder) |
| 29 | : preorder_(preorder), |
| 30 | stack_(), |
| 31 | scc_(), |
| 32 | cycle_(), |
| 33 | map_(), |
| 34 | current_index_(0), |
| 35 | zone_(Thread::Current()->zone()) {} |
| 36 | |
| 37 | // Detects induction variables on the full loop hierarchy. |
| 38 | void VisitHierarchy(LoopInfo* loop); |
| 39 | |
| 40 | // Detects induction variables on a single loop. |
| 41 | void VisitLoop(LoopInfo* loop); |
| 42 | |
| 43 | private: |
| 44 | // An information node needed during SCC traversal that can |
| 45 | // reside in a map without any explicit memory allocation. |
| 46 | struct SCCInfo { |
| 47 | SCCInfo() : depth(-1), done(false) {} |
| 48 | explicit SCCInfo(intptr_t d) : depth(d), done(false) {} |
| 49 | intptr_t depth; |
| 50 | bool done; |
| 51 | bool operator!=(const SCCInfo& other) const { |
| 52 | return depth != other.depth || done != other.done; |
| 53 | } |
| 54 | bool operator==(const SCCInfo& other) const { |
| 55 | return depth == other.depth && done == other.done; |
| 56 | } |
| 57 | }; |
| 58 | typedef RawPointerKeyValueTrait<Definition, SCCInfo> VisitKV; |
| 59 | |
| 60 | // Traversal methods. |
| 61 | bool Visit(LoopInfo* loop, Definition* def); |
| 62 | intptr_t VisitDescendant(LoopInfo* loop, Definition* def); |
| 63 | void Classify(LoopInfo* loop, Definition* def); |
| 64 | void ClassifySCC(LoopInfo* loop); |
| 65 | void ClassifyControl(LoopInfo* loop); |
| 66 | |
| 67 | // Transfer methods. Compute how induction of the operands, if any, |
| 68 | // tranfers over the operation performed by the given definition. |
| 69 | InductionVar* TransferPhi(LoopInfo* loop, Definition* def, intptr_t idx = -1); |
| 70 | InductionVar* TransferDef(LoopInfo* loop, Definition* def); |
| 71 | InductionVar* TransferBinary(LoopInfo* loop, Definition* def); |
| 72 | InductionVar* TransferUnary(LoopInfo* loop, Definition* def); |
| 73 | |
| 74 | // Solver methods. Compute how temporary meaning given to the |
| 75 | // definitions in a cycle transfer over the operation performed |
| 76 | // by the given definition. |
| 77 | InductionVar* SolvePhi(LoopInfo* loop, Definition* def, intptr_t idx = -1); |
| 78 | InductionVar* SolveConstraint(LoopInfo* loop, |
| 79 | Definition* def, |
| 80 | InductionVar* init); |
| 81 | InductionVar* SolveBinary(LoopInfo* loop, |
| 82 | Definition* def, |
| 83 | InductionVar* init); |
| 84 | InductionVar* SolveUnary(LoopInfo* loop, Definition* def, InductionVar* init); |
| 85 | |
| 86 | // Lookup. |
| 87 | InductionVar* Lookup(LoopInfo* loop, Definition* def); |
| 88 | InductionVar* LookupCycle(Definition* def); |
| 89 | |
| 90 | // Arithmetic. |
| 91 | InductionVar* Add(InductionVar* x, InductionVar* y); |
| 92 | InductionVar* Sub(InductionVar* x, InductionVar* y); |
| 93 | InductionVar* Mul(InductionVar* x, InductionVar* y); |
| 94 | |
| 95 | // Bookkeeping data (released when analysis goes out of scope). |
| 96 | const GrowableArray<BlockEntryInstr*>& preorder_; |
| 97 | GrowableArray<Definition*> stack_; |
| 98 | GrowableArray<Definition*> scc_; |
| 99 | GrowableArray<BranchInstr*> branches_; |
| 100 | DirectChainedHashMap<LoopInfo::InductionKV> cycle_; |
| 101 | DirectChainedHashMap<VisitKV> map_; |
| 102 | intptr_t current_index_; |
| 103 | Zone* zone_; |
| 104 | |
| 105 | DISALLOW_COPY_AND_ASSIGN(InductionVarAnalysis); |
| 106 | }; |
| 107 | |
| 108 | // Helper method that finds phi-index of the initial value |
| 109 | // that comes from a block outside the loop. Note that the |
| 110 | // algorithm still works if there are several of these. |
| 111 | static intptr_t InitIndex(LoopInfo* loop) { |
| 112 | BlockEntryInstr* = loop->header(); |
| 113 | for (intptr_t i = 0; i < header->PredecessorCount(); ++i) { |
| 114 | if (!loop->Contains(header->PredecessorAt(i))) { // pick first |
| 115 | return i; |
| 116 | } |
| 117 | } |
| 118 | UNREACHABLE(); |
| 119 | return -1; |
| 120 | } |
| 121 | |
| 122 | // Helper method that determines if a definition is a constant. |
| 123 | static bool IsConstant(Definition* def, int64_t* val) { |
| 124 | if (def->IsConstant()) { |
| 125 | const Object& value = def->AsConstant()->value(); |
| 126 | if (value.IsInteger()) { |
| 127 | *val = Integer::Cast(value).AsInt64Value(); // smi and mint |
| 128 | return true; |
| 129 | } |
| 130 | } |
| 131 | return false; |
| 132 | } |
| 133 | |
| 134 | // Helper method to determine if a non-strict (inclusive) bound on |
| 135 | // a unit stride linear induction can be made strict (exclusive) |
| 136 | // without arithmetic wrap-around complications. |
| 137 | static bool CanBeMadeExclusive(LoopInfo* loop, |
| 138 | InductionVar* x, |
| 139 | Instruction* branch, |
| 140 | bool is_lower) { |
| 141 | InductionVar* min = nullptr; |
| 142 | InductionVar* max = nullptr; |
| 143 | if (x->CanComputeBounds(loop, branch, &min, &max)) { |
| 144 | int64_t end = 0; |
| 145 | if (is_lower) { |
| 146 | if (InductionVar::IsConstant(min, &end)) { |
| 147 | return kMinInt64 < end; |
| 148 | } |
| 149 | } else if (InductionVar::IsConstant(max, &end)) { |
| 150 | return end < kMaxInt64; |
| 151 | } else if (InductionVar::IsInvariant(max) && max->mult() == 1 && |
| 152 | Definition::IsArrayLength(max->def())) { |
| 153 | return max->offset() < 0; // a.length - C, C > 0 |
| 154 | } |
| 155 | } |
| 156 | return false; |
| 157 | } |
| 158 | |
| 159 | // Helper method to adjust a range [lower_bound,upper_bound] into the |
| 160 | // range [lower_bound+lower_bound_offset,upper_bound+upper_bound+offset] |
| 161 | // without arithmetic wrap-around complications. On entry, we know that |
| 162 | // lower_bound <= upper_bound is enforced by an actual comparison in the |
| 163 | // code (so that even if lower_bound > upper_bound, the loop is not taken). |
| 164 | // This method ensures the resulting range has the same property by |
| 165 | // very conservatively testing if everything stays between constants |
| 166 | // or a properly offset array length. |
| 167 | static bool SafelyAdjust(Zone* zone, |
| 168 | InductionVar* lower_bound, |
| 169 | int64_t lower_bound_offset, |
| 170 | InductionVar* upper_bound, |
| 171 | int64_t upper_bound_offset, |
| 172 | InductionVar** min, |
| 173 | InductionVar** max) { |
| 174 | bool success = false; |
| 175 | int64_t lval = 0; |
| 176 | int64_t uval = 0; |
| 177 | if (InductionVar::IsConstant(lower_bound, &lval)) { |
| 178 | const int64_t l = lval + lower_bound_offset; |
| 179 | if (InductionVar::IsConstant(upper_bound, &uval)) { |
| 180 | // Make sure a proper new range [l,u] results. Even if bounds |
| 181 | // were subject to arithmetic wrap-around, we preserve the |
| 182 | // property that the minimum is in l and the maximum in u. |
| 183 | const int64_t u = uval + upper_bound_offset; |
| 184 | success = (l <= u); |
| 185 | } else if (InductionVar::IsInvariant(upper_bound) && |
| 186 | upper_bound->mult() == 1 && |
| 187 | Definition::IsArrayLength(upper_bound->def())) { |
| 188 | // No arithmetic wrap-around on the lower bound, and a properly |
| 189 | // non-positive offset on an array length, which is always >= 0. |
| 190 | const int64_t c = upper_bound->offset() + upper_bound_offset; |
| 191 | success = ((lower_bound_offset >= 0 && lval <= l) || |
| 192 | (lower_bound_offset < 0 && lval > l)) && |
| 193 | (c <= 0); |
| 194 | } |
| 195 | } |
| 196 | if (success) { |
| 197 | *min = (lower_bound_offset == 0) |
| 198 | ? lower_bound |
| 199 | : new (zone) InductionVar(lval + lower_bound_offset); |
| 200 | *max = (upper_bound_offset == 0) |
| 201 | ? upper_bound |
| 202 | : new (zone) |
| 203 | InductionVar(upper_bound->offset() + upper_bound_offset, |
| 204 | upper_bound->mult(), upper_bound->def()); |
| 205 | } |
| 206 | return success; |
| 207 | } |
| 208 | |
| 209 | void InductionVarAnalysis::VisitHierarchy(LoopInfo* loop) { |
| 210 | for (; loop != nullptr; loop = loop->next_) { |
| 211 | VisitLoop(loop); |
| 212 | VisitHierarchy(loop->inner_); |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | void InductionVarAnalysis::VisitLoop(LoopInfo* loop) { |
| 217 | loop->ResetInduction(); |
| 218 | // Find strongly connected components (SSCs) in the SSA graph of this |
| 219 | // loop using Tarjan's algorithm. Due to the descendant-first nature, |
| 220 | // classification happens "on-demand". |
| 221 | current_index_ = 0; |
| 222 | ASSERT(stack_.is_empty()); |
| 223 | ASSERT(map_.IsEmpty()); |
| 224 | ASSERT(branches_.is_empty()); |
| 225 | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { |
| 226 | BlockEntryInstr* block = preorder_[it.Current()]; |
| 227 | ASSERT(block->loop_info() != nullptr); |
| 228 | if (block->loop_info() != loop) { |
| 229 | continue; // inner loop |
| 230 | } |
| 231 | // Visit phi-operations. |
| 232 | if (block->IsJoinEntry()) { |
| 233 | for (PhiIterator it(block->AsJoinEntry()); !it.Done(); it.Advance()) { |
| 234 | Visit(loop, it.Current()); |
| 235 | } |
| 236 | } |
| 237 | // Visit instructions and collect branches. |
| 238 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 239 | Instruction* instruction = it.Current(); |
| 240 | Visit(loop, instruction->AsDefinition()); |
| 241 | if (instruction->IsBranch()) { |
| 242 | branches_.Add(instruction->AsBranch()); |
| 243 | } |
| 244 | } |
| 245 | } |
| 246 | ASSERT(stack_.is_empty()); |
| 247 | map_.Clear(); |
| 248 | // Classify loop control. |
| 249 | ClassifyControl(loop); |
| 250 | branches_.Clear(); |
| 251 | } |
| 252 | |
| 253 | bool InductionVarAnalysis::Visit(LoopInfo* loop, Definition* def) { |
| 254 | if (def == nullptr || map_.HasKey(def)) { |
| 255 | return false; // no def, or already visited |
| 256 | } |
| 257 | intptr_t d = ++current_index_; |
| 258 | map_.Insert(VisitKV::Pair(def, SCCInfo(d))); |
| 259 | stack_.Add(def); |
| 260 | |
| 261 | // Visit all descendants. |
| 262 | intptr_t low = d; |
| 263 | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { |
| 264 | Value* input = def->InputAt(i); |
| 265 | if (input != nullptr) { |
| 266 | low = Utils::Minimum(low, VisitDescendant(loop, input->definition())); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | // Lower or found SCC? |
| 271 | if (low < d) { |
| 272 | map_.Lookup(def)->value.depth = low; |
| 273 | } else { |
| 274 | // Pop the stack to build the SCC for classification. |
| 275 | ASSERT(scc_.is_empty()); |
| 276 | while (!stack_.is_empty()) { |
| 277 | Definition* top = stack_.RemoveLast(); |
| 278 | scc_.Add(top); |
| 279 | map_.Lookup(top)->value.done = true; |
| 280 | if (top == def) { |
| 281 | break; |
| 282 | } |
| 283 | } |
| 284 | // Classify. |
| 285 | if (scc_.length() == 1) { |
| 286 | Classify(loop, scc_[0]); |
| 287 | } else { |
| 288 | ASSERT(scc_.length() > 1); |
| 289 | ASSERT(cycle_.IsEmpty()); |
| 290 | ClassifySCC(loop); |
| 291 | cycle_.Clear(); |
| 292 | } |
| 293 | scc_.Clear(); |
| 294 | } |
| 295 | return true; |
| 296 | } |
| 297 | |
| 298 | intptr_t InductionVarAnalysis::VisitDescendant(LoopInfo* loop, |
| 299 | Definition* def) { |
| 300 | // The traversal stops at anything not defined in this loop |
| 301 | // (either a loop invariant entry value defined outside the |
| 302 | // loop or an inner exit value defined by an inner loop). |
| 303 | if (def->GetBlock()->loop_info() != loop) { |
| 304 | return current_index_; |
| 305 | } |
| 306 | // Inspect descendant node. |
| 307 | if (!Visit(loop, def) && map_.Lookup(def)->value.done) { |
| 308 | return current_index_; |
| 309 | } |
| 310 | return map_.Lookup(def)->value.depth; |
| 311 | } |
| 312 | |
| 313 | void InductionVarAnalysis::Classify(LoopInfo* loop, Definition* def) { |
| 314 | // Classify different kind of instructions. |
| 315 | InductionVar* induc = nullptr; |
| 316 | if (loop->IsHeaderPhi(def)) { |
| 317 | intptr_t idx = InitIndex(loop); |
| 318 | induc = TransferPhi(loop, def, idx); |
| 319 | if (induc != nullptr) { |
| 320 | InductionVar* init = Lookup(loop, def->InputAt(idx)->definition()); |
| 321 | // Wrap-around (except for unusual header phi(x,..,x) = x). |
| 322 | if (!init->IsEqual(induc)) { |
| 323 | induc = |
| 324 | new (zone_) InductionVar(InductionVar::kWrapAround, init, induc); |
| 325 | } |
| 326 | } |
| 327 | } else if (def->IsPhi()) { |
| 328 | induc = TransferPhi(loop, def); |
| 329 | } else { |
| 330 | induc = TransferDef(loop, def); |
| 331 | } |
| 332 | // Successfully classified? |
| 333 | if (induc != nullptr) { |
| 334 | loop->AddInduction(def, induc); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | void InductionVarAnalysis::ClassifySCC(LoopInfo* loop) { |
| 339 | intptr_t size = scc_.length(); |
| 340 | // Find a header phi, usually at the end. |
| 341 | intptr_t p = -1; |
| 342 | for (intptr_t i = size - 1; i >= 0; i--) { |
| 343 | if (loop->IsHeaderPhi(scc_[i])) { |
| 344 | p = i; |
| 345 | break; |
| 346 | } |
| 347 | } |
| 348 | // Rotate header phi up front. |
| 349 | if (p >= 0) { |
| 350 | Definition* phi = scc_[p]; |
| 351 | intptr_t idx = InitIndex(loop); |
| 352 | InductionVar* init = Lookup(loop, phi->InputAt(idx)->definition()); |
| 353 | // Inspect remainder of the cycle. The cycle mapping assigns temporary |
| 354 | // meaning to instructions, seeded from the phi instruction and back. |
| 355 | // The init of the phi is passed as marker token to detect first use. |
| 356 | cycle_.Insert(LoopInfo::InductionKV::Pair(phi, init)); |
| 357 | for (intptr_t i = 1, j = p; i < size; i++) { |
| 358 | if (++j >= size) j = 0; |
| 359 | Definition* def = scc_[j]; |
| 360 | InductionVar* update = nullptr; |
| 361 | if (def->IsPhi()) { |
| 362 | update = SolvePhi(loop, def); |
| 363 | } else if (def->IsBinaryIntegerOp()) { |
| 364 | update = SolveBinary(loop, def, init); |
| 365 | } else if (def->IsUnaryIntegerOp()) { |
| 366 | update = SolveUnary(loop, def, init); |
| 367 | } else if (def->IsConstraint()) { |
| 368 | update = SolveConstraint(loop, def, init); |
| 369 | } else { |
| 370 | Definition* orig = def->OriginalDefinitionIgnoreBoxingAndConstraints(); |
| 371 | if (orig != def) { |
| 372 | update = LookupCycle(orig); // pass-through |
| 373 | } |
| 374 | } |
| 375 | // Continue cycle? |
| 376 | if (update == nullptr) { |
| 377 | return; |
| 378 | } |
| 379 | cycle_.Insert(LoopInfo::InductionKV::Pair(def, update)); |
| 380 | } |
| 381 | // Success if all internal links (inputs to the phi that are along |
| 382 | // back-edges) received the same temporary meaning. The external |
| 383 | // link (initial value coming from outside the loop) is excluded |
| 384 | // while taking this join. |
| 385 | InductionVar* induc = SolvePhi(loop, phi, idx); |
| 386 | if (induc != nullptr) { |
| 387 | // Invariant means linear induction. |
| 388 | if (induc->kind_ == InductionVar::kInvariant) { |
| 389 | induc = new (zone_) InductionVar(InductionVar::kLinear, init, induc); |
| 390 | } else { |
| 391 | ASSERT(induc->kind_ == InductionVar::kPeriodic); |
| 392 | } |
| 393 | // Classify first phi and then the rest of the cycle "on-demand". |
| 394 | loop->AddInduction(phi, induc); |
| 395 | for (intptr_t i = 1, j = p; i < size; i++) { |
| 396 | if (++j >= size) j = 0; |
| 397 | Classify(loop, scc_[j]); |
| 398 | } |
| 399 | } |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | void InductionVarAnalysis::ClassifyControl(LoopInfo* loop) { |
| 404 | for (auto branch : branches_) { |
| 405 | // Proper comparison? |
| 406 | ComparisonInstr* compare = branch->comparison(); |
| 407 | if (compare->InputCount() != 2) { |
| 408 | continue; |
| 409 | } |
| 410 | Token::Kind cmp = compare->kind(); |
| 411 | // Proper loop exit? Express the condition in "loop while true" form. |
| 412 | TargetEntryInstr* ift = branch->true_successor(); |
| 413 | TargetEntryInstr* iff = branch->false_successor(); |
| 414 | if (loop->Contains(ift) && !loop->Contains(iff)) { |
| 415 | // ok as is |
| 416 | } else if (!loop->Contains(ift) && loop->Contains(iff)) { |
| 417 | cmp = Token::NegateComparison(cmp); |
| 418 | } else { |
| 419 | continue; |
| 420 | } |
| 421 | // Comparison against linear constant stride induction? |
| 422 | // Express the comparison such that induction appears left. |
| 423 | int64_t stride = 0; |
| 424 | auto left = compare->left() |
| 425 | ->definition() |
| 426 | ->OriginalDefinitionIgnoreBoxingAndConstraints(); |
| 427 | auto right = compare->right() |
| 428 | ->definition() |
| 429 | ->OriginalDefinitionIgnoreBoxingAndConstraints(); |
| 430 | InductionVar* x = Lookup(loop, left); |
| 431 | InductionVar* y = Lookup(loop, right); |
| 432 | if (InductionVar::IsLinear(x, &stride) && InductionVar::IsInvariant(y)) { |
| 433 | // ok as is |
| 434 | } else if (InductionVar::IsInvariant(x) && |
| 435 | InductionVar::IsLinear(y, &stride)) { |
| 436 | InductionVar* tmp = x; |
| 437 | x = y; |
| 438 | y = tmp; |
| 439 | cmp = Token::FlipComparison(cmp); |
| 440 | } else { |
| 441 | continue; |
| 442 | } |
| 443 | // Can we find a strict (exclusive) comparison for the looping condition? |
| 444 | // Note that we reject symbolic bounds in non-strict (inclusive) looping |
| 445 | // conditions like i <= U as upperbound or i >= L as lowerbound since this |
| 446 | // could loop forever when U is kMaxInt64 or L is kMinInt64 under Dart's |
| 447 | // 64-bit arithmetic wrap-around. Non-unit strides could overshoot the |
| 448 | // bound due to aritmetic wrap-around. |
| 449 | switch (cmp) { |
| 450 | case Token::kLT: |
| 451 | // Accept i < U (i++). |
| 452 | if (stride == 1) break; |
| 453 | continue; |
| 454 | case Token::kGT: |
| 455 | // Accept i > L (i--). |
| 456 | if (stride == -1) break; |
| 457 | continue; |
| 458 | case Token::kLTE: { |
| 459 | // Accept i <= U (i++) as i < U + 1 |
| 460 | // only when U != MaxInt is certain. |
| 461 | if (stride == 1 && |
| 462 | CanBeMadeExclusive(loop, y, branch, /*is_lower=*/false)) { |
| 463 | y = Add(y, new (zone_) InductionVar(1)); |
| 464 | break; |
| 465 | } |
| 466 | continue; |
| 467 | } |
| 468 | case Token::kGTE: { |
| 469 | // Accept i >= L (i--) as i > L - 1 |
| 470 | // only when L != MinInt is certain. |
| 471 | if (stride == -1 && |
| 472 | CanBeMadeExclusive(loop, y, branch, /*is_lower=*/true)) { |
| 473 | y = Sub(y, new (zone_) InductionVar(1)); |
| 474 | break; |
| 475 | } |
| 476 | continue; |
| 477 | } |
| 478 | case Token::kNE: { |
| 479 | // Accept i != E as either i < E (i++) or i > E (i--) |
| 480 | // for constants bounds that make the loop always-taken. |
| 481 | int64_t start = 0; |
| 482 | int64_t end = 0; |
| 483 | if (InductionVar::IsConstant(x->initial_, &start) && |
| 484 | InductionVar::IsConstant(y, &end)) { |
| 485 | if ((stride == +1 && start < end) || (stride == -1 && start > end)) { |
| 486 | break; |
| 487 | } |
| 488 | } |
| 489 | continue; |
| 490 | } |
| 491 | default: |
| 492 | continue; |
| 493 | } |
| 494 | // We found a strict upper or lower bound on a unit stride linear |
| 495 | // induction. Note that depending on the intended use of this |
| 496 | // information, clients should still test dominance on the test |
| 497 | // and the initial value of the induction variable. |
| 498 | x->bounds_.Add(InductionVar::Bound(branch, y)); |
| 499 | // Record control induction. |
| 500 | if (branch == loop->header_->last_instruction()) { |
| 501 | loop->control_ = x; |
| 502 | } |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | InductionVar* InductionVarAnalysis::TransferPhi(LoopInfo* loop, |
| 507 | Definition* def, |
| 508 | intptr_t idx) { |
| 509 | InductionVar* induc = nullptr; |
| 510 | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { |
| 511 | if (i != idx) { |
| 512 | InductionVar* x = Lookup(loop, def->InputAt(i)->definition()); |
| 513 | if (x == nullptr) { |
| 514 | return nullptr; |
| 515 | } else if (induc == nullptr) { |
| 516 | induc = x; |
| 517 | } else if (!induc->IsEqual(x)) { |
| 518 | return nullptr; |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | return induc; |
| 523 | } |
| 524 | |
| 525 | InductionVar* InductionVarAnalysis::TransferDef(LoopInfo* loop, |
| 526 | Definition* def) { |
| 527 | if (def->IsBinaryIntegerOp()) { |
| 528 | return TransferBinary(loop, def); |
| 529 | } else if (def->IsUnaryIntegerOp()) { |
| 530 | return TransferUnary(loop, def); |
| 531 | } else { |
| 532 | // Note that induction analysis does not really need the second |
| 533 | // argument of a bound check, since it will just pass-through the |
| 534 | // index. However, we do a lookup on the, most likely loop-invariant, |
| 535 | // length anyway, to make sure it is stored in the induction |
| 536 | // environment for later lookup during BCE. |
| 537 | if (auto check = def->AsCheckBoundBase()) { |
| 538 | Definition* len = check->length() |
| 539 | ->definition() |
| 540 | ->OriginalDefinitionIgnoreBoxingAndConstraints(); |
| 541 | Lookup(loop, len); // pre-store likely invariant length |
| 542 | } |
| 543 | // Proceed with regular pass-through. |
| 544 | Definition* orig = def->OriginalDefinitionIgnoreBoxingAndConstraints(); |
| 545 | if (orig != def) { |
| 546 | return Lookup(loop, orig); // pass-through |
| 547 | } |
| 548 | } |
| 549 | return nullptr; |
| 550 | } |
| 551 | |
| 552 | InductionVar* InductionVarAnalysis::TransferBinary(LoopInfo* loop, |
| 553 | Definition* def) { |
| 554 | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); |
| 555 | InductionVar* y = Lookup(loop, def->InputAt(1)->definition()); |
| 556 | |
| 557 | switch (def->AsBinaryIntegerOp()->op_kind()) { |
| 558 | case Token::kADD: |
| 559 | return Add(x, y); |
| 560 | case Token::kSUB: |
| 561 | return Sub(x, y); |
| 562 | case Token::kMUL: |
| 563 | return Mul(x, y); |
| 564 | default: |
| 565 | return nullptr; |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | InductionVar* InductionVarAnalysis::TransferUnary(LoopInfo* loop, |
| 570 | Definition* def) { |
| 571 | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); |
| 572 | switch (def->AsUnaryIntegerOp()->op_kind()) { |
| 573 | case Token::kNEGATE: { |
| 574 | InductionVar* zero = new (zone_) InductionVar(0); |
| 575 | return Sub(zero, x); |
| 576 | } |
| 577 | default: |
| 578 | return nullptr; |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | InductionVar* InductionVarAnalysis::SolvePhi(LoopInfo* loop, |
| 583 | Definition* def, |
| 584 | intptr_t idx) { |
| 585 | InductionVar* induc = nullptr; |
| 586 | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { |
| 587 | if (i != idx) { |
| 588 | InductionVar* c = LookupCycle(def->InputAt(i)->definition()); |
| 589 | if (c == nullptr) { |
| 590 | return nullptr; |
| 591 | } else if (induc == nullptr) { |
| 592 | induc = c; |
| 593 | } else if (!induc->IsEqual(c)) { |
| 594 | return nullptr; |
| 595 | } |
| 596 | } |
| 597 | } |
| 598 | return induc; |
| 599 | } |
| 600 | |
| 601 | InductionVar* InductionVarAnalysis::SolveConstraint(LoopInfo* loop, |
| 602 | Definition* def, |
| 603 | InductionVar* init) { |
| 604 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
| 605 | if (c == init) { |
| 606 | // Record a non-artifical bound constraint on a phi. |
| 607 | ConstraintInstr* constraint = def->AsConstraint(); |
| 608 | if (constraint->target() != nullptr) { |
| 609 | loop->limit_ = constraint; |
| 610 | } |
| 611 | } |
| 612 | return c; |
| 613 | } |
| 614 | |
| 615 | InductionVar* InductionVarAnalysis::SolveBinary(LoopInfo* loop, |
| 616 | Definition* def, |
| 617 | InductionVar* init) { |
| 618 | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); |
| 619 | InductionVar* y = Lookup(loop, def->InputAt(1)->definition()); |
| 620 | switch (def->AsBinaryIntegerOp()->op_kind()) { |
| 621 | case Token::kADD: |
| 622 | if (InductionVar::IsInvariant(x)) { |
| 623 | InductionVar* c = LookupCycle(def->InputAt(1)->definition()); |
| 624 | // The init marker denotes first use, otherwise aggregate. |
| 625 | if (c == init) { |
| 626 | return x; |
| 627 | } else if (InductionVar::IsInvariant(c)) { |
| 628 | return Add(x, c); |
| 629 | } |
| 630 | } |
| 631 | if (InductionVar::IsInvariant(y)) { |
| 632 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
| 633 | // The init marker denotes first use, otherwise aggregate. |
| 634 | if (c == init) { |
| 635 | return y; |
| 636 | } else if (InductionVar::IsInvariant(c)) { |
| 637 | return Add(c, y); |
| 638 | } |
| 639 | } |
| 640 | return nullptr; |
| 641 | case Token::kSUB: |
| 642 | if (InductionVar::IsInvariant(x)) { |
| 643 | InductionVar* c = LookupCycle(def->InputAt(1)->definition()); |
| 644 | // Note that i = x - i is periodic. The temporary |
| 645 | // meaning is expressed in terms of the header phi. |
| 646 | if (c == init) { |
| 647 | InductionVar* next = Sub(x, init); |
| 648 | if (InductionVar::IsInvariant(next)) { |
| 649 | return new (zone_) |
| 650 | InductionVar(InductionVar::kPeriodic, init, next); |
| 651 | } |
| 652 | } |
| 653 | } |
| 654 | if (InductionVar::IsInvariant(y)) { |
| 655 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
| 656 | // The init marker denotes first use, otherwise aggregate. |
| 657 | if (c == init) { |
| 658 | InductionVar* zero = new (zone_) InductionVar(0); |
| 659 | return Sub(zero, y); |
| 660 | } else if (InductionVar::IsInvariant(c)) { |
| 661 | return Sub(c, y); |
| 662 | } |
| 663 | } |
| 664 | return nullptr; |
| 665 | default: |
| 666 | return nullptr; |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | InductionVar* InductionVarAnalysis::SolveUnary(LoopInfo* loop, |
| 671 | Definition* def, |
| 672 | InductionVar* init) { |
| 673 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
| 674 | switch (def->AsUnaryIntegerOp()->op_kind()) { |
| 675 | case Token::kNEGATE: |
| 676 | // Note that i = - i is periodic. The temporary |
| 677 | // meaning is expressed in terms of the header phi. |
| 678 | if (c == init) { |
| 679 | InductionVar* zero = new (zone_) InductionVar(0); |
| 680 | InductionVar* next = Sub(zero, init); |
| 681 | if (InductionVar::IsInvariant(next)) { |
| 682 | return new (zone_) InductionVar(InductionVar::kPeriodic, init, next); |
| 683 | } |
| 684 | } |
| 685 | return nullptr; |
| 686 | default: |
| 687 | return nullptr; |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | InductionVar* InductionVarAnalysis::Lookup(LoopInfo* loop, Definition* def) { |
| 692 | InductionVar* induc = loop->LookupInduction(def); |
| 693 | if (induc == nullptr) { |
| 694 | // Loop-invariants are added lazily. |
| 695 | int64_t val = 0; |
| 696 | if (IsConstant(def, &val)) { |
| 697 | induc = new (zone_) InductionVar(val); |
| 698 | loop->AddInduction(def, induc); |
| 699 | } else if (!loop->Contains(def->GetBlock())) { |
| 700 | // Look "under the hood" of invariant definitions to expose |
| 701 | // more details on common constructs like "length - 1". |
| 702 | induc = TransferDef(loop, def); |
| 703 | if (induc == nullptr) { |
| 704 | induc = new (zone_) InductionVar(0, 1, def); |
| 705 | } |
| 706 | loop->AddInduction(def, induc); |
| 707 | } |
| 708 | } |
| 709 | return induc; |
| 710 | } |
| 711 | |
| 712 | InductionVar* InductionVarAnalysis::LookupCycle(Definition* def) { |
| 713 | LoopInfo::InductionKV::Pair* pair = cycle_.Lookup(def); |
| 714 | if (pair != nullptr) { |
| 715 | return pair->value; |
| 716 | } |
| 717 | return nullptr; |
| 718 | } |
| 719 | |
| 720 | InductionVar* InductionVarAnalysis::Add(InductionVar* x, InductionVar* y) { |
| 721 | if (InductionVar::IsInvariant(x)) { |
| 722 | if (InductionVar::IsInvariant(y)) { |
| 723 | // Invariant + Invariant : only for same or just one instruction. |
| 724 | if (x->def_ == y->def_) { |
| 725 | return new (zone_) |
| 726 | InductionVar(x->offset_ + y->offset_, x->mult_ + y->mult_, x->def_); |
| 727 | } else if (y->mult_ == 0) { |
| 728 | return new (zone_) |
| 729 | InductionVar(x->offset_ + y->offset_, x->mult_, x->def_); |
| 730 | } else if (x->mult_ == 0) { |
| 731 | return new (zone_) |
| 732 | InductionVar(x->offset_ + y->offset_, y->mult_, y->def_); |
| 733 | } |
| 734 | } else if (y != nullptr) { |
| 735 | // Invariant + Induction. |
| 736 | InductionVar* i = Add(x, y->initial_); |
| 737 | InductionVar* n = |
| 738 | y->kind_ == InductionVar::kLinear ? y->next_ : Add(x, y->next_); |
| 739 | if (i != nullptr && n != nullptr) { |
| 740 | return new (zone_) InductionVar(y->kind_, i, n); |
| 741 | } |
| 742 | } |
| 743 | } else if (InductionVar::IsInvariant(y)) { |
| 744 | if (x != nullptr) { |
| 745 | // Induction + Invariant. |
| 746 | ASSERT(!InductionVar::IsInvariant(x)); |
| 747 | InductionVar* i = Add(x->initial_, y); |
| 748 | InductionVar* n = |
| 749 | x->kind_ == InductionVar::kLinear ? x->next_ : Add(x->next_, y); |
| 750 | if (i != nullptr && n != nullptr) { |
| 751 | return new (zone_) InductionVar(x->kind_, i, n); |
| 752 | } |
| 753 | } |
| 754 | } else if (InductionVar::IsLinear(x) && InductionVar::IsLinear(y)) { |
| 755 | // Linear + Linear. |
| 756 | InductionVar* i = Add(x->initial_, y->initial_); |
| 757 | InductionVar* n = Add(x->next_, y->next_); |
| 758 | if (i != nullptr && n != nullptr) { |
| 759 | return new (zone_) InductionVar(InductionVar::kLinear, i, n); |
| 760 | } |
| 761 | } |
| 762 | return nullptr; |
| 763 | } |
| 764 | |
| 765 | InductionVar* InductionVarAnalysis::Sub(InductionVar* x, InductionVar* y) { |
| 766 | if (InductionVar::IsInvariant(x)) { |
| 767 | if (InductionVar::IsInvariant(y)) { |
| 768 | // Invariant + Invariant : only for same or just one instruction. |
| 769 | if (x->def_ == y->def_) { |
| 770 | return new (zone_) |
| 771 | InductionVar(x->offset_ - y->offset_, x->mult_ - y->mult_, x->def_); |
| 772 | } else if (y->mult_ == 0) { |
| 773 | return new (zone_) |
| 774 | InductionVar(x->offset_ - y->offset_, x->mult_, x->def_); |
| 775 | } else if (x->mult_ == 0) { |
| 776 | return new (zone_) |
| 777 | InductionVar(x->offset_ - y->offset_, -y->mult_, y->def_); |
| 778 | } |
| 779 | } else if (y != nullptr) { |
| 780 | // Invariant - Induction. |
| 781 | InductionVar* i = Sub(x, y->initial_); |
| 782 | InductionVar* n; |
| 783 | if (y->kind_ == InductionVar::kLinear) { |
| 784 | InductionVar* zero = new (zone_) InductionVar(0, 0, nullptr); |
| 785 | n = Sub(zero, y->next_); |
| 786 | } else { |
| 787 | n = Sub(x, y->next_); |
| 788 | } |
| 789 | if (i != nullptr && n != nullptr) { |
| 790 | return new (zone_) InductionVar(y->kind_, i, n); |
| 791 | } |
| 792 | } |
| 793 | } else if (InductionVar::IsInvariant(y)) { |
| 794 | if (x != nullptr) { |
| 795 | // Induction - Invariant. |
| 796 | ASSERT(!InductionVar::IsInvariant(x)); |
| 797 | InductionVar* i = Sub(x->initial_, y); |
| 798 | InductionVar* n = |
| 799 | x->kind_ == InductionVar::kLinear ? x->next_ : Sub(x->next_, y); |
| 800 | if (i != nullptr && n != nullptr) { |
| 801 | return new (zone_) InductionVar(x->kind_, i, n); |
| 802 | } |
| 803 | } |
| 804 | } else if (InductionVar::IsLinear(x) && InductionVar::IsLinear(y)) { |
| 805 | // Linear - Linear. |
| 806 | InductionVar* i = Sub(x->initial_, y->initial_); |
| 807 | InductionVar* n = Sub(x->next_, y->next_); |
| 808 | if (i != nullptr && n != nullptr) { |
| 809 | return new (zone_) InductionVar(InductionVar::kLinear, i, n); |
| 810 | } |
| 811 | } |
| 812 | return nullptr; |
| 813 | } |
| 814 | |
| 815 | InductionVar* InductionVarAnalysis::Mul(InductionVar* x, InductionVar* y) { |
| 816 | // Swap constant left. |
| 817 | if (!InductionVar::IsConstant(x)) { |
| 818 | InductionVar* tmp = x; |
| 819 | x = y; |
| 820 | y = tmp; |
| 821 | } |
| 822 | // Apply constant to any induction. |
| 823 | if (InductionVar::IsConstant(x) && y != nullptr) { |
| 824 | if (y->kind_ == InductionVar::kInvariant) { |
| 825 | return new (zone_) |
| 826 | InductionVar(x->offset_ * y->offset_, x->offset_ * y->mult_, y->def_); |
| 827 | } |
| 828 | return new (zone_) |
| 829 | InductionVar(y->kind_, Mul(x, y->initial_), Mul(x, y->next_)); |
| 830 | } |
| 831 | return nullptr; |
| 832 | } |
| 833 | |
| 834 | bool InductionVar::CanComputeDifferenceWith(const InductionVar* other, |
| 835 | int64_t* diff) const { |
| 836 | if (IsInvariant(this) && IsInvariant(other)) { |
| 837 | if (def_ == other->def_ && mult_ == other->mult_) { |
| 838 | *diff = other->offset_ - offset_; |
| 839 | return true; |
| 840 | } |
| 841 | } else if (IsLinear(this) && IsLinear(other)) { |
| 842 | return next_->IsEqual(other->next_) && |
| 843 | initial_->CanComputeDifferenceWith(other->initial_, diff); |
| 844 | } |
| 845 | // TODO(ajcbik): examine other induction kinds too? |
| 846 | return false; |
| 847 | } |
| 848 | |
| 849 | bool InductionVar::CanComputeBoundsImpl(LoopInfo* loop, |
| 850 | Instruction* pos, |
| 851 | InductionVar** min, |
| 852 | InductionVar** max) { |
| 853 | // Refine symbolic part of an invariant with outward induction. |
| 854 | if (IsInvariant(this)) { |
| 855 | if (mult_ == 1 && def_ != nullptr) { |
| 856 | for (loop = loop->outer(); loop != nullptr; loop = loop->outer()) { |
| 857 | InductionVar* induc = loop->LookupInduction(def_); |
| 858 | InductionVar* i_min = nullptr; |
| 859 | InductionVar* i_max = nullptr; |
| 860 | // Accept i+C with i in [L,U] as [L+C,U+C] when this adjustment |
| 861 | // does not have arithmetic wrap-around complications. |
| 862 | if (IsInduction(induc) && |
| 863 | induc->CanComputeBounds(loop, pos, &i_min, &i_max)) { |
| 864 | Zone* z = Thread::Current()->zone(); |
| 865 | return SafelyAdjust(z, i_min, offset_, i_max, offset_, min, max); |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | // Otherwise invariant itself suffices. |
| 870 | *min = *max = this; |
| 871 | return true; |
| 872 | } |
| 873 | // Refine unit stride induction with lower and upper bound. |
| 874 | // for (int i = L; i < U; i++) |
| 875 | // j = i+C in [L+C,U+C-1] |
| 876 | int64_t stride = 0; |
| 877 | int64_t off = 0; |
| 878 | if (IsLinear(this, &stride) && Utils::Abs(stride) == 1 && |
| 879 | CanComputeDifferenceWith(loop->control(), &off)) { |
| 880 | // Find ranges on both L and U first (and not just minimum |
| 881 | // of L and maximum of U) to avoid arithmetic wrap-around |
| 882 | // complications such as the one shown below. |
| 883 | // for (int i = 0; i < maxint - 10; i++) |
| 884 | // for (int j = i + 20; j < 100; j++) |
| 885 | // j in [minint, 99] and not in [20, 100] |
| 886 | InductionVar* l_min = nullptr; |
| 887 | InductionVar* l_max = nullptr; |
| 888 | if (initial_->CanComputeBounds(loop, pos, &l_min, &l_max)) { |
| 889 | // Find extreme using a control bound for which the branch dominates |
| 890 | // the given position (to make sure it really is under its control). |
| 891 | // Then refine with anything that dominates that branch. |
| 892 | for (auto bound : loop->control()->bounds()) { |
| 893 | if (pos->IsDominatedBy(bound.branch_)) { |
| 894 | InductionVar* u_min = nullptr; |
| 895 | InductionVar* u_max = nullptr; |
| 896 | if (bound.limit_->CanComputeBounds(loop, bound.branch_, &u_min, |
| 897 | &u_max)) { |
| 898 | Zone* z = Thread::Current()->zone(); |
| 899 | return stride > 0 ? SafelyAdjust(z, l_min, 0, u_max, -stride - off, |
| 900 | min, max) |
| 901 | : SafelyAdjust(z, u_min, -stride - off, l_max, 0, |
| 902 | min, max); |
| 903 | } |
| 904 | } |
| 905 | } |
| 906 | } |
| 907 | } |
| 908 | // Failure. TODO(ajcbik): examine other kinds of induction too? |
| 909 | return false; |
| 910 | } |
| 911 | |
| 912 | // Driver method to compute bounds with per-loop memoization. |
| 913 | bool InductionVar::CanComputeBounds(LoopInfo* loop, |
| 914 | Instruction* pos, |
| 915 | InductionVar** min, |
| 916 | InductionVar** max) { |
| 917 | // Consult cache first. |
| 918 | LoopInfo::MemoKV::Pair* pair1 = loop->memo_cache_.Lookup(this); |
| 919 | if (pair1 != nullptr) { |
| 920 | LoopInfo::MemoVal::PosKV::Pair* pair2 = pair1->value->memo_.Lookup(pos); |
| 921 | if (pair2 != nullptr) { |
| 922 | *min = pair2->value.first; |
| 923 | *max = pair2->value.second; |
| 924 | return true; |
| 925 | } |
| 926 | } |
| 927 | // Compute and cache. |
| 928 | if (CanComputeBoundsImpl(loop, pos, min, max)) { |
| 929 | ASSERT(*min != nullptr && *max != nullptr); |
| 930 | LoopInfo::MemoVal* memo = nullptr; |
| 931 | if (pair1 != nullptr) { |
| 932 | memo = pair1->value; |
| 933 | } else { |
| 934 | memo = new LoopInfo::MemoVal(); |
| 935 | loop->memo_cache_.Insert(LoopInfo::MemoKV::Pair(this, memo)); |
| 936 | } |
| 937 | memo->memo_.Insert( |
| 938 | LoopInfo::MemoVal::PosKV::Pair(pos, std::make_pair(*min, *max))); |
| 939 | return true; |
| 940 | } |
| 941 | return false; |
| 942 | } |
| 943 | |
| 944 | void InductionVar::PrintTo(BaseTextBuffer* f) const { |
| 945 | switch (kind_) { |
| 946 | case kInvariant: |
| 947 | if (mult_ != 0) { |
| 948 | f->Printf("(%" Pd64 " + %" Pd64 " x %.4s)" , offset_, mult_, |
| 949 | def_->ToCString()); |
| 950 | } else { |
| 951 | f->Printf("%" Pd64, offset_); |
| 952 | } |
| 953 | break; |
| 954 | case kLinear: |
| 955 | f->Printf("LIN(%s + %s * i)" , initial_->ToCString(), next_->ToCString()); |
| 956 | break; |
| 957 | case kWrapAround: |
| 958 | f->Printf("WRAP(%s, %s)" , initial_->ToCString(), next_->ToCString()); |
| 959 | break; |
| 960 | case kPeriodic: |
| 961 | f->Printf("PERIOD(%s, %s)" , initial_->ToCString(), next_->ToCString()); |
| 962 | break; |
| 963 | } |
| 964 | } |
| 965 | |
| 966 | const char* InductionVar::ToCString() const { |
| 967 | char buffer[1024]; |
| 968 | BufferFormatter f(buffer, sizeof(buffer)); |
| 969 | PrintTo(&f); |
| 970 | return Thread::Current()->zone()->MakeCopyOfString(buffer); |
| 971 | } |
| 972 | |
| 973 | LoopInfo::LoopInfo(intptr_t id, BlockEntryInstr* , BitVector* blocks) |
| 974 | : id_(id), |
| 975 | header_(header), |
| 976 | blocks_(blocks), |
| 977 | back_edges_(), |
| 978 | induction_(), |
| 979 | memo_cache_(), |
| 980 | limit_(nullptr), |
| 981 | control_(nullptr), |
| 982 | outer_(nullptr), |
| 983 | inner_(nullptr), |
| 984 | next_(nullptr) {} |
| 985 | |
| 986 | void LoopInfo::AddBlocks(BitVector* blocks) { |
| 987 | blocks_->AddAll(blocks); |
| 988 | } |
| 989 | |
| 990 | void LoopInfo::AddBackEdge(BlockEntryInstr* block) { |
| 991 | back_edges_.Add(block); |
| 992 | } |
| 993 | |
| 994 | bool LoopInfo::IsBackEdge(BlockEntryInstr* block) const { |
| 995 | for (intptr_t i = 0, n = back_edges_.length(); i < n; i++) { |
| 996 | if (back_edges_[i] == block) { |
| 997 | return true; |
| 998 | } |
| 999 | } |
| 1000 | return false; |
| 1001 | } |
| 1002 | |
| 1003 | bool LoopInfo::IsAlwaysTaken(BlockEntryInstr* block) const { |
| 1004 | // The loop header is always executed when executing a loop (including |
| 1005 | // loop body of a do-while). Reject any other loop body block that is |
| 1006 | // not directly controlled by header. |
| 1007 | if (block == header_) { |
| 1008 | return true; |
| 1009 | } else if (block->PredecessorCount() != 1 || |
| 1010 | block->PredecessorAt(0) != header_) { |
| 1011 | return false; |
| 1012 | } |
| 1013 | // If the loop has a control induction, make sure the condition is such |
| 1014 | // that the loop body is entered at least once from the header. |
| 1015 | if (control_ != nullptr) { |
| 1016 | InductionVar* limit = nullptr; |
| 1017 | for (auto bound : control_->bounds()) { |
| 1018 | if (bound.branch_ == header_->last_instruction()) { |
| 1019 | limit = bound.limit_; |
| 1020 | break; |
| 1021 | } |
| 1022 | } |
| 1023 | // Control iterates at least once? |
| 1024 | if (limit != nullptr) { |
| 1025 | int64_t stride = 0; |
| 1026 | int64_t begin = 0; |
| 1027 | int64_t end = 0; |
| 1028 | if (InductionVar::IsLinear(control_, &stride) && |
| 1029 | InductionVar::IsConstant(control_->initial(), &begin) && |
| 1030 | InductionVar::IsConstant(limit, &end) && |
| 1031 | ((stride == 1 && begin < end) || (stride == -1 && begin > end))) { |
| 1032 | return true; |
| 1033 | } |
| 1034 | } |
| 1035 | } |
| 1036 | return false; |
| 1037 | } |
| 1038 | |
| 1039 | bool LoopInfo::(Definition* def) const { |
| 1040 | return def != nullptr && def->IsPhi() && def->GetBlock() == header_ && |
| 1041 | !def->AsPhi()->IsRedundant(); // phi(x,..,x) = x |
| 1042 | } |
| 1043 | |
| 1044 | bool LoopInfo::IsIn(LoopInfo* loop) const { |
| 1045 | if (loop != nullptr) { |
| 1046 | return loop->Contains(header_); |
| 1047 | } |
| 1048 | return false; |
| 1049 | } |
| 1050 | |
| 1051 | bool LoopInfo::Contains(BlockEntryInstr* block) const { |
| 1052 | return blocks_->Contains(block->preorder_number()); |
| 1053 | } |
| 1054 | |
| 1055 | intptr_t LoopInfo::NestingDepth() const { |
| 1056 | intptr_t nesting_depth = 1; |
| 1057 | for (LoopInfo* o = outer_; o != nullptr; o = o->outer()) { |
| 1058 | nesting_depth++; |
| 1059 | } |
| 1060 | return nesting_depth; |
| 1061 | } |
| 1062 | |
| 1063 | void LoopInfo::ResetInduction() { |
| 1064 | induction_.Clear(); |
| 1065 | memo_cache_.Clear(); |
| 1066 | } |
| 1067 | |
| 1068 | void LoopInfo::AddInduction(Definition* def, InductionVar* induc) { |
| 1069 | ASSERT(def != nullptr); |
| 1070 | ASSERT(induc != nullptr); |
| 1071 | induction_.Insert(InductionKV::Pair(def, induc)); |
| 1072 | } |
| 1073 | |
| 1074 | InductionVar* LoopInfo::LookupInduction(Definition* def) const { |
| 1075 | InductionKV::Pair* pair = induction_.Lookup(def); |
| 1076 | if (pair != nullptr) { |
| 1077 | return pair->value; |
| 1078 | } |
| 1079 | return nullptr; |
| 1080 | } |
| 1081 | |
| 1082 | // Checks if an index is in range of a given length: |
| 1083 | // for (int i = initial; i <= length - C; i++) { |
| 1084 | // .... a[i] .... // initial >= 0 and C > 0: |
| 1085 | // } |
| 1086 | bool LoopInfo::IsInRange(Instruction* pos, Value* index, Value* length) { |
| 1087 | InductionVar* induc = LookupInduction( |
| 1088 | index->definition()->OriginalDefinitionIgnoreBoxingAndConstraints()); |
| 1089 | InductionVar* len = LookupInduction( |
| 1090 | length->definition()->OriginalDefinitionIgnoreBoxingAndConstraints()); |
| 1091 | if (induc != nullptr && len != nullptr) { |
| 1092 | // First, try the most common case. A simple induction directly |
| 1093 | // bounded by [c>=0,length-C>=0) for the length we are looking for. |
| 1094 | int64_t stride = 0; |
| 1095 | int64_t val = 0; |
| 1096 | int64_t diff = 0; |
| 1097 | if (InductionVar::IsLinear(induc, &stride) && stride == 1 && |
| 1098 | InductionVar::IsConstant(induc->initial(), &val) && 0 <= val) { |
| 1099 | for (auto bound : induc->bounds()) { |
| 1100 | if (pos->IsDominatedBy(bound.branch_) && |
| 1101 | len->CanComputeDifferenceWith(bound.limit_, &diff) && diff <= 0) { |
| 1102 | return true; |
| 1103 | } |
| 1104 | } |
| 1105 | } |
| 1106 | // If that fails, try to compute bounds using more outer loops. |
| 1107 | // Since array lengths >= 0, the conditions used during this |
| 1108 | // process avoid arithmetic wrap-around complications. |
| 1109 | InductionVar* min = nullptr; |
| 1110 | InductionVar* max = nullptr; |
| 1111 | if (induc->CanComputeBounds(this, pos, &min, &max)) { |
| 1112 | return InductionVar::IsConstant(min, &val) && 0 <= val && |
| 1113 | len->CanComputeDifferenceWith(max, &diff) && diff < 0; |
| 1114 | } |
| 1115 | } |
| 1116 | return false; |
| 1117 | } |
| 1118 | |
| 1119 | void LoopInfo::PrintTo(BaseTextBuffer* f) const { |
| 1120 | f->Printf("%*c" , static_cast<int>(2 * NestingDepth()), ' '); |
| 1121 | f->Printf("loop%" Pd " B%" Pd " " , id_, header_->block_id()); |
| 1122 | intptr_t num_blocks = 0; |
| 1123 | for (BitVector::Iterator it(blocks_); !it.Done(); it.Advance()) { |
| 1124 | num_blocks++; |
| 1125 | } |
| 1126 | f->Printf("#blocks=%" Pd, num_blocks); |
| 1127 | if (outer_ != nullptr) f->Printf(" outer=%" Pd, outer_->id_); |
| 1128 | if (inner_ != nullptr) f->Printf(" inner=%" Pd, inner_->id_); |
| 1129 | if (next_ != nullptr) f->Printf(" next=%" Pd, next_->id_); |
| 1130 | f->AddString(" [" ); |
| 1131 | for (intptr_t i = 0, n = back_edges_.length(); i < n; i++) { |
| 1132 | f->Printf(" B%" Pd, back_edges_[i]->block_id()); |
| 1133 | } |
| 1134 | f->AddString(" ]" ); |
| 1135 | } |
| 1136 | |
| 1137 | const char* LoopInfo::ToCString() const { |
| 1138 | char buffer[1024]; |
| 1139 | BufferFormatter f(buffer, sizeof(buffer)); |
| 1140 | PrintTo(&f); |
| 1141 | return Thread::Current()->zone()->MakeCopyOfString(buffer); |
| 1142 | } |
| 1143 | |
| 1144 | LoopHierarchy::LoopHierarchy(ZoneGrowableArray<BlockEntryInstr*>* , |
| 1145 | const GrowableArray<BlockEntryInstr*>& preorder) |
| 1146 | : headers_(headers), preorder_(preorder), top_(nullptr) { |
| 1147 | Build(); |
| 1148 | } |
| 1149 | |
| 1150 | void LoopHierarchy::Build() { |
| 1151 | // Link every entry block to the closest enveloping loop. |
| 1152 | for (intptr_t i = 0, n = headers_->length(); i < n; ++i) { |
| 1153 | LoopInfo* loop = (*headers_)[i]->loop_info(); |
| 1154 | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { |
| 1155 | BlockEntryInstr* block = preorder_[it.Current()]; |
| 1156 | if (block->loop_info() == nullptr) { |
| 1157 | block->set_loop_info(loop); |
| 1158 | } else { |
| 1159 | ASSERT(block->loop_info()->IsIn(loop)); |
| 1160 | } |
| 1161 | } |
| 1162 | } |
| 1163 | // Build hierarchy from headers. |
| 1164 | for (intptr_t i = 0, n = headers_->length(); i < n; ++i) { |
| 1165 | BlockEntryInstr* = (*headers_)[i]; |
| 1166 | LoopInfo* loop = header->loop_info(); |
| 1167 | LoopInfo* dom_loop = header->dominator()->loop_info(); |
| 1168 | ASSERT(loop->outer_ == nullptr); |
| 1169 | ASSERT(loop->next_ == nullptr); |
| 1170 | if (loop->IsIn(dom_loop)) { |
| 1171 | loop->outer_ = dom_loop; |
| 1172 | loop->next_ = dom_loop->inner_; |
| 1173 | dom_loop->inner_ = loop; |
| 1174 | } else { |
| 1175 | loop->next_ = top_; |
| 1176 | top_ = loop; |
| 1177 | } |
| 1178 | } |
| 1179 | // If tracing is requested, print the loop hierarchy. |
| 1180 | if (FLAG_trace_optimization) { |
| 1181 | Print(top_); |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | void LoopHierarchy::Print(LoopInfo* loop) const { |
| 1186 | for (; loop != nullptr; loop = loop->next_) { |
| 1187 | THR_Print("%s {" , loop->ToCString()); |
| 1188 | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { |
| 1189 | THR_Print(" B%" Pd, preorder_[it.Current()]->block_id()); |
| 1190 | } |
| 1191 | THR_Print(" }\n" ); |
| 1192 | Print(loop->inner_); |
| 1193 | } |
| 1194 | } |
| 1195 | |
| 1196 | void LoopHierarchy::ComputeInduction() const { |
| 1197 | InductionVarAnalysis(preorder_).VisitHierarchy(top_); |
| 1198 | } |
| 1199 | |
| 1200 | } // namespace dart |
| 1201 | |