1 | // Copyright (c) 2018, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/compiler/backend/loops.h" |
6 | |
7 | #include "vm/bit_vector.h" |
8 | #include "vm/compiler/backend/il.h" |
9 | |
10 | namespace dart { |
11 | |
12 | // Private class to perform induction variable analysis on a single loop |
13 | // or a full loop hierarchy. The analysis implementation is based on the |
14 | // paper by M. Gerlek et al. "Beyond Induction Variables: Detecting and |
15 | // Classifying Sequences Using a Demand-Driven SSA Form" (ACM Transactions |
16 | // on Programming Languages and Systems, Volume 17 Issue 1, Jan. 1995). |
17 | // |
18 | // The algorithm discovers and classifies definitions within loops that |
19 | // behave like induction variables, and attaches an InductionVar record |
20 | // to it (this mapping is stored in the loop data structure). The algorithm |
21 | // first finds strongly connected components in the flow graph and classifies |
22 | // each component as an induction when possible. Due to the descendant-first |
23 | // nature, classification happens "on-demand" (e.g. basic induction is |
24 | // classified before derived induction). |
25 | class InductionVarAnalysis : public ValueObject { |
26 | public: |
27 | // Constructor to set up analysis phase. |
28 | explicit InductionVarAnalysis(const GrowableArray<BlockEntryInstr*>& preorder) |
29 | : preorder_(preorder), |
30 | stack_(), |
31 | scc_(), |
32 | cycle_(), |
33 | map_(), |
34 | current_index_(0), |
35 | zone_(Thread::Current()->zone()) {} |
36 | |
37 | // Detects induction variables on the full loop hierarchy. |
38 | void VisitHierarchy(LoopInfo* loop); |
39 | |
40 | // Detects induction variables on a single loop. |
41 | void VisitLoop(LoopInfo* loop); |
42 | |
43 | private: |
44 | // An information node needed during SCC traversal that can |
45 | // reside in a map without any explicit memory allocation. |
46 | struct SCCInfo { |
47 | SCCInfo() : depth(-1), done(false) {} |
48 | explicit SCCInfo(intptr_t d) : depth(d), done(false) {} |
49 | intptr_t depth; |
50 | bool done; |
51 | bool operator!=(const SCCInfo& other) const { |
52 | return depth != other.depth || done != other.done; |
53 | } |
54 | bool operator==(const SCCInfo& other) const { |
55 | return depth == other.depth && done == other.done; |
56 | } |
57 | }; |
58 | typedef RawPointerKeyValueTrait<Definition, SCCInfo> VisitKV; |
59 | |
60 | // Traversal methods. |
61 | bool Visit(LoopInfo* loop, Definition* def); |
62 | intptr_t VisitDescendant(LoopInfo* loop, Definition* def); |
63 | void Classify(LoopInfo* loop, Definition* def); |
64 | void ClassifySCC(LoopInfo* loop); |
65 | void ClassifyControl(LoopInfo* loop); |
66 | |
67 | // Transfer methods. Compute how induction of the operands, if any, |
68 | // tranfers over the operation performed by the given definition. |
69 | InductionVar* TransferPhi(LoopInfo* loop, Definition* def, intptr_t idx = -1); |
70 | InductionVar* TransferDef(LoopInfo* loop, Definition* def); |
71 | InductionVar* TransferBinary(LoopInfo* loop, Definition* def); |
72 | InductionVar* TransferUnary(LoopInfo* loop, Definition* def); |
73 | |
74 | // Solver methods. Compute how temporary meaning given to the |
75 | // definitions in a cycle transfer over the operation performed |
76 | // by the given definition. |
77 | InductionVar* SolvePhi(LoopInfo* loop, Definition* def, intptr_t idx = -1); |
78 | InductionVar* SolveConstraint(LoopInfo* loop, |
79 | Definition* def, |
80 | InductionVar* init); |
81 | InductionVar* SolveBinary(LoopInfo* loop, |
82 | Definition* def, |
83 | InductionVar* init); |
84 | InductionVar* SolveUnary(LoopInfo* loop, Definition* def, InductionVar* init); |
85 | |
86 | // Lookup. |
87 | InductionVar* Lookup(LoopInfo* loop, Definition* def); |
88 | InductionVar* LookupCycle(Definition* def); |
89 | |
90 | // Arithmetic. |
91 | InductionVar* Add(InductionVar* x, InductionVar* y); |
92 | InductionVar* Sub(InductionVar* x, InductionVar* y); |
93 | InductionVar* Mul(InductionVar* x, InductionVar* y); |
94 | |
95 | // Bookkeeping data (released when analysis goes out of scope). |
96 | const GrowableArray<BlockEntryInstr*>& preorder_; |
97 | GrowableArray<Definition*> stack_; |
98 | GrowableArray<Definition*> scc_; |
99 | GrowableArray<BranchInstr*> branches_; |
100 | DirectChainedHashMap<LoopInfo::InductionKV> cycle_; |
101 | DirectChainedHashMap<VisitKV> map_; |
102 | intptr_t current_index_; |
103 | Zone* zone_; |
104 | |
105 | DISALLOW_COPY_AND_ASSIGN(InductionVarAnalysis); |
106 | }; |
107 | |
108 | // Helper method that finds phi-index of the initial value |
109 | // that comes from a block outside the loop. Note that the |
110 | // algorithm still works if there are several of these. |
111 | static intptr_t InitIndex(LoopInfo* loop) { |
112 | BlockEntryInstr* = loop->header(); |
113 | for (intptr_t i = 0; i < header->PredecessorCount(); ++i) { |
114 | if (!loop->Contains(header->PredecessorAt(i))) { // pick first |
115 | return i; |
116 | } |
117 | } |
118 | UNREACHABLE(); |
119 | return -1; |
120 | } |
121 | |
122 | // Helper method that determines if a definition is a constant. |
123 | static bool IsConstant(Definition* def, int64_t* val) { |
124 | if (def->IsConstant()) { |
125 | const Object& value = def->AsConstant()->value(); |
126 | if (value.IsInteger()) { |
127 | *val = Integer::Cast(value).AsInt64Value(); // smi and mint |
128 | return true; |
129 | } |
130 | } |
131 | return false; |
132 | } |
133 | |
134 | // Helper method to determine if a non-strict (inclusive) bound on |
135 | // a unit stride linear induction can be made strict (exclusive) |
136 | // without arithmetic wrap-around complications. |
137 | static bool CanBeMadeExclusive(LoopInfo* loop, |
138 | InductionVar* x, |
139 | Instruction* branch, |
140 | bool is_lower) { |
141 | InductionVar* min = nullptr; |
142 | InductionVar* max = nullptr; |
143 | if (x->CanComputeBounds(loop, branch, &min, &max)) { |
144 | int64_t end = 0; |
145 | if (is_lower) { |
146 | if (InductionVar::IsConstant(min, &end)) { |
147 | return kMinInt64 < end; |
148 | } |
149 | } else if (InductionVar::IsConstant(max, &end)) { |
150 | return end < kMaxInt64; |
151 | } else if (InductionVar::IsInvariant(max) && max->mult() == 1 && |
152 | Definition::IsArrayLength(max->def())) { |
153 | return max->offset() < 0; // a.length - C, C > 0 |
154 | } |
155 | } |
156 | return false; |
157 | } |
158 | |
159 | // Helper method to adjust a range [lower_bound,upper_bound] into the |
160 | // range [lower_bound+lower_bound_offset,upper_bound+upper_bound+offset] |
161 | // without arithmetic wrap-around complications. On entry, we know that |
162 | // lower_bound <= upper_bound is enforced by an actual comparison in the |
163 | // code (so that even if lower_bound > upper_bound, the loop is not taken). |
164 | // This method ensures the resulting range has the same property by |
165 | // very conservatively testing if everything stays between constants |
166 | // or a properly offset array length. |
167 | static bool SafelyAdjust(Zone* zone, |
168 | InductionVar* lower_bound, |
169 | int64_t lower_bound_offset, |
170 | InductionVar* upper_bound, |
171 | int64_t upper_bound_offset, |
172 | InductionVar** min, |
173 | InductionVar** max) { |
174 | bool success = false; |
175 | int64_t lval = 0; |
176 | int64_t uval = 0; |
177 | if (InductionVar::IsConstant(lower_bound, &lval)) { |
178 | const int64_t l = lval + lower_bound_offset; |
179 | if (InductionVar::IsConstant(upper_bound, &uval)) { |
180 | // Make sure a proper new range [l,u] results. Even if bounds |
181 | // were subject to arithmetic wrap-around, we preserve the |
182 | // property that the minimum is in l and the maximum in u. |
183 | const int64_t u = uval + upper_bound_offset; |
184 | success = (l <= u); |
185 | } else if (InductionVar::IsInvariant(upper_bound) && |
186 | upper_bound->mult() == 1 && |
187 | Definition::IsArrayLength(upper_bound->def())) { |
188 | // No arithmetic wrap-around on the lower bound, and a properly |
189 | // non-positive offset on an array length, which is always >= 0. |
190 | const int64_t c = upper_bound->offset() + upper_bound_offset; |
191 | success = ((lower_bound_offset >= 0 && lval <= l) || |
192 | (lower_bound_offset < 0 && lval > l)) && |
193 | (c <= 0); |
194 | } |
195 | } |
196 | if (success) { |
197 | *min = (lower_bound_offset == 0) |
198 | ? lower_bound |
199 | : new (zone) InductionVar(lval + lower_bound_offset); |
200 | *max = (upper_bound_offset == 0) |
201 | ? upper_bound |
202 | : new (zone) |
203 | InductionVar(upper_bound->offset() + upper_bound_offset, |
204 | upper_bound->mult(), upper_bound->def()); |
205 | } |
206 | return success; |
207 | } |
208 | |
209 | void InductionVarAnalysis::VisitHierarchy(LoopInfo* loop) { |
210 | for (; loop != nullptr; loop = loop->next_) { |
211 | VisitLoop(loop); |
212 | VisitHierarchy(loop->inner_); |
213 | } |
214 | } |
215 | |
216 | void InductionVarAnalysis::VisitLoop(LoopInfo* loop) { |
217 | loop->ResetInduction(); |
218 | // Find strongly connected components (SSCs) in the SSA graph of this |
219 | // loop using Tarjan's algorithm. Due to the descendant-first nature, |
220 | // classification happens "on-demand". |
221 | current_index_ = 0; |
222 | ASSERT(stack_.is_empty()); |
223 | ASSERT(map_.IsEmpty()); |
224 | ASSERT(branches_.is_empty()); |
225 | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { |
226 | BlockEntryInstr* block = preorder_[it.Current()]; |
227 | ASSERT(block->loop_info() != nullptr); |
228 | if (block->loop_info() != loop) { |
229 | continue; // inner loop |
230 | } |
231 | // Visit phi-operations. |
232 | if (block->IsJoinEntry()) { |
233 | for (PhiIterator it(block->AsJoinEntry()); !it.Done(); it.Advance()) { |
234 | Visit(loop, it.Current()); |
235 | } |
236 | } |
237 | // Visit instructions and collect branches. |
238 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
239 | Instruction* instruction = it.Current(); |
240 | Visit(loop, instruction->AsDefinition()); |
241 | if (instruction->IsBranch()) { |
242 | branches_.Add(instruction->AsBranch()); |
243 | } |
244 | } |
245 | } |
246 | ASSERT(stack_.is_empty()); |
247 | map_.Clear(); |
248 | // Classify loop control. |
249 | ClassifyControl(loop); |
250 | branches_.Clear(); |
251 | } |
252 | |
253 | bool InductionVarAnalysis::Visit(LoopInfo* loop, Definition* def) { |
254 | if (def == nullptr || map_.HasKey(def)) { |
255 | return false; // no def, or already visited |
256 | } |
257 | intptr_t d = ++current_index_; |
258 | map_.Insert(VisitKV::Pair(def, SCCInfo(d))); |
259 | stack_.Add(def); |
260 | |
261 | // Visit all descendants. |
262 | intptr_t low = d; |
263 | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { |
264 | Value* input = def->InputAt(i); |
265 | if (input != nullptr) { |
266 | low = Utils::Minimum(low, VisitDescendant(loop, input->definition())); |
267 | } |
268 | } |
269 | |
270 | // Lower or found SCC? |
271 | if (low < d) { |
272 | map_.Lookup(def)->value.depth = low; |
273 | } else { |
274 | // Pop the stack to build the SCC for classification. |
275 | ASSERT(scc_.is_empty()); |
276 | while (!stack_.is_empty()) { |
277 | Definition* top = stack_.RemoveLast(); |
278 | scc_.Add(top); |
279 | map_.Lookup(top)->value.done = true; |
280 | if (top == def) { |
281 | break; |
282 | } |
283 | } |
284 | // Classify. |
285 | if (scc_.length() == 1) { |
286 | Classify(loop, scc_[0]); |
287 | } else { |
288 | ASSERT(scc_.length() > 1); |
289 | ASSERT(cycle_.IsEmpty()); |
290 | ClassifySCC(loop); |
291 | cycle_.Clear(); |
292 | } |
293 | scc_.Clear(); |
294 | } |
295 | return true; |
296 | } |
297 | |
298 | intptr_t InductionVarAnalysis::VisitDescendant(LoopInfo* loop, |
299 | Definition* def) { |
300 | // The traversal stops at anything not defined in this loop |
301 | // (either a loop invariant entry value defined outside the |
302 | // loop or an inner exit value defined by an inner loop). |
303 | if (def->GetBlock()->loop_info() != loop) { |
304 | return current_index_; |
305 | } |
306 | // Inspect descendant node. |
307 | if (!Visit(loop, def) && map_.Lookup(def)->value.done) { |
308 | return current_index_; |
309 | } |
310 | return map_.Lookup(def)->value.depth; |
311 | } |
312 | |
313 | void InductionVarAnalysis::Classify(LoopInfo* loop, Definition* def) { |
314 | // Classify different kind of instructions. |
315 | InductionVar* induc = nullptr; |
316 | if (loop->IsHeaderPhi(def)) { |
317 | intptr_t idx = InitIndex(loop); |
318 | induc = TransferPhi(loop, def, idx); |
319 | if (induc != nullptr) { |
320 | InductionVar* init = Lookup(loop, def->InputAt(idx)->definition()); |
321 | // Wrap-around (except for unusual header phi(x,..,x) = x). |
322 | if (!init->IsEqual(induc)) { |
323 | induc = |
324 | new (zone_) InductionVar(InductionVar::kWrapAround, init, induc); |
325 | } |
326 | } |
327 | } else if (def->IsPhi()) { |
328 | induc = TransferPhi(loop, def); |
329 | } else { |
330 | induc = TransferDef(loop, def); |
331 | } |
332 | // Successfully classified? |
333 | if (induc != nullptr) { |
334 | loop->AddInduction(def, induc); |
335 | } |
336 | } |
337 | |
338 | void InductionVarAnalysis::ClassifySCC(LoopInfo* loop) { |
339 | intptr_t size = scc_.length(); |
340 | // Find a header phi, usually at the end. |
341 | intptr_t p = -1; |
342 | for (intptr_t i = size - 1; i >= 0; i--) { |
343 | if (loop->IsHeaderPhi(scc_[i])) { |
344 | p = i; |
345 | break; |
346 | } |
347 | } |
348 | // Rotate header phi up front. |
349 | if (p >= 0) { |
350 | Definition* phi = scc_[p]; |
351 | intptr_t idx = InitIndex(loop); |
352 | InductionVar* init = Lookup(loop, phi->InputAt(idx)->definition()); |
353 | // Inspect remainder of the cycle. The cycle mapping assigns temporary |
354 | // meaning to instructions, seeded from the phi instruction and back. |
355 | // The init of the phi is passed as marker token to detect first use. |
356 | cycle_.Insert(LoopInfo::InductionKV::Pair(phi, init)); |
357 | for (intptr_t i = 1, j = p; i < size; i++) { |
358 | if (++j >= size) j = 0; |
359 | Definition* def = scc_[j]; |
360 | InductionVar* update = nullptr; |
361 | if (def->IsPhi()) { |
362 | update = SolvePhi(loop, def); |
363 | } else if (def->IsBinaryIntegerOp()) { |
364 | update = SolveBinary(loop, def, init); |
365 | } else if (def->IsUnaryIntegerOp()) { |
366 | update = SolveUnary(loop, def, init); |
367 | } else if (def->IsConstraint()) { |
368 | update = SolveConstraint(loop, def, init); |
369 | } else { |
370 | Definition* orig = def->OriginalDefinitionIgnoreBoxingAndConstraints(); |
371 | if (orig != def) { |
372 | update = LookupCycle(orig); // pass-through |
373 | } |
374 | } |
375 | // Continue cycle? |
376 | if (update == nullptr) { |
377 | return; |
378 | } |
379 | cycle_.Insert(LoopInfo::InductionKV::Pair(def, update)); |
380 | } |
381 | // Success if all internal links (inputs to the phi that are along |
382 | // back-edges) received the same temporary meaning. The external |
383 | // link (initial value coming from outside the loop) is excluded |
384 | // while taking this join. |
385 | InductionVar* induc = SolvePhi(loop, phi, idx); |
386 | if (induc != nullptr) { |
387 | // Invariant means linear induction. |
388 | if (induc->kind_ == InductionVar::kInvariant) { |
389 | induc = new (zone_) InductionVar(InductionVar::kLinear, init, induc); |
390 | } else { |
391 | ASSERT(induc->kind_ == InductionVar::kPeriodic); |
392 | } |
393 | // Classify first phi and then the rest of the cycle "on-demand". |
394 | loop->AddInduction(phi, induc); |
395 | for (intptr_t i = 1, j = p; i < size; i++) { |
396 | if (++j >= size) j = 0; |
397 | Classify(loop, scc_[j]); |
398 | } |
399 | } |
400 | } |
401 | } |
402 | |
403 | void InductionVarAnalysis::ClassifyControl(LoopInfo* loop) { |
404 | for (auto branch : branches_) { |
405 | // Proper comparison? |
406 | ComparisonInstr* compare = branch->comparison(); |
407 | if (compare->InputCount() != 2) { |
408 | continue; |
409 | } |
410 | Token::Kind cmp = compare->kind(); |
411 | // Proper loop exit? Express the condition in "loop while true" form. |
412 | TargetEntryInstr* ift = branch->true_successor(); |
413 | TargetEntryInstr* iff = branch->false_successor(); |
414 | if (loop->Contains(ift) && !loop->Contains(iff)) { |
415 | // ok as is |
416 | } else if (!loop->Contains(ift) && loop->Contains(iff)) { |
417 | cmp = Token::NegateComparison(cmp); |
418 | } else { |
419 | continue; |
420 | } |
421 | // Comparison against linear constant stride induction? |
422 | // Express the comparison such that induction appears left. |
423 | int64_t stride = 0; |
424 | auto left = compare->left() |
425 | ->definition() |
426 | ->OriginalDefinitionIgnoreBoxingAndConstraints(); |
427 | auto right = compare->right() |
428 | ->definition() |
429 | ->OriginalDefinitionIgnoreBoxingAndConstraints(); |
430 | InductionVar* x = Lookup(loop, left); |
431 | InductionVar* y = Lookup(loop, right); |
432 | if (InductionVar::IsLinear(x, &stride) && InductionVar::IsInvariant(y)) { |
433 | // ok as is |
434 | } else if (InductionVar::IsInvariant(x) && |
435 | InductionVar::IsLinear(y, &stride)) { |
436 | InductionVar* tmp = x; |
437 | x = y; |
438 | y = tmp; |
439 | cmp = Token::FlipComparison(cmp); |
440 | } else { |
441 | continue; |
442 | } |
443 | // Can we find a strict (exclusive) comparison for the looping condition? |
444 | // Note that we reject symbolic bounds in non-strict (inclusive) looping |
445 | // conditions like i <= U as upperbound or i >= L as lowerbound since this |
446 | // could loop forever when U is kMaxInt64 or L is kMinInt64 under Dart's |
447 | // 64-bit arithmetic wrap-around. Non-unit strides could overshoot the |
448 | // bound due to aritmetic wrap-around. |
449 | switch (cmp) { |
450 | case Token::kLT: |
451 | // Accept i < U (i++). |
452 | if (stride == 1) break; |
453 | continue; |
454 | case Token::kGT: |
455 | // Accept i > L (i--). |
456 | if (stride == -1) break; |
457 | continue; |
458 | case Token::kLTE: { |
459 | // Accept i <= U (i++) as i < U + 1 |
460 | // only when U != MaxInt is certain. |
461 | if (stride == 1 && |
462 | CanBeMadeExclusive(loop, y, branch, /*is_lower=*/false)) { |
463 | y = Add(y, new (zone_) InductionVar(1)); |
464 | break; |
465 | } |
466 | continue; |
467 | } |
468 | case Token::kGTE: { |
469 | // Accept i >= L (i--) as i > L - 1 |
470 | // only when L != MinInt is certain. |
471 | if (stride == -1 && |
472 | CanBeMadeExclusive(loop, y, branch, /*is_lower=*/true)) { |
473 | y = Sub(y, new (zone_) InductionVar(1)); |
474 | break; |
475 | } |
476 | continue; |
477 | } |
478 | case Token::kNE: { |
479 | // Accept i != E as either i < E (i++) or i > E (i--) |
480 | // for constants bounds that make the loop always-taken. |
481 | int64_t start = 0; |
482 | int64_t end = 0; |
483 | if (InductionVar::IsConstant(x->initial_, &start) && |
484 | InductionVar::IsConstant(y, &end)) { |
485 | if ((stride == +1 && start < end) || (stride == -1 && start > end)) { |
486 | break; |
487 | } |
488 | } |
489 | continue; |
490 | } |
491 | default: |
492 | continue; |
493 | } |
494 | // We found a strict upper or lower bound on a unit stride linear |
495 | // induction. Note that depending on the intended use of this |
496 | // information, clients should still test dominance on the test |
497 | // and the initial value of the induction variable. |
498 | x->bounds_.Add(InductionVar::Bound(branch, y)); |
499 | // Record control induction. |
500 | if (branch == loop->header_->last_instruction()) { |
501 | loop->control_ = x; |
502 | } |
503 | } |
504 | } |
505 | |
506 | InductionVar* InductionVarAnalysis::TransferPhi(LoopInfo* loop, |
507 | Definition* def, |
508 | intptr_t idx) { |
509 | InductionVar* induc = nullptr; |
510 | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { |
511 | if (i != idx) { |
512 | InductionVar* x = Lookup(loop, def->InputAt(i)->definition()); |
513 | if (x == nullptr) { |
514 | return nullptr; |
515 | } else if (induc == nullptr) { |
516 | induc = x; |
517 | } else if (!induc->IsEqual(x)) { |
518 | return nullptr; |
519 | } |
520 | } |
521 | } |
522 | return induc; |
523 | } |
524 | |
525 | InductionVar* InductionVarAnalysis::TransferDef(LoopInfo* loop, |
526 | Definition* def) { |
527 | if (def->IsBinaryIntegerOp()) { |
528 | return TransferBinary(loop, def); |
529 | } else if (def->IsUnaryIntegerOp()) { |
530 | return TransferUnary(loop, def); |
531 | } else { |
532 | // Note that induction analysis does not really need the second |
533 | // argument of a bound check, since it will just pass-through the |
534 | // index. However, we do a lookup on the, most likely loop-invariant, |
535 | // length anyway, to make sure it is stored in the induction |
536 | // environment for later lookup during BCE. |
537 | if (auto check = def->AsCheckBoundBase()) { |
538 | Definition* len = check->length() |
539 | ->definition() |
540 | ->OriginalDefinitionIgnoreBoxingAndConstraints(); |
541 | Lookup(loop, len); // pre-store likely invariant length |
542 | } |
543 | // Proceed with regular pass-through. |
544 | Definition* orig = def->OriginalDefinitionIgnoreBoxingAndConstraints(); |
545 | if (orig != def) { |
546 | return Lookup(loop, orig); // pass-through |
547 | } |
548 | } |
549 | return nullptr; |
550 | } |
551 | |
552 | InductionVar* InductionVarAnalysis::TransferBinary(LoopInfo* loop, |
553 | Definition* def) { |
554 | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); |
555 | InductionVar* y = Lookup(loop, def->InputAt(1)->definition()); |
556 | |
557 | switch (def->AsBinaryIntegerOp()->op_kind()) { |
558 | case Token::kADD: |
559 | return Add(x, y); |
560 | case Token::kSUB: |
561 | return Sub(x, y); |
562 | case Token::kMUL: |
563 | return Mul(x, y); |
564 | default: |
565 | return nullptr; |
566 | } |
567 | } |
568 | |
569 | InductionVar* InductionVarAnalysis::TransferUnary(LoopInfo* loop, |
570 | Definition* def) { |
571 | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); |
572 | switch (def->AsUnaryIntegerOp()->op_kind()) { |
573 | case Token::kNEGATE: { |
574 | InductionVar* zero = new (zone_) InductionVar(0); |
575 | return Sub(zero, x); |
576 | } |
577 | default: |
578 | return nullptr; |
579 | } |
580 | } |
581 | |
582 | InductionVar* InductionVarAnalysis::SolvePhi(LoopInfo* loop, |
583 | Definition* def, |
584 | intptr_t idx) { |
585 | InductionVar* induc = nullptr; |
586 | for (intptr_t i = 0, n = def->InputCount(); i < n; i++) { |
587 | if (i != idx) { |
588 | InductionVar* c = LookupCycle(def->InputAt(i)->definition()); |
589 | if (c == nullptr) { |
590 | return nullptr; |
591 | } else if (induc == nullptr) { |
592 | induc = c; |
593 | } else if (!induc->IsEqual(c)) { |
594 | return nullptr; |
595 | } |
596 | } |
597 | } |
598 | return induc; |
599 | } |
600 | |
601 | InductionVar* InductionVarAnalysis::SolveConstraint(LoopInfo* loop, |
602 | Definition* def, |
603 | InductionVar* init) { |
604 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
605 | if (c == init) { |
606 | // Record a non-artifical bound constraint on a phi. |
607 | ConstraintInstr* constraint = def->AsConstraint(); |
608 | if (constraint->target() != nullptr) { |
609 | loop->limit_ = constraint; |
610 | } |
611 | } |
612 | return c; |
613 | } |
614 | |
615 | InductionVar* InductionVarAnalysis::SolveBinary(LoopInfo* loop, |
616 | Definition* def, |
617 | InductionVar* init) { |
618 | InductionVar* x = Lookup(loop, def->InputAt(0)->definition()); |
619 | InductionVar* y = Lookup(loop, def->InputAt(1)->definition()); |
620 | switch (def->AsBinaryIntegerOp()->op_kind()) { |
621 | case Token::kADD: |
622 | if (InductionVar::IsInvariant(x)) { |
623 | InductionVar* c = LookupCycle(def->InputAt(1)->definition()); |
624 | // The init marker denotes first use, otherwise aggregate. |
625 | if (c == init) { |
626 | return x; |
627 | } else if (InductionVar::IsInvariant(c)) { |
628 | return Add(x, c); |
629 | } |
630 | } |
631 | if (InductionVar::IsInvariant(y)) { |
632 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
633 | // The init marker denotes first use, otherwise aggregate. |
634 | if (c == init) { |
635 | return y; |
636 | } else if (InductionVar::IsInvariant(c)) { |
637 | return Add(c, y); |
638 | } |
639 | } |
640 | return nullptr; |
641 | case Token::kSUB: |
642 | if (InductionVar::IsInvariant(x)) { |
643 | InductionVar* c = LookupCycle(def->InputAt(1)->definition()); |
644 | // Note that i = x - i is periodic. The temporary |
645 | // meaning is expressed in terms of the header phi. |
646 | if (c == init) { |
647 | InductionVar* next = Sub(x, init); |
648 | if (InductionVar::IsInvariant(next)) { |
649 | return new (zone_) |
650 | InductionVar(InductionVar::kPeriodic, init, next); |
651 | } |
652 | } |
653 | } |
654 | if (InductionVar::IsInvariant(y)) { |
655 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
656 | // The init marker denotes first use, otherwise aggregate. |
657 | if (c == init) { |
658 | InductionVar* zero = new (zone_) InductionVar(0); |
659 | return Sub(zero, y); |
660 | } else if (InductionVar::IsInvariant(c)) { |
661 | return Sub(c, y); |
662 | } |
663 | } |
664 | return nullptr; |
665 | default: |
666 | return nullptr; |
667 | } |
668 | } |
669 | |
670 | InductionVar* InductionVarAnalysis::SolveUnary(LoopInfo* loop, |
671 | Definition* def, |
672 | InductionVar* init) { |
673 | InductionVar* c = LookupCycle(def->InputAt(0)->definition()); |
674 | switch (def->AsUnaryIntegerOp()->op_kind()) { |
675 | case Token::kNEGATE: |
676 | // Note that i = - i is periodic. The temporary |
677 | // meaning is expressed in terms of the header phi. |
678 | if (c == init) { |
679 | InductionVar* zero = new (zone_) InductionVar(0); |
680 | InductionVar* next = Sub(zero, init); |
681 | if (InductionVar::IsInvariant(next)) { |
682 | return new (zone_) InductionVar(InductionVar::kPeriodic, init, next); |
683 | } |
684 | } |
685 | return nullptr; |
686 | default: |
687 | return nullptr; |
688 | } |
689 | } |
690 | |
691 | InductionVar* InductionVarAnalysis::Lookup(LoopInfo* loop, Definition* def) { |
692 | InductionVar* induc = loop->LookupInduction(def); |
693 | if (induc == nullptr) { |
694 | // Loop-invariants are added lazily. |
695 | int64_t val = 0; |
696 | if (IsConstant(def, &val)) { |
697 | induc = new (zone_) InductionVar(val); |
698 | loop->AddInduction(def, induc); |
699 | } else if (!loop->Contains(def->GetBlock())) { |
700 | // Look "under the hood" of invariant definitions to expose |
701 | // more details on common constructs like "length - 1". |
702 | induc = TransferDef(loop, def); |
703 | if (induc == nullptr) { |
704 | induc = new (zone_) InductionVar(0, 1, def); |
705 | } |
706 | loop->AddInduction(def, induc); |
707 | } |
708 | } |
709 | return induc; |
710 | } |
711 | |
712 | InductionVar* InductionVarAnalysis::LookupCycle(Definition* def) { |
713 | LoopInfo::InductionKV::Pair* pair = cycle_.Lookup(def); |
714 | if (pair != nullptr) { |
715 | return pair->value; |
716 | } |
717 | return nullptr; |
718 | } |
719 | |
720 | InductionVar* InductionVarAnalysis::Add(InductionVar* x, InductionVar* y) { |
721 | if (InductionVar::IsInvariant(x)) { |
722 | if (InductionVar::IsInvariant(y)) { |
723 | // Invariant + Invariant : only for same or just one instruction. |
724 | if (x->def_ == y->def_) { |
725 | return new (zone_) |
726 | InductionVar(x->offset_ + y->offset_, x->mult_ + y->mult_, x->def_); |
727 | } else if (y->mult_ == 0) { |
728 | return new (zone_) |
729 | InductionVar(x->offset_ + y->offset_, x->mult_, x->def_); |
730 | } else if (x->mult_ == 0) { |
731 | return new (zone_) |
732 | InductionVar(x->offset_ + y->offset_, y->mult_, y->def_); |
733 | } |
734 | } else if (y != nullptr) { |
735 | // Invariant + Induction. |
736 | InductionVar* i = Add(x, y->initial_); |
737 | InductionVar* n = |
738 | y->kind_ == InductionVar::kLinear ? y->next_ : Add(x, y->next_); |
739 | if (i != nullptr && n != nullptr) { |
740 | return new (zone_) InductionVar(y->kind_, i, n); |
741 | } |
742 | } |
743 | } else if (InductionVar::IsInvariant(y)) { |
744 | if (x != nullptr) { |
745 | // Induction + Invariant. |
746 | ASSERT(!InductionVar::IsInvariant(x)); |
747 | InductionVar* i = Add(x->initial_, y); |
748 | InductionVar* n = |
749 | x->kind_ == InductionVar::kLinear ? x->next_ : Add(x->next_, y); |
750 | if (i != nullptr && n != nullptr) { |
751 | return new (zone_) InductionVar(x->kind_, i, n); |
752 | } |
753 | } |
754 | } else if (InductionVar::IsLinear(x) && InductionVar::IsLinear(y)) { |
755 | // Linear + Linear. |
756 | InductionVar* i = Add(x->initial_, y->initial_); |
757 | InductionVar* n = Add(x->next_, y->next_); |
758 | if (i != nullptr && n != nullptr) { |
759 | return new (zone_) InductionVar(InductionVar::kLinear, i, n); |
760 | } |
761 | } |
762 | return nullptr; |
763 | } |
764 | |
765 | InductionVar* InductionVarAnalysis::Sub(InductionVar* x, InductionVar* y) { |
766 | if (InductionVar::IsInvariant(x)) { |
767 | if (InductionVar::IsInvariant(y)) { |
768 | // Invariant + Invariant : only for same or just one instruction. |
769 | if (x->def_ == y->def_) { |
770 | return new (zone_) |
771 | InductionVar(x->offset_ - y->offset_, x->mult_ - y->mult_, x->def_); |
772 | } else if (y->mult_ == 0) { |
773 | return new (zone_) |
774 | InductionVar(x->offset_ - y->offset_, x->mult_, x->def_); |
775 | } else if (x->mult_ == 0) { |
776 | return new (zone_) |
777 | InductionVar(x->offset_ - y->offset_, -y->mult_, y->def_); |
778 | } |
779 | } else if (y != nullptr) { |
780 | // Invariant - Induction. |
781 | InductionVar* i = Sub(x, y->initial_); |
782 | InductionVar* n; |
783 | if (y->kind_ == InductionVar::kLinear) { |
784 | InductionVar* zero = new (zone_) InductionVar(0, 0, nullptr); |
785 | n = Sub(zero, y->next_); |
786 | } else { |
787 | n = Sub(x, y->next_); |
788 | } |
789 | if (i != nullptr && n != nullptr) { |
790 | return new (zone_) InductionVar(y->kind_, i, n); |
791 | } |
792 | } |
793 | } else if (InductionVar::IsInvariant(y)) { |
794 | if (x != nullptr) { |
795 | // Induction - Invariant. |
796 | ASSERT(!InductionVar::IsInvariant(x)); |
797 | InductionVar* i = Sub(x->initial_, y); |
798 | InductionVar* n = |
799 | x->kind_ == InductionVar::kLinear ? x->next_ : Sub(x->next_, y); |
800 | if (i != nullptr && n != nullptr) { |
801 | return new (zone_) InductionVar(x->kind_, i, n); |
802 | } |
803 | } |
804 | } else if (InductionVar::IsLinear(x) && InductionVar::IsLinear(y)) { |
805 | // Linear - Linear. |
806 | InductionVar* i = Sub(x->initial_, y->initial_); |
807 | InductionVar* n = Sub(x->next_, y->next_); |
808 | if (i != nullptr && n != nullptr) { |
809 | return new (zone_) InductionVar(InductionVar::kLinear, i, n); |
810 | } |
811 | } |
812 | return nullptr; |
813 | } |
814 | |
815 | InductionVar* InductionVarAnalysis::Mul(InductionVar* x, InductionVar* y) { |
816 | // Swap constant left. |
817 | if (!InductionVar::IsConstant(x)) { |
818 | InductionVar* tmp = x; |
819 | x = y; |
820 | y = tmp; |
821 | } |
822 | // Apply constant to any induction. |
823 | if (InductionVar::IsConstant(x) && y != nullptr) { |
824 | if (y->kind_ == InductionVar::kInvariant) { |
825 | return new (zone_) |
826 | InductionVar(x->offset_ * y->offset_, x->offset_ * y->mult_, y->def_); |
827 | } |
828 | return new (zone_) |
829 | InductionVar(y->kind_, Mul(x, y->initial_), Mul(x, y->next_)); |
830 | } |
831 | return nullptr; |
832 | } |
833 | |
834 | bool InductionVar::CanComputeDifferenceWith(const InductionVar* other, |
835 | int64_t* diff) const { |
836 | if (IsInvariant(this) && IsInvariant(other)) { |
837 | if (def_ == other->def_ && mult_ == other->mult_) { |
838 | *diff = other->offset_ - offset_; |
839 | return true; |
840 | } |
841 | } else if (IsLinear(this) && IsLinear(other)) { |
842 | return next_->IsEqual(other->next_) && |
843 | initial_->CanComputeDifferenceWith(other->initial_, diff); |
844 | } |
845 | // TODO(ajcbik): examine other induction kinds too? |
846 | return false; |
847 | } |
848 | |
849 | bool InductionVar::CanComputeBoundsImpl(LoopInfo* loop, |
850 | Instruction* pos, |
851 | InductionVar** min, |
852 | InductionVar** max) { |
853 | // Refine symbolic part of an invariant with outward induction. |
854 | if (IsInvariant(this)) { |
855 | if (mult_ == 1 && def_ != nullptr) { |
856 | for (loop = loop->outer(); loop != nullptr; loop = loop->outer()) { |
857 | InductionVar* induc = loop->LookupInduction(def_); |
858 | InductionVar* i_min = nullptr; |
859 | InductionVar* i_max = nullptr; |
860 | // Accept i+C with i in [L,U] as [L+C,U+C] when this adjustment |
861 | // does not have arithmetic wrap-around complications. |
862 | if (IsInduction(induc) && |
863 | induc->CanComputeBounds(loop, pos, &i_min, &i_max)) { |
864 | Zone* z = Thread::Current()->zone(); |
865 | return SafelyAdjust(z, i_min, offset_, i_max, offset_, min, max); |
866 | } |
867 | } |
868 | } |
869 | // Otherwise invariant itself suffices. |
870 | *min = *max = this; |
871 | return true; |
872 | } |
873 | // Refine unit stride induction with lower and upper bound. |
874 | // for (int i = L; i < U; i++) |
875 | // j = i+C in [L+C,U+C-1] |
876 | int64_t stride = 0; |
877 | int64_t off = 0; |
878 | if (IsLinear(this, &stride) && Utils::Abs(stride) == 1 && |
879 | CanComputeDifferenceWith(loop->control(), &off)) { |
880 | // Find ranges on both L and U first (and not just minimum |
881 | // of L and maximum of U) to avoid arithmetic wrap-around |
882 | // complications such as the one shown below. |
883 | // for (int i = 0; i < maxint - 10; i++) |
884 | // for (int j = i + 20; j < 100; j++) |
885 | // j in [minint, 99] and not in [20, 100] |
886 | InductionVar* l_min = nullptr; |
887 | InductionVar* l_max = nullptr; |
888 | if (initial_->CanComputeBounds(loop, pos, &l_min, &l_max)) { |
889 | // Find extreme using a control bound for which the branch dominates |
890 | // the given position (to make sure it really is under its control). |
891 | // Then refine with anything that dominates that branch. |
892 | for (auto bound : loop->control()->bounds()) { |
893 | if (pos->IsDominatedBy(bound.branch_)) { |
894 | InductionVar* u_min = nullptr; |
895 | InductionVar* u_max = nullptr; |
896 | if (bound.limit_->CanComputeBounds(loop, bound.branch_, &u_min, |
897 | &u_max)) { |
898 | Zone* z = Thread::Current()->zone(); |
899 | return stride > 0 ? SafelyAdjust(z, l_min, 0, u_max, -stride - off, |
900 | min, max) |
901 | : SafelyAdjust(z, u_min, -stride - off, l_max, 0, |
902 | min, max); |
903 | } |
904 | } |
905 | } |
906 | } |
907 | } |
908 | // Failure. TODO(ajcbik): examine other kinds of induction too? |
909 | return false; |
910 | } |
911 | |
912 | // Driver method to compute bounds with per-loop memoization. |
913 | bool InductionVar::CanComputeBounds(LoopInfo* loop, |
914 | Instruction* pos, |
915 | InductionVar** min, |
916 | InductionVar** max) { |
917 | // Consult cache first. |
918 | LoopInfo::MemoKV::Pair* pair1 = loop->memo_cache_.Lookup(this); |
919 | if (pair1 != nullptr) { |
920 | LoopInfo::MemoVal::PosKV::Pair* pair2 = pair1->value->memo_.Lookup(pos); |
921 | if (pair2 != nullptr) { |
922 | *min = pair2->value.first; |
923 | *max = pair2->value.second; |
924 | return true; |
925 | } |
926 | } |
927 | // Compute and cache. |
928 | if (CanComputeBoundsImpl(loop, pos, min, max)) { |
929 | ASSERT(*min != nullptr && *max != nullptr); |
930 | LoopInfo::MemoVal* memo = nullptr; |
931 | if (pair1 != nullptr) { |
932 | memo = pair1->value; |
933 | } else { |
934 | memo = new LoopInfo::MemoVal(); |
935 | loop->memo_cache_.Insert(LoopInfo::MemoKV::Pair(this, memo)); |
936 | } |
937 | memo->memo_.Insert( |
938 | LoopInfo::MemoVal::PosKV::Pair(pos, std::make_pair(*min, *max))); |
939 | return true; |
940 | } |
941 | return false; |
942 | } |
943 | |
944 | void InductionVar::PrintTo(BaseTextBuffer* f) const { |
945 | switch (kind_) { |
946 | case kInvariant: |
947 | if (mult_ != 0) { |
948 | f->Printf("(%" Pd64 " + %" Pd64 " x %.4s)" , offset_, mult_, |
949 | def_->ToCString()); |
950 | } else { |
951 | f->Printf("%" Pd64, offset_); |
952 | } |
953 | break; |
954 | case kLinear: |
955 | f->Printf("LIN(%s + %s * i)" , initial_->ToCString(), next_->ToCString()); |
956 | break; |
957 | case kWrapAround: |
958 | f->Printf("WRAP(%s, %s)" , initial_->ToCString(), next_->ToCString()); |
959 | break; |
960 | case kPeriodic: |
961 | f->Printf("PERIOD(%s, %s)" , initial_->ToCString(), next_->ToCString()); |
962 | break; |
963 | } |
964 | } |
965 | |
966 | const char* InductionVar::ToCString() const { |
967 | char buffer[1024]; |
968 | BufferFormatter f(buffer, sizeof(buffer)); |
969 | PrintTo(&f); |
970 | return Thread::Current()->zone()->MakeCopyOfString(buffer); |
971 | } |
972 | |
973 | LoopInfo::LoopInfo(intptr_t id, BlockEntryInstr* , BitVector* blocks) |
974 | : id_(id), |
975 | header_(header), |
976 | blocks_(blocks), |
977 | back_edges_(), |
978 | induction_(), |
979 | memo_cache_(), |
980 | limit_(nullptr), |
981 | control_(nullptr), |
982 | outer_(nullptr), |
983 | inner_(nullptr), |
984 | next_(nullptr) {} |
985 | |
986 | void LoopInfo::AddBlocks(BitVector* blocks) { |
987 | blocks_->AddAll(blocks); |
988 | } |
989 | |
990 | void LoopInfo::AddBackEdge(BlockEntryInstr* block) { |
991 | back_edges_.Add(block); |
992 | } |
993 | |
994 | bool LoopInfo::IsBackEdge(BlockEntryInstr* block) const { |
995 | for (intptr_t i = 0, n = back_edges_.length(); i < n; i++) { |
996 | if (back_edges_[i] == block) { |
997 | return true; |
998 | } |
999 | } |
1000 | return false; |
1001 | } |
1002 | |
1003 | bool LoopInfo::IsAlwaysTaken(BlockEntryInstr* block) const { |
1004 | // The loop header is always executed when executing a loop (including |
1005 | // loop body of a do-while). Reject any other loop body block that is |
1006 | // not directly controlled by header. |
1007 | if (block == header_) { |
1008 | return true; |
1009 | } else if (block->PredecessorCount() != 1 || |
1010 | block->PredecessorAt(0) != header_) { |
1011 | return false; |
1012 | } |
1013 | // If the loop has a control induction, make sure the condition is such |
1014 | // that the loop body is entered at least once from the header. |
1015 | if (control_ != nullptr) { |
1016 | InductionVar* limit = nullptr; |
1017 | for (auto bound : control_->bounds()) { |
1018 | if (bound.branch_ == header_->last_instruction()) { |
1019 | limit = bound.limit_; |
1020 | break; |
1021 | } |
1022 | } |
1023 | // Control iterates at least once? |
1024 | if (limit != nullptr) { |
1025 | int64_t stride = 0; |
1026 | int64_t begin = 0; |
1027 | int64_t end = 0; |
1028 | if (InductionVar::IsLinear(control_, &stride) && |
1029 | InductionVar::IsConstant(control_->initial(), &begin) && |
1030 | InductionVar::IsConstant(limit, &end) && |
1031 | ((stride == 1 && begin < end) || (stride == -1 && begin > end))) { |
1032 | return true; |
1033 | } |
1034 | } |
1035 | } |
1036 | return false; |
1037 | } |
1038 | |
1039 | bool LoopInfo::(Definition* def) const { |
1040 | return def != nullptr && def->IsPhi() && def->GetBlock() == header_ && |
1041 | !def->AsPhi()->IsRedundant(); // phi(x,..,x) = x |
1042 | } |
1043 | |
1044 | bool LoopInfo::IsIn(LoopInfo* loop) const { |
1045 | if (loop != nullptr) { |
1046 | return loop->Contains(header_); |
1047 | } |
1048 | return false; |
1049 | } |
1050 | |
1051 | bool LoopInfo::Contains(BlockEntryInstr* block) const { |
1052 | return blocks_->Contains(block->preorder_number()); |
1053 | } |
1054 | |
1055 | intptr_t LoopInfo::NestingDepth() const { |
1056 | intptr_t nesting_depth = 1; |
1057 | for (LoopInfo* o = outer_; o != nullptr; o = o->outer()) { |
1058 | nesting_depth++; |
1059 | } |
1060 | return nesting_depth; |
1061 | } |
1062 | |
1063 | void LoopInfo::ResetInduction() { |
1064 | induction_.Clear(); |
1065 | memo_cache_.Clear(); |
1066 | } |
1067 | |
1068 | void LoopInfo::AddInduction(Definition* def, InductionVar* induc) { |
1069 | ASSERT(def != nullptr); |
1070 | ASSERT(induc != nullptr); |
1071 | induction_.Insert(InductionKV::Pair(def, induc)); |
1072 | } |
1073 | |
1074 | InductionVar* LoopInfo::LookupInduction(Definition* def) const { |
1075 | InductionKV::Pair* pair = induction_.Lookup(def); |
1076 | if (pair != nullptr) { |
1077 | return pair->value; |
1078 | } |
1079 | return nullptr; |
1080 | } |
1081 | |
1082 | // Checks if an index is in range of a given length: |
1083 | // for (int i = initial; i <= length - C; i++) { |
1084 | // .... a[i] .... // initial >= 0 and C > 0: |
1085 | // } |
1086 | bool LoopInfo::IsInRange(Instruction* pos, Value* index, Value* length) { |
1087 | InductionVar* induc = LookupInduction( |
1088 | index->definition()->OriginalDefinitionIgnoreBoxingAndConstraints()); |
1089 | InductionVar* len = LookupInduction( |
1090 | length->definition()->OriginalDefinitionIgnoreBoxingAndConstraints()); |
1091 | if (induc != nullptr && len != nullptr) { |
1092 | // First, try the most common case. A simple induction directly |
1093 | // bounded by [c>=0,length-C>=0) for the length we are looking for. |
1094 | int64_t stride = 0; |
1095 | int64_t val = 0; |
1096 | int64_t diff = 0; |
1097 | if (InductionVar::IsLinear(induc, &stride) && stride == 1 && |
1098 | InductionVar::IsConstant(induc->initial(), &val) && 0 <= val) { |
1099 | for (auto bound : induc->bounds()) { |
1100 | if (pos->IsDominatedBy(bound.branch_) && |
1101 | len->CanComputeDifferenceWith(bound.limit_, &diff) && diff <= 0) { |
1102 | return true; |
1103 | } |
1104 | } |
1105 | } |
1106 | // If that fails, try to compute bounds using more outer loops. |
1107 | // Since array lengths >= 0, the conditions used during this |
1108 | // process avoid arithmetic wrap-around complications. |
1109 | InductionVar* min = nullptr; |
1110 | InductionVar* max = nullptr; |
1111 | if (induc->CanComputeBounds(this, pos, &min, &max)) { |
1112 | return InductionVar::IsConstant(min, &val) && 0 <= val && |
1113 | len->CanComputeDifferenceWith(max, &diff) && diff < 0; |
1114 | } |
1115 | } |
1116 | return false; |
1117 | } |
1118 | |
1119 | void LoopInfo::PrintTo(BaseTextBuffer* f) const { |
1120 | f->Printf("%*c" , static_cast<int>(2 * NestingDepth()), ' '); |
1121 | f->Printf("loop%" Pd " B%" Pd " " , id_, header_->block_id()); |
1122 | intptr_t num_blocks = 0; |
1123 | for (BitVector::Iterator it(blocks_); !it.Done(); it.Advance()) { |
1124 | num_blocks++; |
1125 | } |
1126 | f->Printf("#blocks=%" Pd, num_blocks); |
1127 | if (outer_ != nullptr) f->Printf(" outer=%" Pd, outer_->id_); |
1128 | if (inner_ != nullptr) f->Printf(" inner=%" Pd, inner_->id_); |
1129 | if (next_ != nullptr) f->Printf(" next=%" Pd, next_->id_); |
1130 | f->AddString(" [" ); |
1131 | for (intptr_t i = 0, n = back_edges_.length(); i < n; i++) { |
1132 | f->Printf(" B%" Pd, back_edges_[i]->block_id()); |
1133 | } |
1134 | f->AddString(" ]" ); |
1135 | } |
1136 | |
1137 | const char* LoopInfo::ToCString() const { |
1138 | char buffer[1024]; |
1139 | BufferFormatter f(buffer, sizeof(buffer)); |
1140 | PrintTo(&f); |
1141 | return Thread::Current()->zone()->MakeCopyOfString(buffer); |
1142 | } |
1143 | |
1144 | LoopHierarchy::LoopHierarchy(ZoneGrowableArray<BlockEntryInstr*>* , |
1145 | const GrowableArray<BlockEntryInstr*>& preorder) |
1146 | : headers_(headers), preorder_(preorder), top_(nullptr) { |
1147 | Build(); |
1148 | } |
1149 | |
1150 | void LoopHierarchy::Build() { |
1151 | // Link every entry block to the closest enveloping loop. |
1152 | for (intptr_t i = 0, n = headers_->length(); i < n; ++i) { |
1153 | LoopInfo* loop = (*headers_)[i]->loop_info(); |
1154 | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { |
1155 | BlockEntryInstr* block = preorder_[it.Current()]; |
1156 | if (block->loop_info() == nullptr) { |
1157 | block->set_loop_info(loop); |
1158 | } else { |
1159 | ASSERT(block->loop_info()->IsIn(loop)); |
1160 | } |
1161 | } |
1162 | } |
1163 | // Build hierarchy from headers. |
1164 | for (intptr_t i = 0, n = headers_->length(); i < n; ++i) { |
1165 | BlockEntryInstr* = (*headers_)[i]; |
1166 | LoopInfo* loop = header->loop_info(); |
1167 | LoopInfo* dom_loop = header->dominator()->loop_info(); |
1168 | ASSERT(loop->outer_ == nullptr); |
1169 | ASSERT(loop->next_ == nullptr); |
1170 | if (loop->IsIn(dom_loop)) { |
1171 | loop->outer_ = dom_loop; |
1172 | loop->next_ = dom_loop->inner_; |
1173 | dom_loop->inner_ = loop; |
1174 | } else { |
1175 | loop->next_ = top_; |
1176 | top_ = loop; |
1177 | } |
1178 | } |
1179 | // If tracing is requested, print the loop hierarchy. |
1180 | if (FLAG_trace_optimization) { |
1181 | Print(top_); |
1182 | } |
1183 | } |
1184 | |
1185 | void LoopHierarchy::Print(LoopInfo* loop) const { |
1186 | for (; loop != nullptr; loop = loop->next_) { |
1187 | THR_Print("%s {" , loop->ToCString()); |
1188 | for (BitVector::Iterator it(loop->blocks_); !it.Done(); it.Advance()) { |
1189 | THR_Print(" B%" Pd, preorder_[it.Current()]->block_id()); |
1190 | } |
1191 | THR_Print(" }\n" ); |
1192 | Print(loop->inner_); |
1193 | } |
1194 | } |
1195 | |
1196 | void LoopHierarchy::ComputeInduction() const { |
1197 | InductionVarAnalysis(preorder_).VisitHierarchy(top_); |
1198 | } |
1199 | |
1200 | } // namespace dart |
1201 | |