| 1 | // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #ifndef RUNTIME_VM_COMPILER_BACKEND_RANGE_ANALYSIS_H_ |
| 6 | #define RUNTIME_VM_COMPILER_BACKEND_RANGE_ANALYSIS_H_ |
| 7 | |
| 8 | #if defined(DART_PRECOMPILED_RUNTIME) |
| 9 | #error "AOT runtime should not use compiler sources (including header files)" |
| 10 | #endif // defined(DART_PRECOMPILED_RUNTIME) |
| 11 | |
| 12 | #include "vm/compiler/backend/flow_graph.h" |
| 13 | #include "vm/compiler/backend/il.h" |
| 14 | |
| 15 | namespace dart { |
| 16 | |
| 17 | class SExpression; |
| 18 | class FlowGraphSerializer; |
| 19 | |
| 20 | class RangeBoundary : public ValueObject { |
| 21 | public: |
| 22 | #define FOR_EACH_RANGE_BOUNDARY_KIND(V) \ |
| 23 | V(Unknown) \ |
| 24 | V(NegativeInfinity) \ |
| 25 | V(PositiveInfinity) \ |
| 26 | V(Symbol) \ |
| 27 | V(Constant) |
| 28 | |
| 29 | #define KIND_DEFN(name) k##name, |
| 30 | enum Kind { FOR_EACH_RANGE_BOUNDARY_KIND(KIND_DEFN) }; |
| 31 | #undef KIND_DEFN |
| 32 | |
| 33 | static const char* KindToCString(Kind kind); |
| 34 | static bool ParseKind(const char* str, Kind* out); |
| 35 | |
| 36 | enum RangeSize { |
| 37 | kRangeBoundarySmi, |
| 38 | kRangeBoundaryInt32, |
| 39 | kRangeBoundaryInt64, |
| 40 | }; |
| 41 | |
| 42 | RangeBoundary() : kind_(kUnknown), value_(0), offset_(0) {} |
| 43 | |
| 44 | RangeBoundary(const RangeBoundary& other) |
| 45 | : ValueObject(), |
| 46 | kind_(other.kind_), |
| 47 | value_(other.value_), |
| 48 | offset_(other.offset_) {} |
| 49 | |
| 50 | explicit RangeBoundary(int64_t val) |
| 51 | : kind_(kConstant), value_(val), offset_(0) {} |
| 52 | |
| 53 | RangeBoundary& operator=(const RangeBoundary& other) { |
| 54 | kind_ = other.kind_; |
| 55 | value_ = other.value_; |
| 56 | offset_ = other.offset_; |
| 57 | return *this; |
| 58 | } |
| 59 | |
| 60 | static const int64_t kMin = kMinInt64; |
| 61 | static const int64_t kMax = kMaxInt64; |
| 62 | |
| 63 | // Construct a RangeBoundary for a constant value. |
| 64 | static RangeBoundary FromConstant(int64_t val) { return RangeBoundary(val); } |
| 65 | |
| 66 | // Construct a RangeBoundary for -inf. |
| 67 | static RangeBoundary NegativeInfinity() { |
| 68 | return RangeBoundary(kNegativeInfinity, 0, 0); |
| 69 | } |
| 70 | |
| 71 | // Construct a RangeBoundary for +inf. |
| 72 | static RangeBoundary PositiveInfinity() { |
| 73 | return RangeBoundary(kPositiveInfinity, 0, 0); |
| 74 | } |
| 75 | |
| 76 | // Construct a RangeBoundary from a definition and offset. |
| 77 | static RangeBoundary FromDefinition(Definition* defn, int64_t offs = 0); |
| 78 | |
| 79 | static bool IsValidOffsetForSymbolicRangeBoundary(int64_t offset) { |
| 80 | if ((offset > (kMaxInt64 - compiler::target::kSmiMax)) || |
| 81 | (offset < (kMinInt64 - compiler::target::kSmiMin))) { |
| 82 | // Avoid creating symbolic range boundaries which can wrap around. |
| 83 | return false; |
| 84 | } |
| 85 | return true; |
| 86 | } |
| 87 | |
| 88 | // Construct a RangeBoundary for the constant MinSmi value. |
| 89 | static RangeBoundary MinSmi() { |
| 90 | return FromConstant(compiler::target::kSmiMin); |
| 91 | } |
| 92 | |
| 93 | // Construct a RangeBoundary for the constant MaxSmi value. |
| 94 | static RangeBoundary MaxSmi() { |
| 95 | return FromConstant(compiler::target::kSmiMax); |
| 96 | } |
| 97 | |
| 98 | // Construct a RangeBoundary for the constant kMin value. |
| 99 | static RangeBoundary MinConstant(RangeSize size) { |
| 100 | switch (size) { |
| 101 | case kRangeBoundarySmi: |
| 102 | return FromConstant(compiler::target::kSmiMin); |
| 103 | case kRangeBoundaryInt32: |
| 104 | return FromConstant(kMinInt32); |
| 105 | case kRangeBoundaryInt64: |
| 106 | return FromConstant(kMinInt64); |
| 107 | } |
| 108 | UNREACHABLE(); |
| 109 | return FromConstant(kMinInt64); |
| 110 | } |
| 111 | |
| 112 | static RangeBoundary MaxConstant(RangeSize size) { |
| 113 | switch (size) { |
| 114 | case kRangeBoundarySmi: |
| 115 | return FromConstant(compiler::target::kSmiMax); |
| 116 | case kRangeBoundaryInt32: |
| 117 | return FromConstant(kMaxInt32); |
| 118 | case kRangeBoundaryInt64: |
| 119 | return FromConstant(kMaxInt64); |
| 120 | } |
| 121 | UNREACHABLE(); |
| 122 | return FromConstant(kMaxInt64); |
| 123 | } |
| 124 | |
| 125 | // Given two boundaries a and b, select one of them as c so that |
| 126 | // |
| 127 | // inf {[a, ...) ^ [b, ...)} >= inf {c} |
| 128 | // |
| 129 | static RangeBoundary IntersectionMin(RangeBoundary a, RangeBoundary b); |
| 130 | |
| 131 | // Given two boundaries a and b, select one of them as c so that |
| 132 | // |
| 133 | // sup {(..., a] ^ (..., b]} <= sup {c} |
| 134 | // |
| 135 | static RangeBoundary IntersectionMax(RangeBoundary a, RangeBoundary b); |
| 136 | |
| 137 | // Given two boundaries a and b compute boundary c such that |
| 138 | // |
| 139 | // inf {[a, ...) U [b, ...)} >= inf {c} |
| 140 | // |
| 141 | // Try to select c such that it is as close to inf {[a, ...) U [b, ...)} |
| 142 | // as possible. |
| 143 | static RangeBoundary JoinMin(RangeBoundary a, |
| 144 | RangeBoundary b, |
| 145 | RangeBoundary::RangeSize size); |
| 146 | |
| 147 | // Given two boundaries a and b compute boundary c such that |
| 148 | // |
| 149 | // sup {(..., a] U (..., b]} <= sup {c} |
| 150 | // |
| 151 | // Try to select c such that it is as close to sup {(..., a] U (..., b]} |
| 152 | // as possible. |
| 153 | static RangeBoundary JoinMax(RangeBoundary a, |
| 154 | RangeBoundary b, |
| 155 | RangeBoundary::RangeSize size); |
| 156 | |
| 157 | // Returns true when this is a constant that is outside of Smi range. |
| 158 | bool OverflowedSmi() const { |
| 159 | return (IsConstant() && !compiler::target::IsSmi(ConstantValue())) || |
| 160 | IsInfinity(); |
| 161 | } |
| 162 | |
| 163 | bool Overflowed(RangeBoundary::RangeSize size) const { |
| 164 | ASSERT(IsConstantOrInfinity()); |
| 165 | return !Equals(Clamp(size)); |
| 166 | } |
| 167 | |
| 168 | // Returns true if this outside mint range. |
| 169 | bool OverflowedMint() const { return IsInfinity(); } |
| 170 | |
| 171 | // -/+ infinity are clamped to MinConstant/MaxConstant of the given type. |
| 172 | RangeBoundary Clamp(RangeSize size) const { |
| 173 | if (IsNegativeInfinity()) { |
| 174 | return RangeBoundary::MinConstant(size); |
| 175 | } |
| 176 | |
| 177 | if (IsPositiveInfinity()) { |
| 178 | return RangeBoundary::MaxConstant(size); |
| 179 | } |
| 180 | |
| 181 | if (IsConstant()) { |
| 182 | const RangeBoundary range_min = RangeBoundary::MinConstant(size); |
| 183 | const RangeBoundary range_max = RangeBoundary::MaxConstant(size); |
| 184 | |
| 185 | if (ConstantValue() <= range_min.ConstantValue()) { |
| 186 | return range_min; |
| 187 | } |
| 188 | if (ConstantValue() >= range_max.ConstantValue()) { |
| 189 | return range_max; |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | // If this range is a symbolic range, we do not clamp it. |
| 194 | // This could lead to some imprecision later on. |
| 195 | return *this; |
| 196 | } |
| 197 | |
| 198 | bool IsMinimumOrBelow(RangeSize size) const { |
| 199 | return IsNegativeInfinity() || |
| 200 | (IsConstant() && (ConstantValue() <= |
| 201 | RangeBoundary::MinConstant(size).ConstantValue())); |
| 202 | } |
| 203 | |
| 204 | bool IsMaximumOrAbove(RangeSize size) const { |
| 205 | return IsPositiveInfinity() || |
| 206 | (IsConstant() && (ConstantValue() >= |
| 207 | RangeBoundary::MaxConstant(size).ConstantValue())); |
| 208 | } |
| 209 | |
| 210 | intptr_t kind() const { return kind_; } |
| 211 | |
| 212 | // Kind tests. |
| 213 | bool IsUnknown() const { return kind_ == kUnknown; } |
| 214 | bool IsConstant() const { return kind_ == kConstant; } |
| 215 | bool IsSymbol() const { return kind_ == kSymbol; } |
| 216 | bool IsNegativeInfinity() const { return kind_ == kNegativeInfinity; } |
| 217 | bool IsPositiveInfinity() const { return kind_ == kPositiveInfinity; } |
| 218 | bool IsInfinity() const { |
| 219 | return IsNegativeInfinity() || IsPositiveInfinity(); |
| 220 | } |
| 221 | bool IsConstantOrInfinity() const { return IsConstant() || IsInfinity(); } |
| 222 | |
| 223 | // Returns the value of a kConstant RangeBoundary. |
| 224 | int64_t ConstantValue() const; |
| 225 | |
| 226 | // Returns the Definition associated with a kSymbol RangeBoundary. |
| 227 | Definition* symbol() const { |
| 228 | ASSERT(IsSymbol()); |
| 229 | return reinterpret_cast<Definition*>(value_); |
| 230 | } |
| 231 | |
| 232 | // Offset from symbol. |
| 233 | int64_t offset() const { return offset_; } |
| 234 | |
| 235 | // Computes the LowerBound of this. Three cases: |
| 236 | // IsInfinity() -> NegativeInfinity(). |
| 237 | // IsConstant() -> value(). |
| 238 | // IsSymbol() -> lower bound computed from definition + offset. |
| 239 | RangeBoundary LowerBound() const; |
| 240 | |
| 241 | // Computes the UpperBound of this. Three cases: |
| 242 | // IsInfinity() -> PositiveInfinity(). |
| 243 | // IsConstant() -> value(). |
| 244 | // IsSymbol() -> upper bound computed from definition + offset. |
| 245 | RangeBoundary UpperBound() const; |
| 246 | |
| 247 | void PrintTo(BaseTextBuffer* f) const; |
| 248 | const char* ToCString() const; |
| 249 | SExpression* ToSExpression(FlowGraphSerializer* s); |
| 250 | |
| 251 | static RangeBoundary Add(const RangeBoundary& a, |
| 252 | const RangeBoundary& b, |
| 253 | const RangeBoundary& overflow); |
| 254 | |
| 255 | static RangeBoundary Sub(const RangeBoundary& a, |
| 256 | const RangeBoundary& b, |
| 257 | const RangeBoundary& overflow); |
| 258 | |
| 259 | static RangeBoundary Shl(const RangeBoundary& value_boundary, |
| 260 | int64_t shift_count, |
| 261 | const RangeBoundary& overflow); |
| 262 | |
| 263 | static RangeBoundary Shr(const RangeBoundary& value_boundary, |
| 264 | int64_t shift_count) { |
| 265 | ASSERT(value_boundary.IsConstant()); |
| 266 | ASSERT(shift_count >= 0); |
| 267 | const int64_t value = static_cast<int64_t>(value_boundary.ConstantValue()); |
| 268 | const int64_t result = (shift_count <= 63) |
| 269 | ? (value >> shift_count) |
| 270 | : (value >= 0 ? 0 : -1); // Dart semantics |
| 271 | return RangeBoundary(result); |
| 272 | } |
| 273 | |
| 274 | // Attempts to calculate a + b when: |
| 275 | // a is a symbol and b is a constant OR |
| 276 | // a is a constant and b is a symbol |
| 277 | // returns true if it succeeds, output is in result. |
| 278 | static bool SymbolicAdd(const RangeBoundary& a, |
| 279 | const RangeBoundary& b, |
| 280 | RangeBoundary* result); |
| 281 | |
| 282 | // Attempts to calculate a - b when: |
| 283 | // a is a symbol and b is a constant |
| 284 | // returns true if it succeeds, output is in result. |
| 285 | static bool SymbolicSub(const RangeBoundary& a, |
| 286 | const RangeBoundary& b, |
| 287 | RangeBoundary* result); |
| 288 | |
| 289 | bool Equals(const RangeBoundary& other) const; |
| 290 | |
| 291 | int64_t UpperBound(RangeSize size) const { |
| 292 | return UpperBound().Clamp(size).ConstantValue(); |
| 293 | } |
| 294 | |
| 295 | int64_t LowerBound(RangeSize size) const { |
| 296 | return LowerBound().Clamp(size).ConstantValue(); |
| 297 | } |
| 298 | |
| 299 | int64_t SmiUpperBound() const { return UpperBound(kRangeBoundarySmi); } |
| 300 | |
| 301 | int64_t SmiLowerBound() const { return LowerBound(kRangeBoundarySmi); } |
| 302 | |
| 303 | private: |
| 304 | friend class FlowGraphDeserializer; // For setting fields directly. |
| 305 | |
| 306 | RangeBoundary(Kind kind, int64_t value, int64_t offset) |
| 307 | : kind_(kind), value_(value), offset_(offset) {} |
| 308 | |
| 309 | Kind kind_; |
| 310 | int64_t value_; |
| 311 | int64_t offset_; |
| 312 | }; |
| 313 | |
| 314 | class Range : public ZoneAllocated { |
| 315 | public: |
| 316 | Range() : min_(), max_() {} |
| 317 | |
| 318 | Range(RangeBoundary min, RangeBoundary max) : min_(min), max_(max) { |
| 319 | ASSERT(min_.IsUnknown() == max_.IsUnknown()); |
| 320 | |
| 321 | if (min_.IsInfinity() || max_.IsInfinity()) { |
| 322 | // Value can wrap around, so fall back to the full 64-bit range. |
| 323 | SetInt64Range(); |
| 324 | } |
| 325 | } |
| 326 | |
| 327 | Range(const Range& other) |
| 328 | : ZoneAllocated(), min_(other.min_), max_(other.max_) {} |
| 329 | |
| 330 | Range& operator=(const Range& other) { |
| 331 | min_ = other.min_; |
| 332 | max_ = other.max_; |
| 333 | return *this; |
| 334 | } |
| 335 | |
| 336 | static bool IsUnknown(const Range* other) { |
| 337 | if (other == NULL) { |
| 338 | return true; |
| 339 | } |
| 340 | return other->min().IsUnknown(); |
| 341 | } |
| 342 | |
| 343 | static Range Full(RangeBoundary::RangeSize size) { |
| 344 | return Range(RangeBoundary::MinConstant(size), |
| 345 | RangeBoundary::MaxConstant(size)); |
| 346 | } |
| 347 | |
| 348 | void PrintTo(BaseTextBuffer* f) const; |
| 349 | static const char* ToCString(const Range* range); |
| 350 | SExpression* ToSExpression(FlowGraphSerializer* s); |
| 351 | |
| 352 | bool Equals(const Range* other) { |
| 353 | ASSERT(min_.IsUnknown() == max_.IsUnknown()); |
| 354 | if (other == NULL) { |
| 355 | return min_.IsUnknown(); |
| 356 | } |
| 357 | return min_.Equals(other->min_) && max_.Equals(other->max_); |
| 358 | } |
| 359 | |
| 360 | const RangeBoundary& min() const { return min_; } |
| 361 | const RangeBoundary& max() const { return max_; } |
| 362 | |
| 363 | void set_min(const RangeBoundary& value) { |
| 364 | min_ = value; |
| 365 | |
| 366 | if (min_.IsInfinity()) { |
| 367 | // Value can wrap around, so fall back to the full 64-bit range. |
| 368 | SetInt64Range(); |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | void set_max(const RangeBoundary& value) { |
| 373 | max_ = value; |
| 374 | |
| 375 | if (max_.IsInfinity()) { |
| 376 | // Value can wrap around, so fall back to the full 64-bit range. |
| 377 | SetInt64Range(); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | static RangeBoundary ConstantMinSmi(const Range* range) { |
| 382 | return ConstantMin(range, RangeBoundary::kRangeBoundarySmi); |
| 383 | } |
| 384 | |
| 385 | static RangeBoundary ConstantMaxSmi(const Range* range) { |
| 386 | return ConstantMax(range, RangeBoundary::kRangeBoundarySmi); |
| 387 | } |
| 388 | |
| 389 | static RangeBoundary ConstantMin(const Range* range) { |
| 390 | return ConstantMin(range, RangeBoundary::kRangeBoundaryInt64); |
| 391 | } |
| 392 | |
| 393 | static RangeBoundary ConstantMax(const Range* range) { |
| 394 | return ConstantMax(range, RangeBoundary::kRangeBoundaryInt64); |
| 395 | } |
| 396 | |
| 397 | static RangeBoundary ConstantMin(const Range* range, |
| 398 | RangeBoundary::RangeSize size) { |
| 399 | if (range == NULL) { |
| 400 | return RangeBoundary::MinConstant(size); |
| 401 | } |
| 402 | return range->min().LowerBound().Clamp(size); |
| 403 | } |
| 404 | |
| 405 | static RangeBoundary ConstantMax(const Range* range, |
| 406 | RangeBoundary::RangeSize size) { |
| 407 | if (range == NULL) { |
| 408 | return RangeBoundary::MaxConstant(size); |
| 409 | } |
| 410 | return range->max().UpperBound().Clamp(size); |
| 411 | } |
| 412 | |
| 413 | // [0, +inf] |
| 414 | bool IsPositive() const; |
| 415 | |
| 416 | // [-inf, val]. |
| 417 | bool OnlyLessThanOrEqualTo(int64_t val) const; |
| 418 | |
| 419 | // [val, +inf]. |
| 420 | bool OnlyGreaterThanOrEqualTo(int64_t val) const; |
| 421 | |
| 422 | // Inclusive. |
| 423 | bool IsWithin(int64_t min_int, int64_t max_int) const; |
| 424 | |
| 425 | // Inclusive. |
| 426 | bool Overlaps(int64_t min_int, int64_t max_int) const; |
| 427 | |
| 428 | bool IsUnsatisfiable() const; |
| 429 | |
| 430 | bool IsFinite() const { return !min_.IsInfinity() && !max_.IsInfinity(); } |
| 431 | |
| 432 | Range Intersect(const Range* other) const { |
| 433 | return Range(RangeBoundary::IntersectionMin(min(), other->min()), |
| 434 | RangeBoundary::IntersectionMax(max(), other->max())); |
| 435 | } |
| 436 | |
| 437 | bool Fits(RangeBoundary::RangeSize size) const { |
| 438 | return !min().LowerBound().Overflowed(size) && |
| 439 | !max().UpperBound().Overflowed(size); |
| 440 | } |
| 441 | |
| 442 | // Clamp this to be within size. |
| 443 | void Clamp(RangeBoundary::RangeSize size); |
| 444 | |
| 445 | // Clamp this to be within size and eliminate symbols. |
| 446 | void ClampToConstant(RangeBoundary::RangeSize size); |
| 447 | |
| 448 | static void Add(const Range* left_range, |
| 449 | const Range* right_range, |
| 450 | RangeBoundary* min, |
| 451 | RangeBoundary* max, |
| 452 | Definition* left_defn); |
| 453 | |
| 454 | static void Sub(const Range* left_range, |
| 455 | const Range* right_range, |
| 456 | RangeBoundary* min, |
| 457 | RangeBoundary* max, |
| 458 | Definition* left_defn); |
| 459 | |
| 460 | static void Mul(const Range* left_range, |
| 461 | const Range* right_range, |
| 462 | RangeBoundary* min, |
| 463 | RangeBoundary* max); |
| 464 | |
| 465 | static void TruncDiv(const Range* left_range, |
| 466 | const Range* right_range, |
| 467 | RangeBoundary* min, |
| 468 | RangeBoundary* max); |
| 469 | |
| 470 | static void Mod(const Range* right_range, |
| 471 | RangeBoundary* min, |
| 472 | RangeBoundary* max); |
| 473 | |
| 474 | static void Shr(const Range* left_range, |
| 475 | const Range* right_range, |
| 476 | RangeBoundary* min, |
| 477 | RangeBoundary* max); |
| 478 | |
| 479 | static void Shl(const Range* left_range, |
| 480 | const Range* right_range, |
| 481 | RangeBoundary* min, |
| 482 | RangeBoundary* max); |
| 483 | |
| 484 | static void And(const Range* left_range, |
| 485 | const Range* right_range, |
| 486 | RangeBoundary* min, |
| 487 | RangeBoundary* max); |
| 488 | |
| 489 | static void BitwiseOp(const Range* left_range, |
| 490 | const Range* right_range, |
| 491 | RangeBoundary* min, |
| 492 | RangeBoundary* max); |
| 493 | |
| 494 | // Both the a and b ranges are >= 0. |
| 495 | static bool OnlyPositiveOrZero(const Range& a, const Range& b); |
| 496 | |
| 497 | // Both the a and b ranges are <= 0. |
| 498 | static bool OnlyNegativeOrZero(const Range& a, const Range& b); |
| 499 | |
| 500 | // Return the maximum absolute value included in range. |
| 501 | static int64_t ConstantAbsMax(const Range* range); |
| 502 | |
| 503 | // Return the minimum absolute value included in range. |
| 504 | static int64_t ConstantAbsMin(const Range* range); |
| 505 | |
| 506 | static void BinaryOp(const Token::Kind op, |
| 507 | const Range* left_range, |
| 508 | const Range* right_range, |
| 509 | Definition* left_defn, |
| 510 | Range* result); |
| 511 | |
| 512 | private: |
| 513 | friend class FlowGraphDeserializer; // For setting min_/max_ directly. |
| 514 | |
| 515 | RangeBoundary min_; |
| 516 | RangeBoundary max_; |
| 517 | |
| 518 | void SetInt64Range() { |
| 519 | min_ = RangeBoundary::MinConstant(RangeBoundary::kRangeBoundaryInt64); |
| 520 | max_ = RangeBoundary::MaxConstant(RangeBoundary::kRangeBoundaryInt64); |
| 521 | } |
| 522 | }; |
| 523 | |
| 524 | class RangeUtils : public AllStatic { |
| 525 | public: |
| 526 | static bool Fits(Range* range, RangeBoundary::RangeSize size) { |
| 527 | return !Range::IsUnknown(range) && range->Fits(size); |
| 528 | } |
| 529 | |
| 530 | static bool IsWithin(Range* range, int64_t min, int64_t max) { |
| 531 | return !Range::IsUnknown(range) && range->IsWithin(min, max); |
| 532 | } |
| 533 | |
| 534 | static bool IsPositive(Range* range) { |
| 535 | return !Range::IsUnknown(range) && range->IsPositive(); |
| 536 | } |
| 537 | |
| 538 | static bool Overlaps(Range* range, intptr_t min, intptr_t max) { |
| 539 | return Range::IsUnknown(range) || range->Overlaps(min, max); |
| 540 | } |
| 541 | |
| 542 | static bool CanBeZero(Range* range) { return Overlaps(range, 0, 0); } |
| 543 | |
| 544 | static bool OnlyLessThanOrEqualTo(Range* range, intptr_t value) { |
| 545 | return !Range::IsUnknown(range) && range->OnlyLessThanOrEqualTo(value); |
| 546 | } |
| 547 | }; |
| 548 | |
| 549 | // Range analysis for integer values. |
| 550 | class RangeAnalysis : public ValueObject { |
| 551 | public: |
| 552 | explicit RangeAnalysis(FlowGraph* flow_graph) |
| 553 | : flow_graph_(flow_graph), |
| 554 | smi_range_(Range::Full(RangeBoundary::kRangeBoundarySmi)), |
| 555 | int64_range_(Range::Full(RangeBoundary::kRangeBoundaryInt64)) {} |
| 556 | |
| 557 | // Infer ranges for all values and remove overflow checks from binary smi |
| 558 | // operations when proven redundant. |
| 559 | void Analyze(); |
| 560 | |
| 561 | // Helper that should be used to access ranges of inputs during range |
| 562 | // inference. |
| 563 | // Returns meaningful results for uses of non-smi/non-int definitions that |
| 564 | // have smi/int as a reaching type. |
| 565 | const Range* GetSmiRange(Value* value) const; |
| 566 | const Range* GetIntRange(Value* value) const; |
| 567 | |
| 568 | static bool IsIntegerDefinition(Definition* defn) { |
| 569 | return defn->Type()->IsInt(); |
| 570 | } |
| 571 | |
| 572 | void AssignRangesRecursively(Definition* defn); |
| 573 | |
| 574 | private: |
| 575 | enum JoinOperator { NONE, WIDEN, NARROW }; |
| 576 | static char OpPrefix(JoinOperator op); |
| 577 | |
| 578 | // Collect all integer values (smi or int), all 64-bit binary |
| 579 | // and shift operations, and all check bounds. |
| 580 | void CollectValues(); |
| 581 | |
| 582 | // Iterate over smi values and constrain them at branch successors. |
| 583 | // Additionally constraint values after CheckSmi instructions. |
| 584 | void InsertConstraints(); |
| 585 | |
| 586 | // Iterate over uses of the given definition and discover branches that |
| 587 | // constrain it. Insert appropriate Constraint instructions at true |
| 588 | // and false successor and rename all dominated uses to refer to a |
| 589 | // Constraint instead of this definition. |
| 590 | void InsertConstraintsFor(Definition* defn); |
| 591 | |
| 592 | // Create a constraint for defn, insert it after given instruction and |
| 593 | // rename all uses that are dominated by it. |
| 594 | ConstraintInstr* InsertConstraintFor(Value* use, |
| 595 | Definition* defn, |
| 596 | Range* constraint, |
| 597 | Instruction* after); |
| 598 | |
| 599 | bool ConstrainValueAfterBranch(Value* use, Definition* defn); |
| 600 | void ConstrainValueAfterCheckBound(Value* use, |
| 601 | CheckBoundBase* check, |
| 602 | Definition* defn); |
| 603 | |
| 604 | // Infer ranges for integer (smi or mint) definitions. |
| 605 | void InferRanges(); |
| 606 | |
| 607 | // Collect integer definition in the reverse postorder. |
| 608 | void CollectDefinitions(BitVector* set); |
| 609 | |
| 610 | // Recompute ranges of all definitions until they stop changing. |
| 611 | // Apply the given JoinOperator when computing Phi ranges. |
| 612 | void Iterate(JoinOperator op, intptr_t max_iterations); |
| 613 | bool InferRange(JoinOperator op, Definition* defn, intptr_t iteration); |
| 614 | |
| 615 | // Based on computed ranges find and eliminate redundant CheckArrayBound |
| 616 | // instructions. |
| 617 | void EliminateRedundantBoundsChecks(); |
| 618 | |
| 619 | // Find unsatisfiable constraints and mark corresponding blocks unreachable. |
| 620 | void MarkUnreachableBlocks(); |
| 621 | |
| 622 | // Convert mint operations that stay within int32 range into Int32 operations. |
| 623 | void NarrowMintToInt32(); |
| 624 | |
| 625 | // Remove artificial Constraint instructions and replace them with actual |
| 626 | // unconstrained definitions. |
| 627 | void RemoveConstraints(); |
| 628 | |
| 629 | Range* ConstraintSmiRange(Token::Kind op, Definition* boundary); |
| 630 | |
| 631 | Zone* zone() const { return flow_graph_->zone(); } |
| 632 | |
| 633 | FlowGraph* flow_graph_; |
| 634 | |
| 635 | // Range object representing full Smi range. |
| 636 | Range smi_range_; |
| 637 | |
| 638 | Range int64_range_; |
| 639 | |
| 640 | // All values that are known to be smi or mint. |
| 641 | GrowableArray<Definition*> values_; |
| 642 | |
| 643 | // All 64-bit binary and shift operations. |
| 644 | GrowableArray<BinaryInt64OpInstr*> binary_int64_ops_; |
| 645 | GrowableArray<ShiftIntegerOpInstr*> shift_int64_ops_; |
| 646 | |
| 647 | // All CheckArrayBound/GenericCheckBound instructions. |
| 648 | GrowableArray<CheckBoundBase*> bounds_checks_; |
| 649 | |
| 650 | // All Constraints inserted during InsertConstraints phase. They are treated |
| 651 | // as smi values. |
| 652 | GrowableArray<ConstraintInstr*> constraints_; |
| 653 | |
| 654 | // List of integer (smi or mint) definitions including constraints sorted |
| 655 | // in the reverse postorder. |
| 656 | GrowableArray<Definition*> definitions_; |
| 657 | |
| 658 | DISALLOW_COPY_AND_ASSIGN(RangeAnalysis); |
| 659 | }; |
| 660 | |
| 661 | // Replaces Mint IL instructions with Uint32 IL instructions |
| 662 | // when possible. Uses output of RangeAnalysis. |
| 663 | class IntegerInstructionSelector : public ValueObject { |
| 664 | public: |
| 665 | explicit IntegerInstructionSelector(FlowGraph* flow_graph); |
| 666 | |
| 667 | void Select(); |
| 668 | |
| 669 | private: |
| 670 | bool IsPotentialUint32Definition(Definition* def); |
| 671 | void FindPotentialUint32Definitions(); |
| 672 | bool IsUint32NarrowingDefinition(Definition* def); |
| 673 | void FindUint32NarrowingDefinitions(); |
| 674 | bool AllUsesAreUint32Narrowing(Value* list_head); |
| 675 | bool CanBecomeUint32(Definition* def); |
| 676 | void Propagate(); |
| 677 | Definition* ConstructReplacementFor(Definition* def); |
| 678 | void ReplaceInstructions(); |
| 679 | |
| 680 | Zone* zone() const { return zone_; } |
| 681 | |
| 682 | GrowableArray<Definition*> potential_uint32_defs_; |
| 683 | BitVector* selected_uint32_defs_; |
| 684 | |
| 685 | FlowGraph* flow_graph_; |
| 686 | Zone* zone_; |
| 687 | }; |
| 688 | |
| 689 | } // namespace dart |
| 690 | |
| 691 | #endif // RUNTIME_VM_COMPILER_BACKEND_RANGE_ANALYSIS_H_ |
| 692 | |