| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/compiler/frontend/flow_graph_builder.h" |
| 6 | |
| 7 | #include "vm/compiler/backend/branch_optimizer.h" |
| 8 | #include "vm/compiler/backend/flow_graph.h" |
| 9 | #include "vm/compiler/backend/il.h" |
| 10 | #include "vm/compiler/frontend/kernel_to_il.h" |
| 11 | #include "vm/object.h" |
| 12 | #include "vm/zone.h" |
| 13 | |
| 14 | namespace dart { |
| 15 | |
| 16 | // Quick access to the locally defined zone() method. |
| 17 | #define Z (zone()) |
| 18 | |
| 19 | // TODO(srdjan): Allow compiler to add constants as they are encountered in |
| 20 | // the compilation. |
| 21 | const double kCommonDoubleConstants[] = { |
| 22 | -1.0, -0.5, -0.1, 0.0, 0.1, 0.5, 1.0, 2.0, 4.0, 5.0, 10.0, 20.0, 30.0, 64.0, |
| 23 | 255.0, NAN, |
| 24 | // From dart:math |
| 25 | 2.718281828459045, 2.302585092994046, 0.6931471805599453, |
| 26 | 1.4426950408889634, 0.4342944819032518, 3.1415926535897932, |
| 27 | 0.7071067811865476, 1.4142135623730951}; |
| 28 | |
| 29 | uword FindDoubleConstant(double value) { |
| 30 | intptr_t len = sizeof(kCommonDoubleConstants) / sizeof(double); // NOLINT |
| 31 | for (intptr_t i = 0; i < len; i++) { |
| 32 | if (Utils::DoublesBitEqual(value, kCommonDoubleConstants[i])) { |
| 33 | return reinterpret_cast<uword>(&kCommonDoubleConstants[i]); |
| 34 | } |
| 35 | } |
| 36 | return 0; |
| 37 | } |
| 38 | |
| 39 | void InlineExitCollector::PrepareGraphs(FlowGraph* callee_graph) { |
| 40 | ASSERT(callee_graph->graph_entry()->SuccessorCount() == 1); |
| 41 | ASSERT(callee_graph->max_block_id() > caller_graph_->max_block_id()); |
| 42 | ASSERT(callee_graph->max_virtual_register_number() > |
| 43 | caller_graph_->max_virtual_register_number()); |
| 44 | |
| 45 | // Adjust the caller's maximum block id and current SSA temp index. |
| 46 | caller_graph_->set_max_block_id(callee_graph->max_block_id()); |
| 47 | caller_graph_->set_current_ssa_temp_index( |
| 48 | callee_graph->max_virtual_register_number()); |
| 49 | |
| 50 | // Attach the outer environment on each instruction in the callee graph. |
| 51 | ASSERT(call_->env() != NULL); |
| 52 | ASSERT(call_->deopt_id() != DeoptId::kNone); |
| 53 | const intptr_t outer_deopt_id = call_->deopt_id(); |
| 54 | // Scale the edge weights by the call count for the inlined function. |
| 55 | double scale_factor = |
| 56 | static_cast<double>(call_->CallCount()) / |
| 57 | static_cast<double>(caller_graph_->graph_entry()->entry_count()); |
| 58 | for (BlockIterator block_it = callee_graph->postorder_iterator(); |
| 59 | !block_it.Done(); block_it.Advance()) { |
| 60 | BlockEntryInstr* block = block_it.Current(); |
| 61 | if (block->IsTargetEntry()) { |
| 62 | block->AsTargetEntry()->adjust_edge_weight(scale_factor); |
| 63 | } |
| 64 | Instruction* instr = block; |
| 65 | if (block->env() != NULL) { |
| 66 | call_->env()->DeepCopyToOuter(callee_graph->zone(), block, |
| 67 | outer_deopt_id); |
| 68 | } |
| 69 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 70 | instr = it.Current(); |
| 71 | // TODO(zerny): Avoid creating unnecessary environments. Note that some |
| 72 | // optimizations need deoptimization info for non-deoptable instructions, |
| 73 | // eg, LICM on GOTOs. |
| 74 | if (instr->env() != NULL) { |
| 75 | call_->env()->DeepCopyToOuter(callee_graph->zone(), instr, |
| 76 | outer_deopt_id); |
| 77 | } |
| 78 | } |
| 79 | if (instr->IsGoto()) { |
| 80 | instr->AsGoto()->adjust_edge_weight(scale_factor); |
| 81 | } |
| 82 | } |
| 83 | |
| 84 | RemoveUnreachableExits(callee_graph); |
| 85 | } |
| 86 | |
| 87 | void InlineExitCollector::AddExit(ReturnInstr* exit) { |
| 88 | Data data = {NULL, exit}; |
| 89 | exits_.Add(data); |
| 90 | } |
| 91 | |
| 92 | void InlineExitCollector::Union(const InlineExitCollector* other) { |
| 93 | // It doesn't make sense to combine different calls or calls from |
| 94 | // different graphs. |
| 95 | ASSERT(caller_graph_ == other->caller_graph_); |
| 96 | ASSERT(call_ == other->call_); |
| 97 | exits_.AddArray(other->exits_); |
| 98 | } |
| 99 | |
| 100 | int InlineExitCollector::LowestBlockIdFirst(const Data* a, const Data* b) { |
| 101 | return (a->exit_block->block_id() - b->exit_block->block_id()); |
| 102 | } |
| 103 | |
| 104 | void InlineExitCollector::RemoveUnreachableExits(FlowGraph* callee_graph) { |
| 105 | const GrowableArray<BlockEntryInstr*>& postorder = callee_graph->postorder(); |
| 106 | int j = 0; |
| 107 | for (int i = 0; i < exits_.length(); ++i) { |
| 108 | BlockEntryInstr* block = exits_[i].exit_return->GetBlock(); |
| 109 | if ((block != NULL) && (0 <= block->postorder_number()) && |
| 110 | (block->postorder_number() < postorder.length()) && |
| 111 | (postorder[block->postorder_number()] == block)) { |
| 112 | if (i != j) { |
| 113 | exits_[j] = exits_[i]; |
| 114 | } |
| 115 | j++; |
| 116 | } |
| 117 | } |
| 118 | exits_.TruncateTo(j); |
| 119 | } |
| 120 | |
| 121 | void InlineExitCollector::SortExits() { |
| 122 | // Assign block entries here because we did not necessarily know them when |
| 123 | // the return exit was added to the array. |
| 124 | for (int i = 0; i < exits_.length(); ++i) { |
| 125 | exits_[i].exit_block = exits_[i].exit_return->GetBlock(); |
| 126 | } |
| 127 | exits_.Sort(LowestBlockIdFirst); |
| 128 | } |
| 129 | |
| 130 | Definition* InlineExitCollector::JoinReturns(BlockEntryInstr** exit_block, |
| 131 | Instruction** last_instruction, |
| 132 | intptr_t try_index) { |
| 133 | // First sort the list of exits by block id (caching return instruction |
| 134 | // block entries as a side effect). |
| 135 | SortExits(); |
| 136 | intptr_t num_exits = exits_.length(); |
| 137 | if (num_exits == 1) { |
| 138 | ReturnAt(0)->UnuseAllInputs(); |
| 139 | *exit_block = ExitBlockAt(0); |
| 140 | *last_instruction = LastInstructionAt(0); |
| 141 | return call_->HasUses() ? ValueAt(0)->definition() : NULL; |
| 142 | } else { |
| 143 | ASSERT(num_exits > 1); |
| 144 | // Create a join of the returns. |
| 145 | intptr_t join_id = caller_graph_->max_block_id() + 1; |
| 146 | caller_graph_->set_max_block_id(join_id); |
| 147 | JoinEntryInstr* join = new (Z) JoinEntryInstr( |
| 148 | join_id, try_index, CompilerState::Current().GetNextDeoptId()); |
| 149 | |
| 150 | // The dominator set of the join is the intersection of the dominator |
| 151 | // sets of all the predecessors. If we keep the dominator sets ordered |
| 152 | // by height in the dominator tree, we can also get the immediate |
| 153 | // dominator of the join node from the intersection. |
| 154 | // |
| 155 | // block_dominators is the dominator set for each block, ordered from |
| 156 | // the immediate dominator to the root of the dominator tree. This is |
| 157 | // the order we collect them in (adding at the end). |
| 158 | // |
| 159 | // join_dominators is the join's dominators ordered from the root of the |
| 160 | // dominator tree to the immediate dominator. This order supports |
| 161 | // removing during intersection by truncating the list. |
| 162 | GrowableArray<BlockEntryInstr*> block_dominators; |
| 163 | GrowableArray<BlockEntryInstr*> join_dominators; |
| 164 | for (intptr_t i = 0; i < num_exits; ++i) { |
| 165 | // Add the control-flow edge. |
| 166 | GotoInstr* goto_instr = |
| 167 | new (Z) GotoInstr(join, CompilerState::Current().GetNextDeoptId()); |
| 168 | goto_instr->InheritDeoptTarget(zone(), ReturnAt(i)); |
| 169 | LastInstructionAt(i)->LinkTo(goto_instr); |
| 170 | ExitBlockAt(i)->set_last_instruction(LastInstructionAt(i)->next()); |
| 171 | join->predecessors_.Add(ExitBlockAt(i)); |
| 172 | |
| 173 | // Collect the block's dominators. |
| 174 | block_dominators.Clear(); |
| 175 | BlockEntryInstr* dominator = ExitBlockAt(i)->dominator(); |
| 176 | while (dominator != NULL) { |
| 177 | block_dominators.Add(dominator); |
| 178 | dominator = dominator->dominator(); |
| 179 | } |
| 180 | |
| 181 | if (i == 0) { |
| 182 | // The initial dominator set is the first predecessor's dominator |
| 183 | // set. Reverse it. |
| 184 | for (intptr_t j = block_dominators.length() - 1; j >= 0; --j) { |
| 185 | join_dominators.Add(block_dominators[j]); |
| 186 | } |
| 187 | } else { |
| 188 | // Intersect the block's dominators with the join's dominators so far. |
| 189 | intptr_t last = block_dominators.length() - 1; |
| 190 | for (intptr_t j = 0; j < join_dominators.length(); ++j) { |
| 191 | intptr_t k = last - j; // Corresponding index in block_dominators. |
| 192 | if ((k < 0) || (join_dominators[j] != block_dominators[k])) { |
| 193 | // We either exhausted the dominators for this block before |
| 194 | // exhausting the current intersection, or else we found a block |
| 195 | // on the path from the root of the tree that is not in common. |
| 196 | // I.e., there cannot be an empty set of dominators. |
| 197 | ASSERT(j > 0); |
| 198 | join_dominators.TruncateTo(j); |
| 199 | break; |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | // The immediate dominator of the join is the last one in the ordered |
| 205 | // intersection. |
| 206 | join_dominators.Last()->AddDominatedBlock(join); |
| 207 | *exit_block = join; |
| 208 | *last_instruction = join; |
| 209 | |
| 210 | // If the call has uses, create a phi of the returns. |
| 211 | if (call_->HasUses()) { |
| 212 | // Add a phi of the return values. |
| 213 | PhiInstr* phi = new (Z) PhiInstr(join, num_exits); |
| 214 | caller_graph_->AllocateSSAIndexes(phi); |
| 215 | phi->mark_alive(); |
| 216 | for (intptr_t i = 0; i < num_exits; ++i) { |
| 217 | ReturnAt(i)->RemoveEnvironment(); |
| 218 | phi->SetInputAt(i, ValueAt(i)); |
| 219 | } |
| 220 | join->InsertPhi(phi); |
| 221 | join->InheritDeoptTargetAfter(caller_graph_, call_, phi); |
| 222 | return phi; |
| 223 | } else { |
| 224 | // In the case that the result is unused, remove the return value uses |
| 225 | // from their definition's use list. |
| 226 | for (intptr_t i = 0; i < num_exits; ++i) { |
| 227 | ReturnAt(i)->UnuseAllInputs(); |
| 228 | } |
| 229 | join->InheritDeoptTargetAfter(caller_graph_, call_, NULL); |
| 230 | return NULL; |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | void InlineExitCollector::ReplaceCall(BlockEntryInstr* callee_entry) { |
| 236 | ASSERT(call_->previous() != NULL); |
| 237 | ASSERT(call_->next() != NULL); |
| 238 | BlockEntryInstr* call_block = call_->GetBlock(); |
| 239 | |
| 240 | // Insert the callee graph into the caller graph. |
| 241 | BlockEntryInstr* callee_exit = NULL; |
| 242 | Instruction* callee_last_instruction = NULL; |
| 243 | |
| 244 | if (exits_.length() == 0) { |
| 245 | // Handle the case when there are no normal return exits from the callee |
| 246 | // (i.e. the callee unconditionally throws) by inserting an artificial |
| 247 | // branch (true === true). |
| 248 | // The true successor is the inlined body, the false successor |
| 249 | // goes to the rest of the caller graph. It is removed as unreachable code |
| 250 | // by the constant propagation. |
| 251 | TargetEntryInstr* false_block = new (Z) TargetEntryInstr( |
| 252 | caller_graph_->allocate_block_id(), call_block->try_index(), |
| 253 | CompilerState::Current().GetNextDeoptId()); |
| 254 | false_block->InheritDeoptTargetAfter(caller_graph_, call_, NULL); |
| 255 | false_block->LinkTo(call_->next()); |
| 256 | call_block->ReplaceAsPredecessorWith(false_block); |
| 257 | |
| 258 | ConstantInstr* true_const = caller_graph_->GetConstant(Bool::True()); |
| 259 | BranchInstr* branch = new (Z) BranchInstr( |
| 260 | new (Z) StrictCompareInstr(TokenPosition::kNoSource, Token::kEQ_STRICT, |
| 261 | new (Z) Value(true_const), |
| 262 | new (Z) Value(true_const), false, |
| 263 | CompilerState::Current().GetNextDeoptId()), |
| 264 | CompilerState::Current().GetNextDeoptId()); // No number check. |
| 265 | branch->InheritDeoptTarget(zone(), call_); |
| 266 | |
| 267 | auto true_target = BranchSimplifier::ToTargetEntry(zone(), callee_entry); |
| 268 | callee_entry->ReplaceAsPredecessorWith(true_target); |
| 269 | |
| 270 | *branch->true_successor_address() = true_target; |
| 271 | *branch->false_successor_address() = false_block; |
| 272 | |
| 273 | call_->previous()->AppendInstruction(branch); |
| 274 | call_block->set_last_instruction(branch); |
| 275 | |
| 276 | // Replace uses of the return value with sentinel constant to maintain |
| 277 | // valid SSA form - even though the rest of the caller is unreachable. |
| 278 | call_->ReplaceUsesWith(caller_graph_->GetConstant(Object::sentinel())); |
| 279 | |
| 280 | // Update dominator tree. |
| 281 | for (intptr_t i = 0, n = callee_entry->dominated_blocks().length(); i < n; |
| 282 | i++) { |
| 283 | BlockEntryInstr* block = callee_entry->dominated_blocks()[i]; |
| 284 | true_target->AddDominatedBlock(block); |
| 285 | } |
| 286 | for (intptr_t i = 0, n = call_block->dominated_blocks().length(); i < n; |
| 287 | i++) { |
| 288 | BlockEntryInstr* block = call_block->dominated_blocks()[i]; |
| 289 | false_block->AddDominatedBlock(block); |
| 290 | } |
| 291 | call_block->ClearDominatedBlocks(); |
| 292 | call_block->AddDominatedBlock(true_target); |
| 293 | call_block->AddDominatedBlock(false_block); |
| 294 | |
| 295 | } else { |
| 296 | Definition* callee_result = JoinReturns( |
| 297 | &callee_exit, &callee_last_instruction, call_block->try_index()); |
| 298 | if (callee_result != NULL) { |
| 299 | call_->ReplaceUsesWith(callee_result); |
| 300 | } |
| 301 | if (callee_last_instruction == callee_entry) { |
| 302 | // There are no instructions in the inlined function (e.g., it might be |
| 303 | // a return of a parameter or a return of a constant defined in the |
| 304 | // initial definitions). |
| 305 | call_->previous()->LinkTo(call_->next()); |
| 306 | } else { |
| 307 | call_->previous()->LinkTo(callee_entry->next()); |
| 308 | callee_last_instruction->LinkTo(call_->next()); |
| 309 | } |
| 310 | if (callee_exit != callee_entry) { |
| 311 | // In case of control flow, locally update the predecessors, phis and |
| 312 | // dominator tree. |
| 313 | // |
| 314 | // Pictorially, the graph structure is: |
| 315 | // |
| 316 | // Bc : call_block Bi : callee_entry |
| 317 | // before_call inlined_head |
| 318 | // call ... other blocks ... |
| 319 | // after_call Be : callee_exit |
| 320 | // inlined_foot |
| 321 | // And becomes: |
| 322 | // |
| 323 | // Bc : call_block |
| 324 | // before_call |
| 325 | // inlined_head |
| 326 | // ... other blocks ... |
| 327 | // Be : callee_exit |
| 328 | // inlined_foot |
| 329 | // after_call |
| 330 | // |
| 331 | // For successors of 'after_call', the call block (Bc) is replaced as a |
| 332 | // predecessor by the callee exit (Be). |
| 333 | call_block->ReplaceAsPredecessorWith(callee_exit); |
| 334 | // For successors of 'inlined_head', the callee entry (Bi) is replaced |
| 335 | // as a predecessor by the call block (Bc). |
| 336 | callee_entry->ReplaceAsPredecessorWith(call_block); |
| 337 | |
| 338 | // The callee exit is now the immediate dominator of blocks whose |
| 339 | // immediate dominator was the call block. |
| 340 | ASSERT(callee_exit->dominated_blocks().is_empty()); |
| 341 | for (intptr_t i = 0; i < call_block->dominated_blocks().length(); ++i) { |
| 342 | BlockEntryInstr* block = call_block->dominated_blocks()[i]; |
| 343 | callee_exit->AddDominatedBlock(block); |
| 344 | } |
| 345 | // The call block is now the immediate dominator of blocks whose |
| 346 | // immediate dominator was the callee entry. |
| 347 | call_block->ClearDominatedBlocks(); |
| 348 | for (intptr_t i = 0; i < callee_entry->dominated_blocks().length(); ++i) { |
| 349 | BlockEntryInstr* block = callee_entry->dominated_blocks()[i]; |
| 350 | call_block->AddDominatedBlock(block); |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | // Callee entry in not in the graph anymore. Remove it from use lists. |
| 355 | callee_entry->UnuseAllInputs(); |
| 356 | } |
| 357 | // Neither call nor the graph entry (if present) are in the |
| 358 | // graph at this point. Remove them from use lists. |
| 359 | if (callee_entry->PredecessorCount() > 0) { |
| 360 | callee_entry->PredecessorAt(0)->AsGraphEntry()->UnuseAllInputs(); |
| 361 | } |
| 362 | call_->UnuseAllInputs(); |
| 363 | } |
| 364 | |
| 365 | bool SimpleInstanceOfType(const AbstractType& type) { |
| 366 | // Bail if the type is still uninstantiated at compile time. |
| 367 | if (!type.IsInstantiated()) return false; |
| 368 | |
| 369 | // Bail if the type is a function or a Dart Function type. |
| 370 | if (type.IsFunctionType() || type.IsDartFunctionType()) return false; |
| 371 | |
| 372 | ASSERT(type.HasTypeClass()); |
| 373 | const Class& type_class = Class::Handle(type.type_class()); |
| 374 | |
| 375 | // Bail if the type has any type parameters. |
| 376 | if (type_class.IsGeneric()) { |
| 377 | // If the interface type we check against is generic but has all-dynamic |
| 378 | // type arguments, then we can still use the _simpleInstanceOf |
| 379 | // implementation (see also runtime/lib/object.cc:Object_SimpleInstanceOf). |
| 380 | const auto& rare_type = AbstractType::Handle(type_class.RareType()); |
| 381 | // TODO(regis): Revisit the usage of TypeEquality::kSyntactical when |
| 382 | // implementing strong mode. |
| 383 | return rare_type.IsEquivalent(type, TypeEquality::kSyntactical); |
| 384 | } |
| 385 | |
| 386 | // Finally a simple class for instance of checking. |
| 387 | return true; |
| 388 | } |
| 389 | |
| 390 | } // namespace dart |
| 391 | |