1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/compiler/runtime_api.h" |
6 | #include "vm/globals.h" |
7 | |
8 | // For `AllocateObjectInstr::WillAllocateNewOrRemembered` |
9 | // For `GenericCheckBoundInstr::UseUnboxedRepresentation` |
10 | #include "vm/compiler/backend/il.h" |
11 | |
12 | #define SHOULD_NOT_INCLUDE_RUNTIME |
13 | |
14 | #include "vm/compiler/backend/locations.h" |
15 | #include "vm/compiler/stub_code_compiler.h" |
16 | |
17 | #if defined(TARGET_ARCH_X64) |
18 | |
19 | #include "vm/class_id.h" |
20 | #include "vm/code_entry_kind.h" |
21 | #include "vm/compiler/api/type_check_mode.h" |
22 | #include "vm/compiler/assembler/assembler.h" |
23 | #include "vm/constants.h" |
24 | #include "vm/instructions.h" |
25 | #include "vm/static_type_exactness_state.h" |
26 | #include "vm/tags.h" |
27 | |
28 | #define __ assembler-> |
29 | |
30 | namespace dart { |
31 | |
32 | DEFINE_FLAG(bool, inline_alloc, true, "Inline allocation of objects." ); |
33 | DEFINE_FLAG(bool, |
34 | use_slow_path, |
35 | false, |
36 | "Set to true for debugging & verifying the slow paths." ); |
37 | DECLARE_FLAG(bool, precompiled_mode); |
38 | |
39 | namespace compiler { |
40 | |
41 | // Ensures that [RAX] is a new object, if not it will be added to the remembered |
42 | // set via a leaf runtime call. |
43 | // |
44 | // WARNING: This might clobber all registers except for [RAX], [THR] and [FP]. |
45 | // The caller should simply call LeaveStubFrame() and return. |
46 | static void EnsureIsNewOrRemembered(Assembler* assembler, |
47 | bool preserve_registers = true) { |
48 | // If the object is not remembered we call a leaf-runtime to add it to the |
49 | // remembered set. |
50 | Label done; |
51 | __ testq(RAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
52 | __ BranchIf(NOT_ZERO, &done); |
53 | |
54 | if (preserve_registers) { |
55 | __ EnterCallRuntimeFrame(0); |
56 | } else { |
57 | __ ReserveAlignedFrameSpace(0); |
58 | } |
59 | __ movq(CallingConventions::kArg1Reg, RAX); |
60 | __ movq(CallingConventions::kArg2Reg, THR); |
61 | __ CallRuntime(kEnsureRememberedAndMarkingDeferredRuntimeEntry, 2); |
62 | if (preserve_registers) { |
63 | __ LeaveCallRuntimeFrame(); |
64 | } |
65 | |
66 | __ Bind(&done); |
67 | } |
68 | |
69 | // Input parameters: |
70 | // RSP : points to return address. |
71 | // RSP + 8 : address of last argument in argument array. |
72 | // RSP + 8*R10 : address of first argument in argument array. |
73 | // RSP + 8*R10 + 8 : address of return value. |
74 | // RBX : address of the runtime function to call. |
75 | // R10 : number of arguments to the call. |
76 | // Must preserve callee saved registers R12 and R13. |
77 | void StubCodeCompiler::GenerateCallToRuntimeStub(Assembler* assembler) { |
78 | const intptr_t thread_offset = target::NativeArguments::thread_offset(); |
79 | const intptr_t argc_tag_offset = target::NativeArguments::argc_tag_offset(); |
80 | const intptr_t argv_offset = target::NativeArguments::argv_offset(); |
81 | const intptr_t retval_offset = target::NativeArguments::retval_offset(); |
82 | |
83 | __ movq(CODE_REG, |
84 | Address(THR, target::Thread::call_to_runtime_stub_offset())); |
85 | __ EnterStubFrame(); |
86 | |
87 | // Save exit frame information to enable stack walking as we are about |
88 | // to transition to Dart VM C++ code. |
89 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
90 | |
91 | // Mark that the thread exited generated code through a runtime call. |
92 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
93 | Immediate(target::Thread::exit_through_runtime_call())); |
94 | |
95 | #if defined(DEBUG) |
96 | { |
97 | Label ok; |
98 | // Check that we are always entering from Dart code. |
99 | __ movq(RAX, Immediate(VMTag::kDartCompiledTagId)); |
100 | __ cmpq(RAX, Assembler::VMTagAddress()); |
101 | __ j(EQUAL, &ok, Assembler::kNearJump); |
102 | __ Stop("Not coming from Dart code." ); |
103 | __ Bind(&ok); |
104 | } |
105 | #endif |
106 | |
107 | // Mark that the thread is executing VM code. |
108 | __ movq(Assembler::VMTagAddress(), RBX); |
109 | |
110 | // Reserve space for arguments and align frame before entering C++ world. |
111 | __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
112 | if (OS::ActivationFrameAlignment() > 1) { |
113 | __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
114 | } |
115 | |
116 | // Pass target::NativeArguments structure by value and call runtime. |
117 | __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
118 | // There are no runtime calls to closures, so we do not need to set the tag |
119 | // bits kClosureFunctionBit and kInstanceFunctionBit in argc_tag_. |
120 | __ movq(Address(RSP, argc_tag_offset), |
121 | R10); // Set argc in target::NativeArguments. |
122 | // Compute argv. |
123 | __ leaq(RAX, |
124 | Address(RBP, R10, TIMES_8, |
125 | target::frame_layout.param_end_from_fp * target::kWordSize)); |
126 | __ movq(Address(RSP, argv_offset), |
127 | RAX); // Set argv in target::NativeArguments. |
128 | __ addq(RAX, |
129 | Immediate(1 * target::kWordSize)); // Retval is next to 1st argument. |
130 | __ movq(Address(RSP, retval_offset), |
131 | RAX); // Set retval in target::NativeArguments. |
132 | #if defined(TARGET_OS_WINDOWS) |
133 | ASSERT(target::NativeArguments::StructSize() > |
134 | CallingConventions::kRegisterTransferLimit); |
135 | __ movq(CallingConventions::kArg1Reg, RSP); |
136 | #endif |
137 | __ CallCFunction(RBX); |
138 | |
139 | // Mark that the thread is executing Dart code. |
140 | __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
141 | |
142 | // Mark that the thread has not exited generated Dart code. |
143 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
144 | Immediate(0)); |
145 | |
146 | // Reset exit frame information in Isolate's mutator thread structure. |
147 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
148 | Immediate(0)); |
149 | |
150 | // Restore the global object pool after returning from runtime (old space is |
151 | // moving, so the GOP could have been relocated). |
152 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
153 | __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
154 | } |
155 | |
156 | __ LeaveStubFrame(); |
157 | |
158 | // The following return can jump to a lazy-deopt stub, which assumes RAX |
159 | // contains a return value and will save it in a GC-visible way. We therefore |
160 | // have to ensure RAX does not contain any garbage value left from the C |
161 | // function we called (which has return type "void"). |
162 | // (See GenerateDeoptimizationSequence::saved_result_slot_from_fp.) |
163 | __ xorq(RAX, RAX); |
164 | __ ret(); |
165 | } |
166 | |
167 | static void GenerateSharedStubGeneric( |
168 | Assembler* assembler, |
169 | bool save_fpu_registers, |
170 | intptr_t self_code_stub_offset_from_thread, |
171 | bool allow_return, |
172 | std::function<void()> perform_runtime_call) { |
173 | // We want the saved registers to appear like part of the caller's frame, so |
174 | // we push them before calling EnterStubFrame. |
175 | __ PushRegisters(kDartAvailableCpuRegs, |
176 | save_fpu_registers ? kAllFpuRegistersList : 0); |
177 | |
178 | const intptr_t kSavedCpuRegisterSlots = |
179 | Utils::CountOneBitsWord(kDartAvailableCpuRegs); |
180 | const intptr_t kSavedFpuRegisterSlots = |
181 | save_fpu_registers |
182 | ? kNumberOfFpuRegisters * kFpuRegisterSize / target::kWordSize |
183 | : 0; |
184 | const intptr_t = |
185 | kSavedCpuRegisterSlots + kSavedFpuRegisterSlots; |
186 | |
187 | // Copy down the return address so the stack layout is correct. |
188 | __ pushq(Address(RSP, kAllSavedRegistersSlots * target::kWordSize)); |
189 | __ movq(CODE_REG, Address(THR, self_code_stub_offset_from_thread)); |
190 | __ EnterStubFrame(); |
191 | perform_runtime_call(); |
192 | if (!allow_return) { |
193 | __ Breakpoint(); |
194 | return; |
195 | } |
196 | __ LeaveStubFrame(); |
197 | // Copy up the return address (in case it was changed). |
198 | __ popq(TMP); |
199 | __ movq(Address(RSP, kAllSavedRegistersSlots * target::kWordSize), TMP); |
200 | __ PopRegisters(kDartAvailableCpuRegs, |
201 | save_fpu_registers ? kAllFpuRegistersList : 0); |
202 | __ ret(); |
203 | } |
204 | |
205 | static void GenerateSharedStub(Assembler* assembler, |
206 | bool save_fpu_registers, |
207 | const RuntimeEntry* target, |
208 | intptr_t self_code_stub_offset_from_thread, |
209 | bool allow_return, |
210 | bool store_runtime_result_in_rax = false) { |
211 | auto perform_runtime_call = [&]() { |
212 | if (store_runtime_result_in_rax) { |
213 | __ PushImmediate(Immediate(0)); |
214 | } |
215 | __ CallRuntime(*target, /*argument_count=*/0); |
216 | if (store_runtime_result_in_rax) { |
217 | __ PopRegister(RAX); |
218 | __ movq(Address(RBP, |
219 | target::kWordSize * |
220 | StubCodeCompiler::WordOffsetFromFpToCpuRegister(RAX)), |
221 | RAX); |
222 | } |
223 | }; |
224 | GenerateSharedStubGeneric(assembler, save_fpu_registers, |
225 | self_code_stub_offset_from_thread, allow_return, |
226 | perform_runtime_call); |
227 | } |
228 | |
229 | void StubCodeCompiler::GenerateEnterSafepointStub(Assembler* assembler) { |
230 | RegisterSet all_registers; |
231 | all_registers.AddAllGeneralRegisters(); |
232 | __ PushRegisters(all_registers.cpu_registers(), |
233 | all_registers.fpu_registers()); |
234 | |
235 | __ EnterFrame(0); |
236 | __ ReserveAlignedFrameSpace(0); |
237 | __ movq(RAX, Address(THR, kEnterSafepointRuntimeEntry.OffsetFromThread())); |
238 | __ CallCFunction(RAX); |
239 | __ LeaveFrame(); |
240 | |
241 | __ PopRegisters(all_registers.cpu_registers(), all_registers.fpu_registers()); |
242 | __ ret(); |
243 | } |
244 | |
245 | void StubCodeCompiler::GenerateExitSafepointStub(Assembler* assembler) { |
246 | RegisterSet all_registers; |
247 | all_registers.AddAllGeneralRegisters(); |
248 | __ PushRegisters(all_registers.cpu_registers(), |
249 | all_registers.fpu_registers()); |
250 | |
251 | __ EnterFrame(0); |
252 | __ ReserveAlignedFrameSpace(0); |
253 | |
254 | // Set the execution state to VM while waiting for the safepoint to end. |
255 | // This isn't strictly necessary but enables tests to check that we're not |
256 | // in native code anymore. See tests/ffi/function_gc_test.dart for example. |
257 | __ movq(Address(THR, target::Thread::execution_state_offset()), |
258 | Immediate(target::Thread::vm_execution_state())); |
259 | |
260 | __ movq(RAX, Address(THR, kExitSafepointRuntimeEntry.OffsetFromThread())); |
261 | __ CallCFunction(RAX); |
262 | __ LeaveFrame(); |
263 | |
264 | __ PopRegisters(all_registers.cpu_registers(), all_registers.fpu_registers()); |
265 | __ ret(); |
266 | } |
267 | |
268 | // Calls native code within a safepoint. |
269 | // |
270 | // On entry: |
271 | // Stack: arguments set up and aligned for native call, excl. shadow space |
272 | // RBX = target address to call |
273 | // |
274 | // On exit: |
275 | // Stack pointer lowered by shadow space |
276 | // RBX, R12 clobbered |
277 | void StubCodeCompiler::GenerateCallNativeThroughSafepointStub( |
278 | Assembler* assembler) { |
279 | __ movq(R12, compiler::Immediate(target::Thread::exit_through_ffi())); |
280 | __ TransitionGeneratedToNative(RBX, FPREG, R12, |
281 | /*enter_safepoint=*/true); |
282 | |
283 | __ popq(R12); |
284 | __ CallCFunction(RBX); |
285 | |
286 | __ TransitionNativeToGenerated(/*leave_safepoint=*/true); |
287 | |
288 | // Faster than jmp because it doesn't confuse the branch predictor. |
289 | __ pushq(R12); |
290 | __ ret(); |
291 | } |
292 | |
293 | #if !defined(DART_PRECOMPILER) |
294 | void StubCodeCompiler::GenerateJITCallbackTrampolines( |
295 | Assembler* assembler, |
296 | intptr_t next_callback_id) { |
297 | Label done; |
298 | |
299 | // RAX is volatile and not used for passing any arguments. |
300 | COMPILE_ASSERT(!IsCalleeSavedRegister(RAX) && !IsArgumentRegister(RAX)); |
301 | |
302 | for (intptr_t i = 0; |
303 | i < NativeCallbackTrampolines::NumCallbackTrampolinesPerPage(); ++i) { |
304 | __ movq(RAX, compiler::Immediate(next_callback_id + i)); |
305 | __ jmp(&done); |
306 | } |
307 | |
308 | ASSERT_EQUAL(__ CodeSize(), |
309 | kNativeCallbackTrampolineSize * |
310 | NativeCallbackTrampolines::NumCallbackTrampolinesPerPage()); |
311 | |
312 | __ Bind(&done); |
313 | |
314 | const intptr_t shared_stub_start = __ CodeSize(); |
315 | |
316 | // Save THR which is callee-saved. |
317 | __ pushq(THR); |
318 | |
319 | // 2 = THR & return address |
320 | COMPILE_ASSERT(2 == StubCodeCompiler::kNativeCallbackTrampolineStackDelta); |
321 | |
322 | // Save the callback ID. |
323 | __ pushq(RAX); |
324 | |
325 | // Save all registers which might hold arguments. |
326 | __ PushRegisters(CallingConventions::kArgumentRegisters, |
327 | CallingConventions::kFpuArgumentRegisters); |
328 | |
329 | // Load the thread, verify the callback ID and exit the safepoint. |
330 | // |
331 | // We exit the safepoint inside DLRT_GetThreadForNativeCallbackTrampoline |
332 | // in order to save code size on this shared stub. |
333 | { |
334 | __ EnterFrame(0); |
335 | __ ReserveAlignedFrameSpace(0); |
336 | |
337 | COMPILE_ASSERT(RAX != CallingConventions::kArg1Reg); |
338 | __ movq(CallingConventions::kArg1Reg, RAX); |
339 | __ movq(RAX, compiler::Immediate(reinterpret_cast<int64_t>( |
340 | DLRT_GetThreadForNativeCallbackTrampoline))); |
341 | __ CallCFunction(RAX); |
342 | __ movq(THR, RAX); |
343 | |
344 | __ LeaveFrame(); |
345 | } |
346 | |
347 | // Restore the arguments. |
348 | __ PopRegisters(CallingConventions::kArgumentRegisters, |
349 | CallingConventions::kFpuArgumentRegisters); |
350 | |
351 | // Restore the callback ID. |
352 | __ popq(RAX); |
353 | |
354 | // Current state: |
355 | // |
356 | // Stack: |
357 | // <old stack (arguments)> |
358 | // <return address> |
359 | // <saved THR> |
360 | // |
361 | // Registers: Like entry, except RAX == callback_id and THR == thread |
362 | // All argument registers are untouched. |
363 | |
364 | COMPILE_ASSERT(!IsCalleeSavedRegister(TMP) && !IsArgumentRegister(TMP)); |
365 | |
366 | // Load the target from the thread. |
367 | __ movq(TMP, compiler::Address( |
368 | THR, compiler::target::Thread::callback_code_offset())); |
369 | __ movq(TMP, compiler::FieldAddress( |
370 | TMP, compiler::target::GrowableObjectArray::data_offset())); |
371 | __ movq(TMP, __ ElementAddressForRegIndex( |
372 | /*external=*/false, |
373 | /*array_cid=*/kArrayCid, |
374 | /*index, smi-tagged=*/compiler::target::kWordSize * 2, |
375 | /*index_unboxed=*/false, |
376 | /*array=*/TMP, |
377 | /*index=*/RAX)); |
378 | __ movq(TMP, compiler::FieldAddress( |
379 | TMP, compiler::target::Code::entry_point_offset())); |
380 | |
381 | // On entry to the function, there will be two extra slots on the stack: |
382 | // the saved THR and the return address. The target will know to skip them. |
383 | __ call(TMP); |
384 | |
385 | // EnterSafepoint takes care to not clobber *any* registers (besides TMP). |
386 | __ EnterSafepoint(); |
387 | |
388 | // Restore THR (callee-saved). |
389 | __ popq(THR); |
390 | |
391 | __ ret(); |
392 | |
393 | // 'kNativeCallbackSharedStubSize' is an upper bound because the exact |
394 | // instruction size can vary slightly based on OS calling conventions. |
395 | ASSERT((__ CodeSize() - shared_stub_start) <= kNativeCallbackSharedStubSize); |
396 | ASSERT(__ CodeSize() <= VirtualMemory::PageSize()); |
397 | |
398 | #if defined(DEBUG) |
399 | while (__ CodeSize() < VirtualMemory::PageSize()) { |
400 | __ Breakpoint(); |
401 | } |
402 | #endif |
403 | } |
404 | #endif // !defined(DART_PRECOMPILER) |
405 | |
406 | // RBX: The extracted method. |
407 | // RDX: The type_arguments_field_offset (or 0) |
408 | void StubCodeCompiler::( |
409 | Assembler* assembler, |
410 | const Object& closure_allocation_stub, |
411 | const Object& context_allocation_stub) { |
412 | const intptr_t kReceiverOffsetInWords = |
413 | target::frame_layout.param_end_from_fp + 1; |
414 | |
415 | __ EnterStubFrame(); |
416 | |
417 | // Push type_arguments vector (or null) |
418 | Label no_type_args; |
419 | __ movq(RCX, Address(THR, target::Thread::object_null_offset())); |
420 | __ cmpq(RDX, Immediate(0)); |
421 | __ j(EQUAL, &no_type_args, Assembler::kNearJump); |
422 | __ movq(RAX, Address(RBP, target::kWordSize * kReceiverOffsetInWords)); |
423 | __ movq(RCX, Address(RAX, RDX, TIMES_1, 0)); |
424 | __ Bind(&no_type_args); |
425 | __ pushq(RCX); |
426 | |
427 | // Push extracted method. |
428 | __ pushq(RBX); |
429 | |
430 | // Allocate context. |
431 | { |
432 | Label done, slow_path; |
433 | __ TryAllocateArray(kContextCid, target::Context::InstanceSize(1), |
434 | &slow_path, Assembler::kFarJump, |
435 | RAX, // instance |
436 | RSI, // end address |
437 | RDI); |
438 | __ movq(RSI, Address(THR, target::Thread::object_null_offset())); |
439 | __ movq(FieldAddress(RAX, target::Context::parent_offset()), RSI); |
440 | __ movq(FieldAddress(RAX, target::Context::num_variables_offset()), |
441 | Immediate(1)); |
442 | __ jmp(&done); |
443 | |
444 | __ Bind(&slow_path); |
445 | |
446 | __ LoadImmediate(/*num_vars=*/R10, Immediate(1)); |
447 | __ LoadObject(CODE_REG, context_allocation_stub); |
448 | __ call(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
449 | |
450 | __ Bind(&done); |
451 | } |
452 | |
453 | // Store receiver in context |
454 | __ movq(RSI, Address(RBP, target::kWordSize * kReceiverOffsetInWords)); |
455 | __ StoreIntoObject( |
456 | RAX, FieldAddress(RAX, target::Context::variable_offset(0)), RSI); |
457 | |
458 | // Push context. |
459 | __ pushq(RAX); |
460 | |
461 | // Allocate closure. |
462 | __ LoadObject(CODE_REG, closure_allocation_stub); |
463 | __ call(FieldAddress( |
464 | CODE_REG, target::Code::entry_point_offset(CodeEntryKind::kUnchecked))); |
465 | |
466 | // Populate closure object. |
467 | __ popq(RCX); // Pop context. |
468 | __ StoreIntoObject(RAX, FieldAddress(RAX, target::Closure::context_offset()), |
469 | RCX); |
470 | __ popq(RCX); // Pop extracted method. |
471 | __ StoreIntoObjectNoBarrier( |
472 | RAX, FieldAddress(RAX, target::Closure::function_offset()), RCX); |
473 | __ popq(RCX); // Pop type argument vector. |
474 | __ StoreIntoObjectNoBarrier( |
475 | RAX, |
476 | FieldAddress(RAX, target::Closure::instantiator_type_arguments_offset()), |
477 | RCX); |
478 | __ LoadObject(RCX, EmptyTypeArguments()); |
479 | __ StoreIntoObjectNoBarrier( |
480 | RAX, FieldAddress(RAX, target::Closure::delayed_type_arguments_offset()), |
481 | RCX); |
482 | |
483 | __ LeaveStubFrame(); |
484 | __ Ret(); |
485 | } |
486 | |
487 | void StubCodeCompiler::GenerateDispatchTableNullErrorStub( |
488 | Assembler* assembler) { |
489 | __ EnterStubFrame(); |
490 | __ CallRuntime(kNullErrorRuntimeEntry, /*argument_count=*/0); |
491 | // The NullError runtime entry does not return. |
492 | __ Breakpoint(); |
493 | } |
494 | |
495 | void StubCodeCompiler::GenerateNullErrorSharedWithoutFPURegsStub( |
496 | Assembler* assembler) { |
497 | GenerateSharedStub( |
498 | assembler, /*save_fpu_registers=*/false, &kNullErrorRuntimeEntry, |
499 | target::Thread::null_error_shared_without_fpu_regs_stub_offset(), |
500 | /*allow_return=*/false); |
501 | } |
502 | |
503 | void StubCodeCompiler::GenerateNullErrorSharedWithFPURegsStub( |
504 | Assembler* assembler) { |
505 | GenerateSharedStub( |
506 | assembler, /*save_fpu_registers=*/true, &kNullErrorRuntimeEntry, |
507 | target::Thread::null_error_shared_with_fpu_regs_stub_offset(), |
508 | /*allow_return=*/false); |
509 | } |
510 | |
511 | void StubCodeCompiler::GenerateNullArgErrorSharedWithoutFPURegsStub( |
512 | Assembler* assembler) { |
513 | GenerateSharedStub( |
514 | assembler, /*save_fpu_registers=*/false, &kArgumentNullErrorRuntimeEntry, |
515 | target::Thread::null_arg_error_shared_without_fpu_regs_stub_offset(), |
516 | /*allow_return=*/false); |
517 | } |
518 | |
519 | void StubCodeCompiler::GenerateNullArgErrorSharedWithFPURegsStub( |
520 | Assembler* assembler) { |
521 | GenerateSharedStub( |
522 | assembler, /*save_fpu_registers=*/true, &kArgumentNullErrorRuntimeEntry, |
523 | target::Thread::null_arg_error_shared_with_fpu_regs_stub_offset(), |
524 | /*allow_return=*/false); |
525 | } |
526 | |
527 | void StubCodeCompiler::GenerateNullCastErrorSharedWithoutFPURegsStub( |
528 | Assembler* assembler) { |
529 | GenerateSharedStub( |
530 | assembler, /*save_fpu_registers=*/false, &kNullCastErrorRuntimeEntry, |
531 | target::Thread::null_cast_error_shared_without_fpu_regs_stub_offset(), |
532 | /*allow_return=*/false); |
533 | } |
534 | |
535 | void StubCodeCompiler::GenerateNullCastErrorSharedWithFPURegsStub( |
536 | Assembler* assembler) { |
537 | GenerateSharedStub( |
538 | assembler, /*save_fpu_registers=*/true, &kNullCastErrorRuntimeEntry, |
539 | target::Thread::null_cast_error_shared_with_fpu_regs_stub_offset(), |
540 | /*allow_return=*/false); |
541 | } |
542 | |
543 | static void GenerateRangeError(Assembler* assembler, bool with_fpu_regs) { |
544 | auto perform_runtime_call = [&]() { |
545 | // If the generated code has unboxed index/length we need to box them before |
546 | // calling the runtime entry. |
547 | if (GenericCheckBoundInstr::UseUnboxedRepresentation()) { |
548 | Label length, smi_case; |
549 | |
550 | // The user-controlled index might not fit into a Smi. |
551 | __ addq(RangeErrorABI::kIndexReg, RangeErrorABI::kIndexReg); |
552 | __ BranchIf(NO_OVERFLOW, &length); |
553 | { |
554 | // Allocate a mint, reload the two registers and popualte the mint. |
555 | __ PushImmediate(Immediate(0)); |
556 | __ CallRuntime(kAllocateMintRuntimeEntry, /*argument_count=*/0); |
557 | __ PopRegister(RangeErrorABI::kIndexReg); |
558 | __ movq( |
559 | TMP, |
560 | Address(RBP, target::kWordSize * |
561 | StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
562 | RangeErrorABI::kIndexReg))); |
563 | __ movq(FieldAddress(RangeErrorABI::kIndexReg, |
564 | target::Mint::value_offset()), |
565 | TMP); |
566 | __ movq( |
567 | RangeErrorABI::kLengthReg, |
568 | Address(RBP, target::kWordSize * |
569 | StubCodeCompiler::WordOffsetFromFpToCpuRegister( |
570 | RangeErrorABI::kLengthReg))); |
571 | } |
572 | |
573 | // Length is guaranteed to be in positive Smi range (it comes from a load |
574 | // of a vm recognized array). |
575 | __ Bind(&length); |
576 | __ SmiTag(RangeErrorABI::kLengthReg); |
577 | } |
578 | __ PushRegister(RangeErrorABI::kLengthReg); |
579 | __ PushRegister(RangeErrorABI::kIndexReg); |
580 | __ CallRuntime(kRangeErrorRuntimeEntry, /*argument_count=*/2); |
581 | __ Breakpoint(); |
582 | }; |
583 | |
584 | GenerateSharedStubGeneric( |
585 | assembler, /*save_fpu_registers=*/with_fpu_regs, |
586 | with_fpu_regs |
587 | ? target::Thread::range_error_shared_with_fpu_regs_stub_offset() |
588 | : target::Thread::range_error_shared_without_fpu_regs_stub_offset(), |
589 | /*allow_return=*/false, perform_runtime_call); |
590 | } |
591 | |
592 | void StubCodeCompiler::GenerateRangeErrorSharedWithoutFPURegsStub( |
593 | Assembler* assembler) { |
594 | GenerateRangeError(assembler, /*with_fpu_regs=*/false); |
595 | } |
596 | |
597 | void StubCodeCompiler::GenerateRangeErrorSharedWithFPURegsStub( |
598 | Assembler* assembler) { |
599 | GenerateRangeError(assembler, /*with_fpu_regs=*/true); |
600 | } |
601 | |
602 | void StubCodeCompiler::GenerateStackOverflowSharedWithoutFPURegsStub( |
603 | Assembler* assembler) { |
604 | GenerateSharedStub( |
605 | assembler, /*save_fpu_registers=*/false, &kStackOverflowRuntimeEntry, |
606 | target::Thread::stack_overflow_shared_without_fpu_regs_stub_offset(), |
607 | /*allow_return=*/true); |
608 | } |
609 | |
610 | void StubCodeCompiler::GenerateStackOverflowSharedWithFPURegsStub( |
611 | Assembler* assembler) { |
612 | GenerateSharedStub( |
613 | assembler, /*save_fpu_registers=*/true, &kStackOverflowRuntimeEntry, |
614 | target::Thread::stack_overflow_shared_with_fpu_regs_stub_offset(), |
615 | /*allow_return=*/true); |
616 | } |
617 | |
618 | // Input parameters: |
619 | // RSP : points to return address. |
620 | // RSP + 8 : address of return value. |
621 | // RAX : address of first argument in argument array. |
622 | // RBX : address of the native function to call. |
623 | // R10 : argc_tag including number of arguments and function kind. |
624 | static void GenerateCallNativeWithWrapperStub(Assembler* assembler, |
625 | Address wrapper_address) { |
626 | const intptr_t native_args_struct_offset = 0; |
627 | const intptr_t thread_offset = |
628 | target::NativeArguments::thread_offset() + native_args_struct_offset; |
629 | const intptr_t argc_tag_offset = |
630 | target::NativeArguments::argc_tag_offset() + native_args_struct_offset; |
631 | const intptr_t argv_offset = |
632 | target::NativeArguments::argv_offset() + native_args_struct_offset; |
633 | const intptr_t retval_offset = |
634 | target::NativeArguments::retval_offset() + native_args_struct_offset; |
635 | |
636 | __ EnterStubFrame(); |
637 | |
638 | // Save exit frame information to enable stack walking as we are about |
639 | // to transition to native code. |
640 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
641 | |
642 | // Mark that the thread exited generated code through a runtime call. |
643 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
644 | Immediate(target::Thread::exit_through_runtime_call())); |
645 | |
646 | #if defined(DEBUG) |
647 | { |
648 | Label ok; |
649 | // Check that we are always entering from Dart code. |
650 | __ movq(R8, Immediate(VMTag::kDartCompiledTagId)); |
651 | __ cmpq(R8, Assembler::VMTagAddress()); |
652 | __ j(EQUAL, &ok, Assembler::kNearJump); |
653 | __ Stop("Not coming from Dart code." ); |
654 | __ Bind(&ok); |
655 | } |
656 | #endif |
657 | |
658 | // Mark that the thread is executing native code. |
659 | __ movq(Assembler::VMTagAddress(), RBX); |
660 | |
661 | // Reserve space for the native arguments structure passed on the stack (the |
662 | // outgoing pointer parameter to the native arguments structure is passed in |
663 | // RDI) and align frame before entering the C++ world. |
664 | __ subq(RSP, Immediate(target::NativeArguments::StructSize())); |
665 | if (OS::ActivationFrameAlignment() > 1) { |
666 | __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
667 | } |
668 | |
669 | // Pass target::NativeArguments structure by value and call native function. |
670 | __ movq(Address(RSP, thread_offset), THR); // Set thread in NativeArgs. |
671 | __ movq(Address(RSP, argc_tag_offset), |
672 | R10); // Set argc in target::NativeArguments. |
673 | __ movq(Address(RSP, argv_offset), |
674 | RAX); // Set argv in target::NativeArguments. |
675 | __ leaq(RAX, |
676 | Address(RBP, 2 * target::kWordSize)); // Compute return value addr. |
677 | __ movq(Address(RSP, retval_offset), |
678 | RAX); // Set retval in target::NativeArguments. |
679 | |
680 | // Pass the pointer to the target::NativeArguments. |
681 | __ movq(CallingConventions::kArg1Reg, RSP); |
682 | // Pass pointer to function entrypoint. |
683 | __ movq(CallingConventions::kArg2Reg, RBX); |
684 | |
685 | __ movq(RAX, wrapper_address); |
686 | __ CallCFunction(RAX); |
687 | |
688 | // Mark that the thread is executing Dart code. |
689 | __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
690 | |
691 | // Mark that the thread has not exited generated Dart code. |
692 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
693 | Immediate(0)); |
694 | |
695 | // Reset exit frame information in Isolate's mutator thread structure. |
696 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
697 | Immediate(0)); |
698 | |
699 | // Restore the global object pool after returning from runtime (old space is |
700 | // moving, so the GOP could have been relocated). |
701 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
702 | __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
703 | } |
704 | |
705 | __ LeaveStubFrame(); |
706 | __ ret(); |
707 | } |
708 | |
709 | void StubCodeCompiler::GenerateCallNoScopeNativeStub(Assembler* assembler) { |
710 | GenerateCallNativeWithWrapperStub( |
711 | assembler, |
712 | Address(THR, |
713 | target::Thread::no_scope_native_wrapper_entry_point_offset())); |
714 | } |
715 | |
716 | void StubCodeCompiler::GenerateCallAutoScopeNativeStub(Assembler* assembler) { |
717 | GenerateCallNativeWithWrapperStub( |
718 | assembler, |
719 | Address(THR, |
720 | target::Thread::auto_scope_native_wrapper_entry_point_offset())); |
721 | } |
722 | |
723 | // Input parameters: |
724 | // RSP : points to return address. |
725 | // RSP + 8 : address of return value. |
726 | // RAX : address of first argument in argument array. |
727 | // RBX : address of the native function to call. |
728 | // R10 : argc_tag including number of arguments and function kind. |
729 | void StubCodeCompiler::GenerateCallBootstrapNativeStub(Assembler* assembler) { |
730 | GenerateCallNativeWithWrapperStub( |
731 | assembler, |
732 | Address(THR, |
733 | target::Thread::bootstrap_native_wrapper_entry_point_offset())); |
734 | } |
735 | |
736 | // Input parameters: |
737 | // R10: arguments descriptor array. |
738 | void StubCodeCompiler::GenerateCallStaticFunctionStub(Assembler* assembler) { |
739 | __ EnterStubFrame(); |
740 | __ pushq(R10); // Preserve arguments descriptor array. |
741 | // Setup space on stack for return value. |
742 | __ pushq(Immediate(0)); |
743 | __ CallRuntime(kPatchStaticCallRuntimeEntry, 0); |
744 | __ popq(CODE_REG); // Get Code object result. |
745 | __ popq(R10); // Restore arguments descriptor array. |
746 | // Remove the stub frame as we are about to jump to the dart function. |
747 | __ LeaveStubFrame(); |
748 | |
749 | __ movq(RBX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
750 | __ jmp(RBX); |
751 | } |
752 | |
753 | // Called from a static call only when an invalid code has been entered |
754 | // (invalid because its function was optimized or deoptimized). |
755 | // R10: arguments descriptor array. |
756 | void StubCodeCompiler::GenerateFixCallersTargetStub(Assembler* assembler) { |
757 | Label monomorphic; |
758 | __ BranchOnMonomorphicCheckedEntryJIT(&monomorphic); |
759 | |
760 | // This was a static call. |
761 | // Load code pointer to this stub from the thread: |
762 | // The one that is passed in, is not correct - it points to the code object |
763 | // that needs to be replaced. |
764 | __ movq(CODE_REG, |
765 | Address(THR, target::Thread::fix_callers_target_code_offset())); |
766 | __ EnterStubFrame(); |
767 | __ pushq(R10); // Preserve arguments descriptor array. |
768 | // Setup space on stack for return value. |
769 | __ pushq(Immediate(0)); |
770 | __ CallRuntime(kFixCallersTargetRuntimeEntry, 0); |
771 | __ popq(CODE_REG); // Get Code object. |
772 | __ popq(R10); // Restore arguments descriptor array. |
773 | __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
774 | __ LeaveStubFrame(); |
775 | __ jmp(RAX); |
776 | __ int3(); |
777 | |
778 | __ Bind(&monomorphic); |
779 | // This was a switchable call. |
780 | // Load code pointer to this stub from the thread: |
781 | // The one that is passed in, is not correct - it points to the code object |
782 | // that needs to be replaced. |
783 | __ movq(CODE_REG, |
784 | Address(THR, target::Thread::fix_callers_target_code_offset())); |
785 | __ EnterStubFrame(); |
786 | __ pushq(RBX); // Preserve cache (guarded CID as Smi). |
787 | __ pushq(RDX); // Preserve receiver. |
788 | __ pushq(Immediate(0)); // Result slot. |
789 | __ CallRuntime(kFixCallersTargetMonomorphicRuntimeEntry, 0); |
790 | __ popq(CODE_REG); // Get Code object. |
791 | __ popq(RDX); // Restore receiver. |
792 | __ popq(RBX); // Restore cache (guarded CID as Smi). |
793 | __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
794 | CodeEntryKind::kMonomorphic))); |
795 | __ LeaveStubFrame(); |
796 | __ jmp(RAX); |
797 | __ int3(); |
798 | } |
799 | |
800 | // Called from object allocate instruction when the allocation stub has been |
801 | // disabled. |
802 | void StubCodeCompiler::GenerateFixAllocationStubTargetStub( |
803 | Assembler* assembler) { |
804 | // Load code pointer to this stub from the thread: |
805 | // The one that is passed in, is not correct - it points to the code object |
806 | // that needs to be replaced. |
807 | __ movq(CODE_REG, |
808 | Address(THR, target::Thread::fix_allocation_stub_code_offset())); |
809 | __ EnterStubFrame(); |
810 | // Setup space on stack for return value. |
811 | __ pushq(Immediate(0)); |
812 | __ CallRuntime(kFixAllocationStubTargetRuntimeEntry, 0); |
813 | __ popq(CODE_REG); // Get Code object. |
814 | __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
815 | __ LeaveStubFrame(); |
816 | __ jmp(RAX); |
817 | __ int3(); |
818 | } |
819 | |
820 | // Input parameters: |
821 | // R10: smi-tagged argument count, may be zero. |
822 | // RBP[target::frame_layout.param_end_from_fp + 1]: last argument. |
823 | static void PushArrayOfArguments(Assembler* assembler) { |
824 | __ LoadObject(R12, NullObject()); |
825 | // Allocate array to store arguments of caller. |
826 | __ movq(RBX, R12); // Null element type for raw Array. |
827 | __ Call(StubCodeAllocateArray()); |
828 | __ SmiUntag(R10); |
829 | // RAX: newly allocated array. |
830 | // R10: length of the array (was preserved by the stub). |
831 | __ pushq(RAX); // Array is in RAX and on top of stack. |
832 | __ leaq(R12, |
833 | Address(RBP, R10, TIMES_8, |
834 | target::frame_layout.param_end_from_fp * target::kWordSize)); |
835 | __ leaq(RBX, FieldAddress(RAX, target::Array::data_offset())); |
836 | // R12: address of first argument on stack. |
837 | // RBX: address of first argument in array. |
838 | Label loop, loop_condition; |
839 | #if defined(DEBUG) |
840 | static const bool kJumpLength = Assembler::kFarJump; |
841 | #else |
842 | static const bool kJumpLength = Assembler::kNearJump; |
843 | #endif // DEBUG |
844 | __ jmp(&loop_condition, kJumpLength); |
845 | __ Bind(&loop); |
846 | __ movq(RDI, Address(R12, 0)); |
847 | // Generational barrier is needed, array is not necessarily in new space. |
848 | __ StoreIntoObject(RAX, Address(RBX, 0), RDI); |
849 | __ addq(RBX, Immediate(target::kWordSize)); |
850 | __ subq(R12, Immediate(target::kWordSize)); |
851 | __ Bind(&loop_condition); |
852 | __ decq(R10); |
853 | __ j(POSITIVE, &loop, Assembler::kNearJump); |
854 | } |
855 | |
856 | // Used by eager and lazy deoptimization. Preserve result in RAX if necessary. |
857 | // This stub translates optimized frame into unoptimized frame. The optimized |
858 | // frame can contain values in registers and on stack, the unoptimized |
859 | // frame contains all values on stack. |
860 | // Deoptimization occurs in following steps: |
861 | // - Push all registers that can contain values. |
862 | // - Call C routine to copy the stack and saved registers into temporary buffer. |
863 | // - Adjust caller's frame to correct unoptimized frame size. |
864 | // - Fill the unoptimized frame. |
865 | // - Materialize objects that require allocation (e.g. Double instances). |
866 | // GC can occur only after frame is fully rewritten. |
867 | // Stack after EnterDartFrame(0, PP, kNoRegister) below: |
868 | // +------------------+ |
869 | // | Saved PP | <- PP |
870 | // +------------------+ |
871 | // | PC marker | <- TOS |
872 | // +------------------+ |
873 | // | Saved FP | <- FP of stub |
874 | // +------------------+ |
875 | // | return-address | (deoptimization point) |
876 | // +------------------+ |
877 | // | Saved CODE_REG | |
878 | // +------------------+ |
879 | // | ... | <- SP of optimized frame |
880 | // |
881 | // Parts of the code cannot GC, part of the code can GC. |
882 | static void GenerateDeoptimizationSequence(Assembler* assembler, |
883 | DeoptStubKind kind) { |
884 | // DeoptimizeCopyFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
885 | // is no need to set the correct PC marker or load PP, since they get patched. |
886 | __ EnterStubFrame(); |
887 | |
888 | // The code in this frame may not cause GC. kDeoptimizeCopyFrameRuntimeEntry |
889 | // and kDeoptimizeFillFrameRuntimeEntry are leaf runtime calls. |
890 | const intptr_t saved_result_slot_from_fp = |
891 | target::frame_layout.first_local_from_fp + 1 - |
892 | (kNumberOfCpuRegisters - RAX); |
893 | const intptr_t saved_exception_slot_from_fp = |
894 | target::frame_layout.first_local_from_fp + 1 - |
895 | (kNumberOfCpuRegisters - RAX); |
896 | const intptr_t saved_stacktrace_slot_from_fp = |
897 | target::frame_layout.first_local_from_fp + 1 - |
898 | (kNumberOfCpuRegisters - RDX); |
899 | // Result in RAX is preserved as part of pushing all registers below. |
900 | |
901 | // Push registers in their enumeration order: lowest register number at |
902 | // lowest address. |
903 | for (intptr_t i = kNumberOfCpuRegisters - 1; i >= 0; i--) { |
904 | if (i == CODE_REG) { |
905 | // Save the original value of CODE_REG pushed before invoking this stub |
906 | // instead of the value used to call this stub. |
907 | __ pushq(Address(RBP, 2 * target::kWordSize)); |
908 | } else { |
909 | __ pushq(static_cast<Register>(i)); |
910 | } |
911 | } |
912 | __ subq(RSP, Immediate(kNumberOfXmmRegisters * kFpuRegisterSize)); |
913 | intptr_t offset = 0; |
914 | for (intptr_t reg_idx = 0; reg_idx < kNumberOfXmmRegisters; ++reg_idx) { |
915 | XmmRegister xmm_reg = static_cast<XmmRegister>(reg_idx); |
916 | __ movups(Address(RSP, offset), xmm_reg); |
917 | offset += kFpuRegisterSize; |
918 | } |
919 | |
920 | // Pass address of saved registers block. |
921 | __ movq(CallingConventions::kArg1Reg, RSP); |
922 | bool is_lazy = |
923 | (kind == kLazyDeoptFromReturn) || (kind == kLazyDeoptFromThrow); |
924 | __ movq(CallingConventions::kArg2Reg, Immediate(is_lazy ? 1 : 0)); |
925 | __ ReserveAlignedFrameSpace(0); // Ensure stack is aligned before the call. |
926 | __ CallRuntime(kDeoptimizeCopyFrameRuntimeEntry, 2); |
927 | // Result (RAX) is stack-size (FP - SP) in bytes. |
928 | |
929 | if (kind == kLazyDeoptFromReturn) { |
930 | // Restore result into RBX temporarily. |
931 | __ movq(RBX, Address(RBP, saved_result_slot_from_fp * target::kWordSize)); |
932 | } else if (kind == kLazyDeoptFromThrow) { |
933 | // Restore result into RBX temporarily. |
934 | __ movq(RBX, |
935 | Address(RBP, saved_exception_slot_from_fp * target::kWordSize)); |
936 | __ movq(RDX, |
937 | Address(RBP, saved_stacktrace_slot_from_fp * target::kWordSize)); |
938 | } |
939 | |
940 | // There is a Dart Frame on the stack. We must restore PP and leave frame. |
941 | __ RestoreCodePointer(); |
942 | __ LeaveStubFrame(); |
943 | |
944 | __ popq(RCX); // Preserve return address. |
945 | __ movq(RSP, RBP); // Discard optimized frame. |
946 | __ subq(RSP, RAX); // Reserve space for deoptimized frame. |
947 | __ pushq(RCX); // Restore return address. |
948 | |
949 | // DeoptimizeFillFrame expects a Dart frame, i.e. EnterDartFrame(0), but there |
950 | // is no need to set the correct PC marker or load PP, since they get patched. |
951 | __ EnterStubFrame(); |
952 | |
953 | if (kind == kLazyDeoptFromReturn) { |
954 | __ pushq(RBX); // Preserve result as first local. |
955 | } else if (kind == kLazyDeoptFromThrow) { |
956 | __ pushq(RBX); // Preserve exception as first local. |
957 | __ pushq(RDX); // Preserve stacktrace as second local. |
958 | } |
959 | __ ReserveAlignedFrameSpace(0); |
960 | // Pass last FP as a parameter. |
961 | __ movq(CallingConventions::kArg1Reg, RBP); |
962 | __ CallRuntime(kDeoptimizeFillFrameRuntimeEntry, 1); |
963 | if (kind == kLazyDeoptFromReturn) { |
964 | // Restore result into RBX. |
965 | __ movq(RBX, Address(RBP, target::frame_layout.first_local_from_fp * |
966 | target::kWordSize)); |
967 | } else if (kind == kLazyDeoptFromThrow) { |
968 | // Restore exception into RBX. |
969 | __ movq(RBX, Address(RBP, target::frame_layout.first_local_from_fp * |
970 | target::kWordSize)); |
971 | // Restore stacktrace into RDX. |
972 | __ movq(RDX, Address(RBP, (target::frame_layout.first_local_from_fp - 1) * |
973 | target::kWordSize)); |
974 | } |
975 | // Code above cannot cause GC. |
976 | // There is a Dart Frame on the stack. We must restore PP and leave frame. |
977 | __ RestoreCodePointer(); |
978 | __ LeaveStubFrame(); |
979 | |
980 | // Frame is fully rewritten at this point and it is safe to perform a GC. |
981 | // Materialize any objects that were deferred by FillFrame because they |
982 | // require allocation. |
983 | // Enter stub frame with loading PP. The caller's PP is not materialized yet. |
984 | __ EnterStubFrame(); |
985 | if (kind == kLazyDeoptFromReturn) { |
986 | __ pushq(RBX); // Preserve result, it will be GC-d here. |
987 | } else if (kind == kLazyDeoptFromThrow) { |
988 | __ pushq(RBX); // Preserve exception. |
989 | __ pushq(RDX); // Preserve stacktrace. |
990 | } |
991 | __ pushq(Immediate(target::ToRawSmi(0))); // Space for the result. |
992 | __ CallRuntime(kDeoptimizeMaterializeRuntimeEntry, 0); |
993 | // Result tells stub how many bytes to remove from the expression stack |
994 | // of the bottom-most frame. They were used as materialization arguments. |
995 | __ popq(RBX); |
996 | __ SmiUntag(RBX); |
997 | if (kind == kLazyDeoptFromReturn) { |
998 | __ popq(RAX); // Restore result. |
999 | } else if (kind == kLazyDeoptFromThrow) { |
1000 | __ popq(RDX); // Restore stacktrace. |
1001 | __ popq(RAX); // Restore exception. |
1002 | } |
1003 | __ LeaveStubFrame(); |
1004 | |
1005 | __ popq(RCX); // Pop return address. |
1006 | __ addq(RSP, RBX); // Remove materialization arguments. |
1007 | __ pushq(RCX); // Push return address. |
1008 | // The caller is responsible for emitting the return instruction. |
1009 | } |
1010 | |
1011 | // RAX: result, must be preserved |
1012 | void StubCodeCompiler::GenerateDeoptimizeLazyFromReturnStub( |
1013 | Assembler* assembler) { |
1014 | // Push zap value instead of CODE_REG for lazy deopt. |
1015 | __ pushq(Immediate(kZapCodeReg)); |
1016 | // Return address for "call" to deopt stub. |
1017 | __ pushq(Immediate(kZapReturnAddress)); |
1018 | __ movq(CODE_REG, |
1019 | Address(THR, target::Thread::lazy_deopt_from_return_stub_offset())); |
1020 | GenerateDeoptimizationSequence(assembler, kLazyDeoptFromReturn); |
1021 | __ ret(); |
1022 | } |
1023 | |
1024 | // RAX: exception, must be preserved |
1025 | // RDX: stacktrace, must be preserved |
1026 | void StubCodeCompiler::GenerateDeoptimizeLazyFromThrowStub( |
1027 | Assembler* assembler) { |
1028 | // Push zap value instead of CODE_REG for lazy deopt. |
1029 | __ pushq(Immediate(kZapCodeReg)); |
1030 | // Return address for "call" to deopt stub. |
1031 | __ pushq(Immediate(kZapReturnAddress)); |
1032 | __ movq(CODE_REG, |
1033 | Address(THR, target::Thread::lazy_deopt_from_throw_stub_offset())); |
1034 | GenerateDeoptimizationSequence(assembler, kLazyDeoptFromThrow); |
1035 | __ ret(); |
1036 | } |
1037 | |
1038 | void StubCodeCompiler::GenerateDeoptimizeStub(Assembler* assembler) { |
1039 | __ popq(TMP); |
1040 | __ pushq(CODE_REG); |
1041 | __ pushq(TMP); |
1042 | __ movq(CODE_REG, Address(THR, target::Thread::deoptimize_stub_offset())); |
1043 | GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
1044 | __ ret(); |
1045 | } |
1046 | |
1047 | // Input: |
1048 | // RBX - icdata/megamorphic_cache |
1049 | // RDI - arguments descriptor size |
1050 | static void GenerateNoSuchMethodDispatcherBody(Assembler* assembler, |
1051 | Register receiver_reg) { |
1052 | __ pushq(Immediate(0)); // Setup space on stack for result. |
1053 | __ pushq(receiver_reg); // Receiver. |
1054 | __ pushq(RBX); // ICData/MegamorphicCache. |
1055 | __ pushq(R10); // Arguments descriptor array. |
1056 | |
1057 | // Adjust arguments count. |
1058 | __ cmpq( |
1059 | FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
1060 | Immediate(0)); |
1061 | __ movq(R10, RDI); |
1062 | Label args_count_ok; |
1063 | __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
1064 | __ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
1065 | __ Bind(&args_count_ok); |
1066 | |
1067 | // R10: Smi-tagged arguments array length. |
1068 | PushArrayOfArguments(assembler); |
1069 | const intptr_t kNumArgs = 4; |
1070 | __ CallRuntime(kNoSuchMethodFromCallStubRuntimeEntry, kNumArgs); |
1071 | __ Drop(4); |
1072 | __ popq(RAX); // Return value. |
1073 | __ LeaveStubFrame(); |
1074 | __ ret(); |
1075 | } |
1076 | |
1077 | // Input: |
1078 | // RBX - icdata/megamorphic_cache |
1079 | // R10 - argument descriptor |
1080 | static void GenerateDispatcherCode(Assembler* assembler, |
1081 | Label* call_target_function) { |
1082 | __ Comment("NoSuchMethodDispatch" ); |
1083 | // When lazily generated invocation dispatchers are disabled, the |
1084 | // miss-handler may return null. |
1085 | __ CompareObject(RAX, NullObject()); |
1086 | __ j(NOT_EQUAL, call_target_function); |
1087 | |
1088 | __ EnterStubFrame(); |
1089 | // Load the receiver. |
1090 | __ movq(RDI, FieldAddress(R10, target::ArgumentsDescriptor::size_offset())); |
1091 | __ movq(RAX, |
1092 | Address(RBP, RDI, TIMES_HALF_WORD_SIZE, |
1093 | target::frame_layout.param_end_from_fp * target::kWordSize)); |
1094 | |
1095 | GenerateNoSuchMethodDispatcherBody(assembler, /*receiver_reg=*/RAX); |
1096 | } |
1097 | |
1098 | // Input: |
1099 | // RBX - icdata/megamorphic_cache |
1100 | // RDX - receiver |
1101 | void StubCodeCompiler::GenerateNoSuchMethodDispatcherStub( |
1102 | Assembler* assembler) { |
1103 | __ EnterStubFrame(); |
1104 | |
1105 | __ movq(R10, FieldAddress( |
1106 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
1107 | __ movq(RDI, FieldAddress(R10, target::ArgumentsDescriptor::size_offset())); |
1108 | |
1109 | GenerateNoSuchMethodDispatcherBody(assembler, /*receiver_reg=*/RDX); |
1110 | } |
1111 | |
1112 | // Called for inline allocation of arrays. |
1113 | // Input parameters: |
1114 | // R10 : Array length as Smi. |
1115 | // RBX : array element type (either NULL or an instantiated type). |
1116 | // NOTE: R10 cannot be clobbered here as the caller relies on it being saved. |
1117 | // The newly allocated object is returned in RAX. |
1118 | void StubCodeCompiler::GenerateAllocateArrayStub(Assembler* assembler) { |
1119 | if (!FLAG_use_slow_path) { |
1120 | Label slow_case; |
1121 | // Compute the size to be allocated, it is based on the array length |
1122 | // and is computed as: |
1123 | // RoundedAllocationSize( |
1124 | // (array_length * target::kwordSize) + target::Array::header_size()). |
1125 | __ movq(RDI, R10); // Array Length. |
1126 | // Check that length is a positive Smi. |
1127 | __ testq(RDI, Immediate(kSmiTagMask)); |
1128 | __ j(NOT_ZERO, &slow_case); |
1129 | |
1130 | __ cmpq(RDI, Immediate(0)); |
1131 | __ j(LESS, &slow_case); |
1132 | // Check for maximum allowed length. |
1133 | const Immediate& max_len = |
1134 | Immediate(target::ToRawSmi(target::Array::kMaxNewSpaceElements)); |
1135 | __ cmpq(RDI, max_len); |
1136 | __ j(GREATER, &slow_case); |
1137 | |
1138 | // Check for allocation tracing. |
1139 | NOT_IN_PRODUCT( |
1140 | __ MaybeTraceAllocation(kArrayCid, &slow_case, Assembler::kFarJump)); |
1141 | |
1142 | const intptr_t fixed_size_plus_alignment_padding = |
1143 | target::Array::header_size() + |
1144 | target::ObjectAlignment::kObjectAlignment - 1; |
1145 | // RDI is a Smi. |
1146 | __ leaq(RDI, Address(RDI, TIMES_4, fixed_size_plus_alignment_padding)); |
1147 | ASSERT(kSmiTagShift == 1); |
1148 | __ andq(RDI, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
1149 | |
1150 | const intptr_t cid = kArrayCid; |
1151 | __ movq(RAX, Address(THR, target::Thread::top_offset())); |
1152 | |
1153 | // RDI: allocation size. |
1154 | __ movq(RCX, RAX); |
1155 | __ addq(RCX, RDI); |
1156 | __ j(CARRY, &slow_case); |
1157 | |
1158 | // Check if the allocation fits into the remaining space. |
1159 | // RAX: potential new object start. |
1160 | // RCX: potential next object start. |
1161 | // RDI: allocation size. |
1162 | __ cmpq(RCX, Address(THR, target::Thread::end_offset())); |
1163 | __ j(ABOVE_EQUAL, &slow_case); |
1164 | |
1165 | // Successfully allocated the object(s), now update top to point to |
1166 | // next object start and initialize the object. |
1167 | __ movq(Address(THR, target::Thread::top_offset()), RCX); |
1168 | __ addq(RAX, Immediate(kHeapObjectTag)); |
1169 | |
1170 | // Initialize the tags. |
1171 | // RAX: new object start as a tagged pointer. |
1172 | // RDI: allocation size. |
1173 | { |
1174 | Label size_tag_overflow, done; |
1175 | __ cmpq(RDI, Immediate(target::ObjectLayout::kSizeTagMaxSizeTag)); |
1176 | __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
1177 | __ shlq(RDI, Immediate(target::ObjectLayout::kTagBitsSizeTagPos - |
1178 | target::ObjectAlignment::kObjectAlignmentLog2)); |
1179 | __ jmp(&done, Assembler::kNearJump); |
1180 | |
1181 | __ Bind(&size_tag_overflow); |
1182 | __ LoadImmediate(RDI, Immediate(0)); |
1183 | __ Bind(&done); |
1184 | |
1185 | // Get the class index and insert it into the tags. |
1186 | uint32_t tags = target::MakeTagWordForNewSpaceObject(cid, 0); |
1187 | __ orq(RDI, Immediate(tags)); |
1188 | __ movq(FieldAddress(RAX, target::Array::tags_offset()), RDI); // Tags. |
1189 | } |
1190 | |
1191 | // RAX: new object start as a tagged pointer. |
1192 | // Store the type argument field. |
1193 | // No generational barrier needed, since we store into a new object. |
1194 | __ StoreIntoObjectNoBarrier( |
1195 | RAX, FieldAddress(RAX, target::Array::type_arguments_offset()), RBX); |
1196 | |
1197 | // Set the length field. |
1198 | __ StoreIntoObjectNoBarrier( |
1199 | RAX, FieldAddress(RAX, target::Array::length_offset()), R10); |
1200 | |
1201 | // Initialize all array elements to raw_null. |
1202 | // RAX: new object start as a tagged pointer. |
1203 | // RCX: new object end address. |
1204 | // RDI: iterator which initially points to the start of the variable |
1205 | // data area to be initialized. |
1206 | __ LoadObject(R12, NullObject()); |
1207 | __ leaq(RDI, FieldAddress(RAX, target::Array::header_size())); |
1208 | Label done; |
1209 | Label init_loop; |
1210 | __ Bind(&init_loop); |
1211 | __ cmpq(RDI, RCX); |
1212 | #if defined(DEBUG) |
1213 | static const bool kJumpLength = Assembler::kFarJump; |
1214 | #else |
1215 | static const bool kJumpLength = Assembler::kNearJump; |
1216 | #endif // DEBUG |
1217 | __ j(ABOVE_EQUAL, &done, kJumpLength); |
1218 | // No generational barrier needed, since we are storing null. |
1219 | __ StoreIntoObjectNoBarrier(RAX, Address(RDI, 0), R12); |
1220 | __ addq(RDI, Immediate(target::kWordSize)); |
1221 | __ jmp(&init_loop, kJumpLength); |
1222 | __ Bind(&done); |
1223 | __ ret(); // returns the newly allocated object in RAX. |
1224 | |
1225 | // Unable to allocate the array using the fast inline code, just call |
1226 | // into the runtime. |
1227 | __ Bind(&slow_case); |
1228 | } |
1229 | // Create a stub frame as we are pushing some objects on the stack before |
1230 | // calling into the runtime. |
1231 | __ EnterStubFrame(); |
1232 | // Setup space on stack for return value. |
1233 | __ pushq(Immediate(0)); |
1234 | __ pushq(R10); // Array length as Smi. |
1235 | __ pushq(RBX); // Element type. |
1236 | __ CallRuntime(kAllocateArrayRuntimeEntry, 2); |
1237 | __ popq(RAX); // Pop element type argument. |
1238 | __ popq(R10); // Pop array length argument. |
1239 | __ popq(RAX); // Pop return value from return slot. |
1240 | |
1241 | // Write-barrier elimination might be enabled for this array (depending on the |
1242 | // array length). To be sure we will check if the allocated object is in old |
1243 | // space and if so call a leaf runtime to add it to the remembered set. |
1244 | EnsureIsNewOrRemembered(assembler); |
1245 | |
1246 | __ LeaveStubFrame(); |
1247 | __ ret(); |
1248 | } |
1249 | |
1250 | void StubCodeCompiler::GenerateAllocateMintSharedWithFPURegsStub( |
1251 | Assembler* assembler) { |
1252 | // For test purpose call allocation stub without inline allocation attempt. |
1253 | if (!FLAG_use_slow_path) { |
1254 | Label slow_case; |
1255 | __ TryAllocate(compiler::MintClass(), &slow_case, /*near_jump=*/true, |
1256 | AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
1257 | __ Ret(); |
1258 | |
1259 | __ Bind(&slow_case); |
1260 | } |
1261 | COMPILE_ASSERT(AllocateMintABI::kResultReg == RAX); |
1262 | GenerateSharedStub(assembler, /*save_fpu_registers=*/true, |
1263 | &kAllocateMintRuntimeEntry, |
1264 | target::Thread::allocate_mint_with_fpu_regs_stub_offset(), |
1265 | /*allow_return=*/true, |
1266 | /*store_runtime_result_in_rax=*/true); |
1267 | } |
1268 | |
1269 | void StubCodeCompiler::GenerateAllocateMintSharedWithoutFPURegsStub( |
1270 | Assembler* assembler) { |
1271 | // For test purpose call allocation stub without inline allocation attempt. |
1272 | if (!FLAG_use_slow_path) { |
1273 | Label slow_case; |
1274 | __ TryAllocate(compiler::MintClass(), &slow_case, /*near_jump=*/true, |
1275 | AllocateMintABI::kResultReg, AllocateMintABI::kTempReg); |
1276 | __ Ret(); |
1277 | |
1278 | __ Bind(&slow_case); |
1279 | } |
1280 | COMPILE_ASSERT(AllocateMintABI::kResultReg == RAX); |
1281 | GenerateSharedStub( |
1282 | assembler, /*save_fpu_registers=*/false, &kAllocateMintRuntimeEntry, |
1283 | target::Thread::allocate_mint_without_fpu_regs_stub_offset(), |
1284 | /*allow_return=*/true, |
1285 | /*store_runtime_result_in_rax=*/true); |
1286 | } |
1287 | |
1288 | // Called when invoking Dart code from C++ (VM code). |
1289 | // Input parameters: |
1290 | // RSP : points to return address. |
1291 | // RDI : target code |
1292 | // RSI : arguments descriptor array. |
1293 | // RDX : arguments array. |
1294 | // RCX : current thread. |
1295 | void StubCodeCompiler::GenerateInvokeDartCodeStub(Assembler* assembler) { |
1296 | __ pushq(Address(RSP, 0)); // Marker for the profiler. |
1297 | __ EnterFrame(0); |
1298 | |
1299 | const Register kTargetCodeReg = CallingConventions::kArg1Reg; |
1300 | const Register kArgDescReg = CallingConventions::kArg2Reg; |
1301 | const Register kArgsReg = CallingConventions::kArg3Reg; |
1302 | const Register kThreadReg = CallingConventions::kArg4Reg; |
1303 | |
1304 | // Push code object to PC marker slot. |
1305 | __ pushq(Address(kThreadReg, target::Thread::invoke_dart_code_stub_offset())); |
1306 | |
1307 | // At this point, the stack looks like: |
1308 | // | stub code object |
1309 | // | saved RBP | <-- RBP |
1310 | // | saved PC (return to DartEntry::InvokeFunction) | |
1311 | |
1312 | const intptr_t kInitialOffset = 2; |
1313 | // Save arguments descriptor array, later replaced by Smi argument count. |
1314 | const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize; |
1315 | __ pushq(kArgDescReg); |
1316 | |
1317 | // Save C++ ABI callee-saved registers. |
1318 | __ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
1319 | CallingConventions::kCalleeSaveXmmRegisters); |
1320 | |
1321 | // If any additional (or fewer) values are pushed, the offsets in |
1322 | // target::frame_layout.exit_link_slot_from_entry_fp will need to be changed. |
1323 | |
1324 | // Set up THR, which caches the current thread in Dart code. |
1325 | if (THR != kThreadReg) { |
1326 | __ movq(THR, kThreadReg); |
1327 | } |
1328 | |
1329 | #if defined(USING_SHADOW_CALL_STACK) |
1330 | #error Unimplemented |
1331 | #endif |
1332 | |
1333 | // Save the current VMTag on the stack. |
1334 | __ movq(RAX, Assembler::VMTagAddress()); |
1335 | __ pushq(RAX); |
1336 | |
1337 | // Save top resource and top exit frame info. Use RAX as a temporary register. |
1338 | // StackFrameIterator reads the top exit frame info saved in this frame. |
1339 | __ movq(RAX, Address(THR, target::Thread::top_resource_offset())); |
1340 | __ pushq(RAX); |
1341 | __ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
1342 | |
1343 | __ movq(RAX, Address(THR, target::Thread::exit_through_ffi_offset())); |
1344 | __ pushq(RAX); |
1345 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
1346 | Immediate(0)); |
1347 | |
1348 | __ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
1349 | __ pushq(RAX); |
1350 | |
1351 | // The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept |
1352 | // in sync with the code above. |
1353 | __ EmitEntryFrameVerification(); |
1354 | |
1355 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
1356 | Immediate(0)); |
1357 | |
1358 | // Mark that the thread is executing Dart code. Do this after initializing the |
1359 | // exit link for the profiler. |
1360 | __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
1361 | |
1362 | // Load arguments descriptor array into R10, which is passed to Dart code. |
1363 | __ movq(R10, Address(kArgDescReg, VMHandles::kOffsetOfRawPtrInHandle)); |
1364 | |
1365 | // Push arguments. At this point we only need to preserve kTargetCodeReg. |
1366 | ASSERT(kTargetCodeReg != RDX); |
1367 | |
1368 | // Load number of arguments into RBX and adjust count for type arguments. |
1369 | __ movq(RBX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
1370 | __ cmpq( |
1371 | FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
1372 | Immediate(0)); |
1373 | Label args_count_ok; |
1374 | __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
1375 | __ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
1376 | __ Bind(&args_count_ok); |
1377 | // Save number of arguments as Smi on stack, replacing saved ArgumentsDesc. |
1378 | __ movq(Address(RBP, kArgumentsDescOffset), RBX); |
1379 | __ SmiUntag(RBX); |
1380 | |
1381 | // Compute address of 'arguments array' data area into RDX. |
1382 | __ movq(RDX, Address(kArgsReg, VMHandles::kOffsetOfRawPtrInHandle)); |
1383 | __ leaq(RDX, FieldAddress(RDX, target::Array::data_offset())); |
1384 | |
1385 | // Set up arguments for the Dart call. |
1386 | Label push_arguments; |
1387 | Label done_push_arguments; |
1388 | __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
1389 | __ LoadImmediate(RAX, Immediate(0)); |
1390 | __ Bind(&push_arguments); |
1391 | __ pushq(Address(RDX, RAX, TIMES_8, 0)); |
1392 | __ incq(RAX); |
1393 | __ cmpq(RAX, RBX); |
1394 | __ j(LESS, &push_arguments, Assembler::kNearJump); |
1395 | __ Bind(&done_push_arguments); |
1396 | |
1397 | // Call the Dart code entrypoint. |
1398 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
1399 | __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
1400 | } else { |
1401 | __ xorq(PP, PP); // GC-safe value into PP. |
1402 | } |
1403 | __ movq(CODE_REG, |
1404 | Address(kTargetCodeReg, VMHandles::kOffsetOfRawPtrInHandle)); |
1405 | __ movq(kTargetCodeReg, |
1406 | FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
1407 | __ call(kTargetCodeReg); // R10 is the arguments descriptor array. |
1408 | |
1409 | // Read the saved number of passed arguments as Smi. |
1410 | __ movq(RDX, Address(RBP, kArgumentsDescOffset)); |
1411 | |
1412 | // Get rid of arguments pushed on the stack. |
1413 | __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
1414 | |
1415 | // Restore the saved top exit frame info and top resource back into the |
1416 | // Isolate structure. |
1417 | __ popq(Address(THR, target::Thread::top_exit_frame_info_offset())); |
1418 | __ popq(Address(THR, target::Thread::exit_through_ffi_offset())); |
1419 | __ popq(Address(THR, target::Thread::top_resource_offset())); |
1420 | |
1421 | // Restore the current VMTag from the stack. |
1422 | __ popq(Assembler::VMTagAddress()); |
1423 | |
1424 | #if defined(USING_SHADOW_CALL_STACK) |
1425 | #error Unimplemented |
1426 | #endif |
1427 | |
1428 | // Restore C++ ABI callee-saved registers. |
1429 | __ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
1430 | CallingConventions::kCalleeSaveXmmRegisters); |
1431 | __ set_constant_pool_allowed(false); |
1432 | |
1433 | // Restore the frame pointer. |
1434 | __ LeaveFrame(); |
1435 | __ popq(RCX); |
1436 | |
1437 | __ ret(); |
1438 | } |
1439 | |
1440 | // Called when invoking compiled Dart code from interpreted Dart code. |
1441 | // Input parameters: |
1442 | // RSP : points to return address. |
1443 | // RDI : target raw code |
1444 | // RSI : arguments raw descriptor array. |
1445 | // RDX : address of first argument. |
1446 | // RCX : current thread. |
1447 | void StubCodeCompiler::GenerateInvokeDartCodeFromBytecodeStub( |
1448 | Assembler* assembler) { |
1449 | if (FLAG_precompiled_mode) { |
1450 | __ Stop("Not using interpreter" ); |
1451 | return; |
1452 | } |
1453 | |
1454 | __ pushq(Address(RSP, 0)); // Marker for the profiler. |
1455 | __ EnterFrame(0); |
1456 | |
1457 | const Register kTargetCodeReg = CallingConventions::kArg1Reg; |
1458 | const Register kArgDescReg = CallingConventions::kArg2Reg; |
1459 | const Register kArg0Reg = CallingConventions::kArg3Reg; |
1460 | const Register kThreadReg = CallingConventions::kArg4Reg; |
1461 | |
1462 | // Push code object to PC marker slot. |
1463 | __ pushq( |
1464 | Address(kThreadReg, |
1465 | target::Thread::invoke_dart_code_from_bytecode_stub_offset())); |
1466 | |
1467 | // At this point, the stack looks like: |
1468 | // | stub code object |
1469 | // | saved RBP | <-- RBP |
1470 | // | saved PC (return to interpreter's InvokeCompiled) | |
1471 | |
1472 | const intptr_t kInitialOffset = 2; |
1473 | // Save arguments descriptor array, later replaced by Smi argument count. |
1474 | const intptr_t kArgumentsDescOffset = -(kInitialOffset)*target::kWordSize; |
1475 | __ pushq(kArgDescReg); |
1476 | |
1477 | // Save C++ ABI callee-saved registers. |
1478 | __ PushRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
1479 | CallingConventions::kCalleeSaveXmmRegisters); |
1480 | |
1481 | // If any additional (or fewer) values are pushed, the offsets in |
1482 | // target::frame_layout.exit_link_slot_from_entry_fp will need to be changed. |
1483 | |
1484 | // Set up THR, which caches the current thread in Dart code. |
1485 | if (THR != kThreadReg) { |
1486 | __ movq(THR, kThreadReg); |
1487 | } |
1488 | |
1489 | #if defined(USING_SHADOW_CALL_STACK) |
1490 | #error Unimplemented |
1491 | #endif |
1492 | |
1493 | // Save the current VMTag on the stack. |
1494 | __ movq(RAX, Assembler::VMTagAddress()); |
1495 | __ pushq(RAX); |
1496 | |
1497 | // Save top resource and top exit frame info. Use RAX as a temporary register. |
1498 | // StackFrameIterator reads the top exit frame info saved in this frame. |
1499 | __ movq(RAX, Address(THR, target::Thread::top_resource_offset())); |
1500 | __ pushq(RAX); |
1501 | __ movq(Address(THR, target::Thread::top_resource_offset()), Immediate(0)); |
1502 | |
1503 | __ movq(RAX, Address(THR, target::Thread::exit_through_ffi_offset())); |
1504 | __ pushq(RAX); |
1505 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
1506 | Immediate(0)); |
1507 | |
1508 | __ movq(RAX, Address(THR, target::Thread::top_exit_frame_info_offset())); |
1509 | __ pushq(RAX); |
1510 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
1511 | Immediate(0)); |
1512 | |
1513 | // The constant target::frame_layout.exit_link_slot_from_entry_fp must be kept |
1514 | // in sync with the code below. |
1515 | #if defined(DEBUG) |
1516 | { |
1517 | Label ok; |
1518 | __ leaq(RAX, |
1519 | Address(RBP, target::frame_layout.exit_link_slot_from_entry_fp * |
1520 | target::kWordSize)); |
1521 | __ cmpq(RAX, RSP); |
1522 | __ j(EQUAL, &ok); |
1523 | __ Stop("target::frame_layout.exit_link_slot_from_entry_fp mismatch" ); |
1524 | __ Bind(&ok); |
1525 | } |
1526 | #endif |
1527 | |
1528 | // Mark that the thread is executing Dart code. Do this after initializing the |
1529 | // exit link for the profiler. |
1530 | __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
1531 | |
1532 | // Load arguments descriptor array into R10, which is passed to Dart code. |
1533 | __ movq(R10, kArgDescReg); |
1534 | |
1535 | // Push arguments. At this point we only need to preserve kTargetCodeReg. |
1536 | ASSERT(kTargetCodeReg != RDX); |
1537 | |
1538 | // Load number of arguments into RBX and adjust count for type arguments. |
1539 | __ movq(RBX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
1540 | __ cmpq( |
1541 | FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
1542 | Immediate(0)); |
1543 | Label args_count_ok; |
1544 | __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
1545 | __ addq(RBX, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
1546 | __ Bind(&args_count_ok); |
1547 | // Save number of arguments as Smi on stack, replacing saved ArgumentsDesc. |
1548 | __ movq(Address(RBP, kArgumentsDescOffset), RBX); |
1549 | __ SmiUntag(RBX); |
1550 | |
1551 | // Compute address of first argument into RDX. |
1552 | if (kArg0Reg != RDX) { // Different registers on WIN64. |
1553 | __ movq(RDX, kArg0Reg); |
1554 | } |
1555 | |
1556 | // Set up arguments for the Dart call. |
1557 | Label push_arguments; |
1558 | Label done_push_arguments; |
1559 | __ j(ZERO, &done_push_arguments, Assembler::kNearJump); |
1560 | __ LoadImmediate(RAX, Immediate(0)); |
1561 | __ Bind(&push_arguments); |
1562 | __ pushq(Address(RDX, RAX, TIMES_8, 0)); |
1563 | __ incq(RAX); |
1564 | __ cmpq(RAX, RBX); |
1565 | __ j(LESS, &push_arguments, Assembler::kNearJump); |
1566 | __ Bind(&done_push_arguments); |
1567 | |
1568 | // Call the Dart code entrypoint. |
1569 | __ xorq(PP, PP); // GC-safe value into PP. |
1570 | __ movq(CODE_REG, kTargetCodeReg); |
1571 | __ movq(kTargetCodeReg, |
1572 | FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
1573 | __ call(kTargetCodeReg); // R10 is the arguments descriptor array. |
1574 | |
1575 | // Read the saved number of passed arguments as Smi. |
1576 | __ movq(RDX, Address(RBP, kArgumentsDescOffset)); |
1577 | |
1578 | // Get rid of arguments pushed on the stack. |
1579 | __ leaq(RSP, Address(RSP, RDX, TIMES_4, 0)); // RDX is a Smi. |
1580 | |
1581 | // Restore the saved top exit frame info and top resource back into the |
1582 | // Isolate structure. |
1583 | __ popq(Address(THR, target::Thread::top_exit_frame_info_offset())); |
1584 | __ popq(Address(THR, target::Thread::exit_through_ffi_offset())); |
1585 | __ popq(Address(THR, target::Thread::top_resource_offset())); |
1586 | |
1587 | // Restore the current VMTag from the stack. |
1588 | __ popq(Assembler::VMTagAddress()); |
1589 | |
1590 | #if defined(USING_SHADOW_CALL_STACK) |
1591 | #error Unimplemented |
1592 | #endif |
1593 | |
1594 | // Restore C++ ABI callee-saved registers. |
1595 | __ PopRegisters(CallingConventions::kCalleeSaveCpuRegisters, |
1596 | CallingConventions::kCalleeSaveXmmRegisters); |
1597 | __ set_constant_pool_allowed(false); |
1598 | |
1599 | // Restore the frame pointer. |
1600 | __ LeaveFrame(); |
1601 | __ popq(RCX); |
1602 | |
1603 | __ ret(); |
1604 | } |
1605 | |
1606 | // Helper to generate space allocation of context stub. |
1607 | // This does not initialise the fields of the context. |
1608 | // Input: |
1609 | // R10: number of context variables. |
1610 | // Output: |
1611 | // RAX: new, uinitialised allocated RawContext object. |
1612 | // Clobbered: |
1613 | // R13 |
1614 | static void GenerateAllocateContextSpaceStub(Assembler* assembler, |
1615 | Label* slow_case) { |
1616 | // First compute the rounded instance size. |
1617 | // R10: number of context variables. |
1618 | intptr_t fixed_size_plus_alignment_padding = |
1619 | (target::Context::header_size() + |
1620 | target::ObjectAlignment::kObjectAlignment - 1); |
1621 | __ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding)); |
1622 | __ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
1623 | |
1624 | // Check for allocation tracing. |
1625 | NOT_IN_PRODUCT( |
1626 | __ MaybeTraceAllocation(kContextCid, slow_case, Assembler::kFarJump)); |
1627 | |
1628 | // Now allocate the object. |
1629 | // R10: number of context variables. |
1630 | __ movq(RAX, Address(THR, target::Thread::top_offset())); |
1631 | __ addq(R13, RAX); |
1632 | // Check if the allocation fits into the remaining space. |
1633 | // RAX: potential new object. |
1634 | // R13: potential next object start. |
1635 | // R10: number of context variables. |
1636 | __ cmpq(R13, Address(THR, target::Thread::end_offset())); |
1637 | __ j(ABOVE_EQUAL, slow_case); |
1638 | |
1639 | // Successfully allocated the object, now update top to point to |
1640 | // next object start and initialize the object. |
1641 | // RAX: new object. |
1642 | // R13: next object start. |
1643 | // R10: number of context variables. |
1644 | __ movq(Address(THR, target::Thread::top_offset()), R13); |
1645 | // R13: Size of allocation in bytes. |
1646 | __ subq(R13, RAX); |
1647 | __ addq(RAX, Immediate(kHeapObjectTag)); |
1648 | // Generate isolate-independent code to allow sharing between isolates. |
1649 | |
1650 | // Calculate the size tag. |
1651 | // RAX: new object. |
1652 | // R10: number of context variables. |
1653 | { |
1654 | Label size_tag_overflow, done; |
1655 | __ leaq(R13, Address(R10, TIMES_8, fixed_size_plus_alignment_padding)); |
1656 | __ andq(R13, Immediate(-target::ObjectAlignment::kObjectAlignment)); |
1657 | __ cmpq(R13, Immediate(target::ObjectLayout::kSizeTagMaxSizeTag)); |
1658 | __ j(ABOVE, &size_tag_overflow, Assembler::kNearJump); |
1659 | __ shlq(R13, Immediate(target::ObjectLayout::kTagBitsSizeTagPos - |
1660 | target::ObjectAlignment::kObjectAlignmentLog2)); |
1661 | __ jmp(&done); |
1662 | |
1663 | __ Bind(&size_tag_overflow); |
1664 | // Set overflow size tag value. |
1665 | __ LoadImmediate(R13, Immediate(0)); |
1666 | |
1667 | __ Bind(&done); |
1668 | // RAX: new object. |
1669 | // R10: number of context variables. |
1670 | // R13: size and bit tags. |
1671 | uint32_t tags = target::MakeTagWordForNewSpaceObject(kContextCid, 0); |
1672 | __ orq(R13, Immediate(tags)); |
1673 | __ movq(FieldAddress(RAX, target::Object::tags_offset()), R13); // Tags. |
1674 | } |
1675 | |
1676 | // Setup up number of context variables field. |
1677 | // RAX: new object. |
1678 | // R10: number of context variables as integer value (not object). |
1679 | __ movq(FieldAddress(RAX, target::Context::num_variables_offset()), R10); |
1680 | } |
1681 | |
1682 | // Called for inline allocation of contexts. |
1683 | // Input: |
1684 | // R10: number of context variables. |
1685 | // Output: |
1686 | // RAX: new allocated RawContext object. |
1687 | // Clobbered: |
1688 | // R9, R13 |
1689 | void StubCodeCompiler::GenerateAllocateContextStub(Assembler* assembler) { |
1690 | __ LoadObject(R9, NullObject()); |
1691 | if (!FLAG_use_slow_path && FLAG_inline_alloc) { |
1692 | Label slow_case; |
1693 | |
1694 | GenerateAllocateContextSpaceStub(assembler, &slow_case); |
1695 | |
1696 | // Setup the parent field. |
1697 | // RAX: new object. |
1698 | // R9: Parent object, initialised to null. |
1699 | // No generational barrier needed, since we are storing null. |
1700 | __ StoreIntoObjectNoBarrier( |
1701 | RAX, FieldAddress(RAX, target::Context::parent_offset()), R9); |
1702 | |
1703 | // Initialize the context variables. |
1704 | // RAX: new object. |
1705 | // R10: number of context variables. |
1706 | { |
1707 | Label loop, entry; |
1708 | __ leaq(R13, FieldAddress(RAX, target::Context::variable_offset(0))); |
1709 | #if defined(DEBUG) |
1710 | static const bool kJumpLength = Assembler::kFarJump; |
1711 | #else |
1712 | static const bool kJumpLength = Assembler::kNearJump; |
1713 | #endif // DEBUG |
1714 | __ jmp(&entry, kJumpLength); |
1715 | __ Bind(&loop); |
1716 | __ decq(R10); |
1717 | // No generational barrier needed, since we are storing null. |
1718 | __ StoreIntoObjectNoBarrier(RAX, Address(R13, R10, TIMES_8, 0), R9); |
1719 | __ Bind(&entry); |
1720 | __ cmpq(R10, Immediate(0)); |
1721 | __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
1722 | } |
1723 | |
1724 | // Done allocating and initializing the context. |
1725 | // RAX: new object. |
1726 | __ ret(); |
1727 | |
1728 | __ Bind(&slow_case); |
1729 | } |
1730 | // Create a stub frame. |
1731 | __ EnterStubFrame(); |
1732 | __ pushq(R9); // Setup space on stack for the return value. |
1733 | __ SmiTag(R10); |
1734 | __ pushq(R10); // Push number of context variables. |
1735 | __ CallRuntime(kAllocateContextRuntimeEntry, 1); // Allocate context. |
1736 | __ popq(RAX); // Pop number of context variables argument. |
1737 | __ popq(RAX); // Pop the new context object. |
1738 | // Write-barrier elimination might be enabled for this context (depending on |
1739 | // the size). To be sure we will check if the allocated object is in old |
1740 | // space and if so call a leaf runtime to add it to the remembered set. |
1741 | EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
1742 | |
1743 | // RAX: new object |
1744 | // Restore the frame pointer. |
1745 | __ LeaveStubFrame(); |
1746 | |
1747 | __ ret(); |
1748 | } |
1749 | |
1750 | // Called for inline clone of contexts. |
1751 | // Input: |
1752 | // R9: context to clone. |
1753 | // Output: |
1754 | // RAX: new allocated RawContext object. |
1755 | // Clobbered: |
1756 | // R10, R13 |
1757 | void StubCodeCompiler::GenerateCloneContextStub(Assembler* assembler) { |
1758 | { |
1759 | Label slow_case; |
1760 | |
1761 | // Load num. variable (int32_t) in the existing context. |
1762 | __ movsxd(R10, FieldAddress(R9, target::Context::num_variables_offset())); |
1763 | |
1764 | // Allocate new context of same size. |
1765 | GenerateAllocateContextSpaceStub(assembler, &slow_case); |
1766 | |
1767 | // Load parent in the existing context. |
1768 | __ movq(R13, FieldAddress(R9, target::Context::parent_offset())); |
1769 | // Setup the parent field. |
1770 | // RAX: new object. |
1771 | // R9: Old parent object. |
1772 | __ StoreIntoObjectNoBarrier( |
1773 | RAX, FieldAddress(RAX, target::Context::parent_offset()), R13); |
1774 | |
1775 | // Clone the context variables. |
1776 | // RAX: new context clone. |
1777 | // R10: number of context variables. |
1778 | { |
1779 | Label loop, entry; |
1780 | __ jmp(&entry, Assembler::kNearJump); |
1781 | __ Bind(&loop); |
1782 | __ decq(R10); |
1783 | __ movq(R13, FieldAddress(R9, R10, TIMES_8, |
1784 | target::Context::variable_offset(0))); |
1785 | __ StoreIntoObjectNoBarrier( |
1786 | RAX, |
1787 | FieldAddress(RAX, R10, TIMES_8, target::Context::variable_offset(0)), |
1788 | R13); |
1789 | __ Bind(&entry); |
1790 | __ cmpq(R10, Immediate(0)); |
1791 | __ j(NOT_EQUAL, &loop, Assembler::kNearJump); |
1792 | } |
1793 | |
1794 | // Done allocating and initializing the context. |
1795 | // RAX: new object. |
1796 | __ ret(); |
1797 | |
1798 | __ Bind(&slow_case); |
1799 | } |
1800 | |
1801 | // Create a stub frame. |
1802 | __ EnterStubFrame(); |
1803 | |
1804 | __ PushObject(NullObject()); // Make space on stack for the return value. |
1805 | __ pushq(R9); // Push context. |
1806 | __ CallRuntime(kCloneContextRuntimeEntry, 1); // Clone context. |
1807 | __ popq(RAX); // Pop context argument. |
1808 | __ popq(RAX); // Pop the new context object. |
1809 | |
1810 | // Write-barrier elimination might be enabled for this context (depending on |
1811 | // the size). To be sure we will check if the allocated object is in old |
1812 | // space and if so call a leaf runtime to add it to the remembered set. |
1813 | EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
1814 | |
1815 | // RAX: new object |
1816 | // Restore the frame pointer. |
1817 | __ LeaveStubFrame(); |
1818 | |
1819 | __ ret(); |
1820 | } |
1821 | |
1822 | void StubCodeCompiler::(Assembler* assembler) { |
1823 | for (intptr_t i = 0; i < kNumberOfCpuRegisters; ++i) { |
1824 | if ((kDartAvailableCpuRegs & (1 << i)) == 0) continue; |
1825 | |
1826 | Register reg = static_cast<Register>(i); |
1827 | intptr_t start = __ CodeSize(); |
1828 | __ pushq(kWriteBarrierObjectReg); |
1829 | __ movq(kWriteBarrierObjectReg, reg); |
1830 | __ call(Address(THR, target::Thread::write_barrier_entry_point_offset())); |
1831 | __ popq(kWriteBarrierObjectReg); |
1832 | __ ret(); |
1833 | intptr_t end = __ CodeSize(); |
1834 | |
1835 | RELEASE_ASSERT(end - start == kStoreBufferWrapperSize); |
1836 | } |
1837 | } |
1838 | |
1839 | // Helper stub to implement Assembler::StoreIntoObject/Array. |
1840 | // Input parameters: |
1841 | // RDX: Object (old) |
1842 | // RAX: Value (old or new) |
1843 | // R13: Slot |
1844 | // If RAX is new, add RDX to the store buffer. Otherwise RAX is old, mark RAX |
1845 | // and add it to the mark list. |
1846 | COMPILE_ASSERT(kWriteBarrierObjectReg == RDX); |
1847 | COMPILE_ASSERT(kWriteBarrierValueReg == RAX); |
1848 | COMPILE_ASSERT(kWriteBarrierSlotReg == R13); |
1849 | static void GenerateWriteBarrierStubHelper(Assembler* assembler, |
1850 | Address stub_code, |
1851 | bool cards) { |
1852 | Label add_to_mark_stack, remember_card; |
1853 | __ testq(RAX, Immediate(1 << target::ObjectAlignment::kNewObjectBitPosition)); |
1854 | __ j(ZERO, &add_to_mark_stack); |
1855 | |
1856 | if (cards) { |
1857 | __ movl(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
1858 | __ testl(TMP, Immediate(1 << target::ObjectLayout::kCardRememberedBit)); |
1859 | __ j(NOT_ZERO, &remember_card, Assembler::kFarJump); |
1860 | } else { |
1861 | #if defined(DEBUG) |
1862 | Label ok; |
1863 | __ movl(TMP, FieldAddress(RDX, target::Object::tags_offset())); |
1864 | __ testl(TMP, Immediate(1 << target::ObjectLayout::kCardRememberedBit)); |
1865 | __ j(ZERO, &ok, Assembler::kFarJump); |
1866 | __ Stop("Wrong barrier" ); |
1867 | __ Bind(&ok); |
1868 | #endif |
1869 | } |
1870 | |
1871 | // Update the tags that this object has been remembered. |
1872 | // Note that we use 32 bit operations here to match the size of the |
1873 | // background sweeper which is also manipulating this 32 bit word. |
1874 | // RDX: Address being stored |
1875 | // RAX: Current tag value |
1876 | // lock+andl is an atomic read-modify-write. |
1877 | __ lock(); |
1878 | __ andl(FieldAddress(RDX, target::Object::tags_offset()), |
1879 | Immediate(~(1 << target::ObjectLayout::kOldAndNotRememberedBit))); |
1880 | |
1881 | // Save registers being destroyed. |
1882 | __ pushq(RAX); |
1883 | __ pushq(RCX); |
1884 | |
1885 | // Load the StoreBuffer block out of the thread. Then load top_ out of the |
1886 | // StoreBufferBlock and add the address to the pointers_. |
1887 | // RDX: Address being stored |
1888 | __ movq(RAX, Address(THR, target::Thread::store_buffer_block_offset())); |
1889 | __ movl(RCX, Address(RAX, target::StoreBufferBlock::top_offset())); |
1890 | __ movq( |
1891 | Address(RAX, RCX, TIMES_8, target::StoreBufferBlock::pointers_offset()), |
1892 | RDX); |
1893 | |
1894 | // Increment top_ and check for overflow. |
1895 | // RCX: top_ |
1896 | // RAX: StoreBufferBlock |
1897 | Label overflow; |
1898 | __ incq(RCX); |
1899 | __ movl(Address(RAX, target::StoreBufferBlock::top_offset()), RCX); |
1900 | __ cmpl(RCX, Immediate(target::StoreBufferBlock::kSize)); |
1901 | // Restore values. |
1902 | __ popq(RCX); |
1903 | __ popq(RAX); |
1904 | __ j(EQUAL, &overflow, Assembler::kNearJump); |
1905 | __ ret(); |
1906 | |
1907 | // Handle overflow: Call the runtime leaf function. |
1908 | __ Bind(&overflow); |
1909 | // Setup frame, push callee-saved registers. |
1910 | __ pushq(CODE_REG); |
1911 | __ movq(CODE_REG, stub_code); |
1912 | __ EnterCallRuntimeFrame(0); |
1913 | __ movq(CallingConventions::kArg1Reg, THR); |
1914 | __ CallRuntime(kStoreBufferBlockProcessRuntimeEntry, 1); |
1915 | __ LeaveCallRuntimeFrame(); |
1916 | __ popq(CODE_REG); |
1917 | __ ret(); |
1918 | |
1919 | __ Bind(&add_to_mark_stack); |
1920 | __ pushq(RAX); // Spill. |
1921 | __ pushq(RCX); // Spill. |
1922 | __ movq(TMP, RAX); // RAX is fixed implicit operand of CAS. |
1923 | |
1924 | // Atomically clear kOldAndNotMarkedBit. |
1925 | // Note that we use 32 bit operations here to match the size of the |
1926 | // background marker which is also manipulating this 32 bit word. |
1927 | Label retry, lost_race, marking_overflow; |
1928 | __ movl(RAX, FieldAddress(TMP, target::Object::tags_offset())); |
1929 | __ Bind(&retry); |
1930 | __ movl(RCX, RAX); |
1931 | __ testl(RCX, Immediate(1 << target::ObjectLayout::kOldAndNotMarkedBit)); |
1932 | __ j(ZERO, &lost_race); // Marked by another thread. |
1933 | __ andl(RCX, Immediate(~(1 << target::ObjectLayout::kOldAndNotMarkedBit))); |
1934 | __ LockCmpxchgl(FieldAddress(TMP, target::Object::tags_offset()), RCX); |
1935 | __ j(NOT_EQUAL, &retry, Assembler::kNearJump); |
1936 | |
1937 | __ movq(RAX, Address(THR, target::Thread::marking_stack_block_offset())); |
1938 | __ movl(RCX, Address(RAX, target::MarkingStackBlock::top_offset())); |
1939 | __ movq( |
1940 | Address(RAX, RCX, TIMES_8, target::MarkingStackBlock::pointers_offset()), |
1941 | TMP); |
1942 | __ incq(RCX); |
1943 | __ movl(Address(RAX, target::MarkingStackBlock::top_offset()), RCX); |
1944 | __ cmpl(RCX, Immediate(target::MarkingStackBlock::kSize)); |
1945 | __ popq(RCX); // Unspill. |
1946 | __ popq(RAX); // Unspill. |
1947 | __ j(EQUAL, &marking_overflow, Assembler::kNearJump); |
1948 | __ ret(); |
1949 | |
1950 | __ Bind(&marking_overflow); |
1951 | __ pushq(CODE_REG); |
1952 | __ movq(CODE_REG, stub_code); |
1953 | __ EnterCallRuntimeFrame(0); |
1954 | __ movq(CallingConventions::kArg1Reg, THR); |
1955 | __ CallRuntime(kMarkingStackBlockProcessRuntimeEntry, 1); |
1956 | __ LeaveCallRuntimeFrame(); |
1957 | __ popq(CODE_REG); |
1958 | __ ret(); |
1959 | |
1960 | __ Bind(&lost_race); |
1961 | __ popq(RCX); // Unspill. |
1962 | __ popq(RAX); // Unspill. |
1963 | __ ret(); |
1964 | |
1965 | if (cards) { |
1966 | Label remember_card_slow; |
1967 | |
1968 | // Get card table. |
1969 | __ Bind(&remember_card); |
1970 | __ movq(TMP, RDX); // Object. |
1971 | __ andq(TMP, Immediate(target::kOldPageMask)); // OldPage. |
1972 | __ cmpq(Address(TMP, target::OldPage::card_table_offset()), Immediate(0)); |
1973 | __ j(EQUAL, &remember_card_slow, Assembler::kNearJump); |
1974 | |
1975 | // Dirty the card. |
1976 | __ subq(R13, TMP); // Offset in page. |
1977 | __ movq(TMP, |
1978 | Address(TMP, target::OldPage::card_table_offset())); // Card table. |
1979 | __ shrq( |
1980 | R13, |
1981 | Immediate(target::OldPage::kBytesPerCardLog2)); // Index in card table. |
1982 | __ movb(Address(TMP, R13, TIMES_1, 0), Immediate(1)); |
1983 | __ ret(); |
1984 | |
1985 | // Card table not yet allocated. |
1986 | __ Bind(&remember_card_slow); |
1987 | __ pushq(CODE_REG); |
1988 | __ movq(CODE_REG, stub_code); |
1989 | __ EnterCallRuntimeFrame(0); |
1990 | __ movq(CallingConventions::kArg1Reg, RDX); |
1991 | __ movq(CallingConventions::kArg2Reg, R13); |
1992 | __ CallRuntime(kRememberCardRuntimeEntry, 2); |
1993 | __ LeaveCallRuntimeFrame(); |
1994 | __ popq(CODE_REG); |
1995 | __ ret(); |
1996 | } |
1997 | } |
1998 | |
1999 | void StubCodeCompiler::GenerateWriteBarrierStub(Assembler* assembler) { |
2000 | GenerateWriteBarrierStubHelper( |
2001 | assembler, Address(THR, target::Thread::write_barrier_code_offset()), |
2002 | false); |
2003 | } |
2004 | |
2005 | void StubCodeCompiler::GenerateArrayWriteBarrierStub(Assembler* assembler) { |
2006 | GenerateWriteBarrierStubHelper( |
2007 | assembler, |
2008 | Address(THR, target::Thread::array_write_barrier_code_offset()), true); |
2009 | } |
2010 | |
2011 | static void GenerateAllocateObjectHelper(Assembler* assembler, |
2012 | bool is_cls_parameterized) { |
2013 | // Note: Keep in sync with calling function. |
2014 | // kAllocationStubTypeArgumentsReg = RDX |
2015 | const Register kTagsReg = R8; |
2016 | |
2017 | { |
2018 | Label slow_case; |
2019 | const Register kNewTopReg = R9; |
2020 | |
2021 | // Allocate the object and update top to point to |
2022 | // next object start and initialize the allocated object. |
2023 | { |
2024 | const Register kInstanceSizeReg = RSI; |
2025 | |
2026 | __ ExtractInstanceSizeFromTags(kInstanceSizeReg, kTagsReg); |
2027 | |
2028 | __ movq(RAX, Address(THR, target::Thread::top_offset())); |
2029 | __ leaq(kNewTopReg, Address(RAX, kInstanceSizeReg, TIMES_1, 0)); |
2030 | // Check if the allocation fits into the remaining space. |
2031 | __ cmpq(kNewTopReg, Address(THR, target::Thread::end_offset())); |
2032 | __ j(ABOVE_EQUAL, &slow_case); |
2033 | |
2034 | __ movq(Address(THR, target::Thread::top_offset()), kNewTopReg); |
2035 | } // kInstanceSizeReg = RSI |
2036 | |
2037 | // Set the tags. |
2038 | // 64 bit store also zeros the identity hash field. |
2039 | __ movq(Address(RAX, target::Object::tags_offset()), kTagsReg); |
2040 | |
2041 | __ addq(RAX, Immediate(kHeapObjectTag)); |
2042 | |
2043 | // Initialize the remaining words of the object. |
2044 | { |
2045 | const Register kNextFieldReg = RDI; |
2046 | __ leaq(kNextFieldReg, |
2047 | FieldAddress(RAX, target::Instance::first_field_offset())); |
2048 | |
2049 | const Register kNullReg = R10; |
2050 | __ LoadObject(kNullReg, NullObject()); |
2051 | |
2052 | // Loop until the whole object is initialized. |
2053 | Label init_loop; |
2054 | Label done; |
2055 | __ Bind(&init_loop); |
2056 | __ cmpq(kNextFieldReg, kNewTopReg); |
2057 | #if defined(DEBUG) |
2058 | static const bool kJumpLength = Assembler::kFarJump; |
2059 | #else |
2060 | static const bool kJumpLength = Assembler::kNearJump; |
2061 | #endif // DEBUG |
2062 | __ j(ABOVE_EQUAL, &done, kJumpLength); |
2063 | __ StoreIntoObjectNoBarrier(RAX, Address(kNextFieldReg, 0), kNullReg); |
2064 | __ addq(kNextFieldReg, Immediate(target::kWordSize)); |
2065 | __ jmp(&init_loop, Assembler::kNearJump); |
2066 | __ Bind(&done); |
2067 | } // kNextFieldReg = RDI, kNullReg = R10 |
2068 | |
2069 | if (is_cls_parameterized) { |
2070 | Label not_parameterized_case; |
2071 | |
2072 | const Register kClsIdReg = R9; |
2073 | const Register kTypeOffsetReg = RDI; |
2074 | |
2075 | __ ExtractClassIdFromTags(kClsIdReg, kTagsReg); |
2076 | |
2077 | // Load class' type_arguments_field offset in words. |
2078 | __ LoadClassById(kTypeOffsetReg, kClsIdReg); |
2079 | __ movl( |
2080 | kTypeOffsetReg, |
2081 | FieldAddress(kTypeOffsetReg, |
2082 | target::Class:: |
2083 | host_type_arguments_field_offset_in_words_offset())); |
2084 | |
2085 | // Set the type arguments in the new object. |
2086 | __ StoreIntoObject(RAX, FieldAddress(RAX, kTypeOffsetReg, TIMES_8, 0), |
2087 | kAllocationStubTypeArgumentsReg); |
2088 | |
2089 | __ Bind(¬_parameterized_case); |
2090 | } // kTypeOffsetReg = RDI; |
2091 | |
2092 | __ ret(); |
2093 | |
2094 | __ Bind(&slow_case); |
2095 | } // kNewTopReg = R9; |
2096 | |
2097 | // Fall back on slow case: |
2098 | if (!is_cls_parameterized) { |
2099 | __ LoadObject(kAllocationStubTypeArgumentsReg, NullObject()); |
2100 | } |
2101 | // Tail call to generic allocation stub. |
2102 | __ jmp( |
2103 | Address(THR, target::Thread::allocate_object_slow_entry_point_offset())); |
2104 | } |
2105 | |
2106 | // Called for inline allocation of objects (any class). |
2107 | void StubCodeCompiler::GenerateAllocateObjectStub(Assembler* assembler) { |
2108 | GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/false); |
2109 | } |
2110 | |
2111 | void StubCodeCompiler::GenerateAllocateObjectParameterizedStub( |
2112 | Assembler* assembler) { |
2113 | GenerateAllocateObjectHelper(assembler, /*is_cls_parameterized=*/true); |
2114 | } |
2115 | |
2116 | void StubCodeCompiler::GenerateAllocateObjectSlowStub(Assembler* assembler) { |
2117 | // Note: Keep in sync with calling stub. |
2118 | // kAllocationStubTypeArgumentsReg = RDX |
2119 | const Register kTagsToClsIdReg = R8; |
2120 | |
2121 | if (!FLAG_use_bare_instructions) { |
2122 | __ movq(CODE_REG, |
2123 | Address(THR, target::Thread::call_to_runtime_stub_offset())); |
2124 | } |
2125 | |
2126 | __ ExtractClassIdFromTags(kTagsToClsIdReg, kTagsToClsIdReg); |
2127 | |
2128 | // Create a stub frame. |
2129 | // Ensure constant pool is allowed so we can e.g. load class object. |
2130 | __ EnterStubFrame(); |
2131 | |
2132 | // Setup space on stack for return value. |
2133 | __ LoadObject(RAX, NullObject()); |
2134 | __ pushq(RAX); |
2135 | |
2136 | // Push class of object to be allocated. |
2137 | __ LoadClassById(RAX, kTagsToClsIdReg); |
2138 | __ pushq(RAX); |
2139 | |
2140 | // Must be Object::null() if non-parameterized class. |
2141 | __ pushq(kAllocationStubTypeArgumentsReg); |
2142 | |
2143 | __ CallRuntime(kAllocateObjectRuntimeEntry, 2); |
2144 | |
2145 | __ popq(RAX); // Pop argument (type arguments of object). |
2146 | __ popq(RAX); // Pop argument (class of object). |
2147 | __ popq(RAX); // Pop result (newly allocated object). |
2148 | |
2149 | // Write-barrier elimination is enabled for [cls] and we therefore need to |
2150 | // ensure that the object is in new-space or has remembered bit set. |
2151 | EnsureIsNewOrRemembered(assembler, /*preserve_registers=*/false); |
2152 | |
2153 | // RAX: new object |
2154 | // Restore the frame pointer. |
2155 | __ LeaveStubFrame(); |
2156 | |
2157 | __ ret(); |
2158 | } |
2159 | |
2160 | // Called for inline allocation of objects. |
2161 | void StubCodeCompiler::GenerateAllocationStubForClass( |
2162 | Assembler* assembler, |
2163 | UnresolvedPcRelativeCalls* unresolved_calls, |
2164 | const Class& cls, |
2165 | const Code& allocate_object, |
2166 | const Code& allocat_object_parametrized) { |
2167 | static_assert(kAllocationStubTypeArgumentsReg == RDX, |
2168 | "Adjust register allocation in the AllocationStub" ); |
2169 | |
2170 | classid_t cls_id = target::Class::GetId(cls); |
2171 | ASSERT(cls_id != kIllegalCid); |
2172 | |
2173 | RELEASE_ASSERT(AllocateObjectInstr::WillAllocateNewOrRemembered(cls)); |
2174 | |
2175 | const intptr_t cls_type_arg_field_offset = |
2176 | target::Class::TypeArgumentsFieldOffset(cls); |
2177 | |
2178 | // The generated code is different if the class is parameterized. |
2179 | const bool is_cls_parameterized = target::Class::NumTypeArguments(cls) > 0; |
2180 | ASSERT(!is_cls_parameterized || |
2181 | cls_type_arg_field_offset != target::Class::kNoTypeArguments); |
2182 | |
2183 | const intptr_t instance_size = target::Class::GetInstanceSize(cls); |
2184 | ASSERT(instance_size > 0); |
2185 | // User-defined classes should always be allocatable in new space. |
2186 | RELEASE_ASSERT(target::Heap::IsAllocatableInNewSpace(instance_size)); |
2187 | |
2188 | const uint32_t tags = |
2189 | target::MakeTagWordForNewSpaceObject(cls_id, instance_size); |
2190 | |
2191 | // Note: Keep in sync with helper function. |
2192 | // kAllocationStubTypeArgumentsReg = RDX |
2193 | const Register kTagsReg = R8; |
2194 | |
2195 | __ movq(kTagsReg, Immediate(tags)); |
2196 | |
2197 | // Load the appropriate generic alloc. stub. |
2198 | if (!FLAG_use_slow_path && FLAG_inline_alloc && |
2199 | !target::Class::TraceAllocation(cls) && |
2200 | target::SizeFitsInSizeTag(instance_size)) { |
2201 | if (is_cls_parameterized) { |
2202 | // TODO(41974): Assign all allocation stubs to the root loading unit? |
2203 | if (false && |
2204 | !IsSameObject(NullObject(), |
2205 | CastHandle<Object>(allocat_object_parametrized))) { |
2206 | __ GenerateUnRelocatedPcRelativeTailCall(); |
2207 | unresolved_calls->Add(new UnresolvedPcRelativeCall( |
2208 | __ CodeSize(), allocat_object_parametrized, /*is_tail_call=*/true)); |
2209 | } else { |
2210 | __ jmp(Address(THR, |
2211 | target::Thread:: |
2212 | allocate_object_parameterized_entry_point_offset())); |
2213 | } |
2214 | } else { |
2215 | // TODO(41974): Assign all allocation stubs to the root loading unit? |
2216 | if (false && |
2217 | !IsSameObject(NullObject(), CastHandle<Object>(allocate_object))) { |
2218 | __ GenerateUnRelocatedPcRelativeTailCall(); |
2219 | unresolved_calls->Add(new UnresolvedPcRelativeCall( |
2220 | __ CodeSize(), allocate_object, /*is_tail_call=*/true)); |
2221 | } else { |
2222 | __ jmp( |
2223 | Address(THR, target::Thread::allocate_object_entry_point_offset())); |
2224 | } |
2225 | } |
2226 | } else { |
2227 | if (!is_cls_parameterized) { |
2228 | __ LoadObject(kAllocationStubTypeArgumentsReg, NullObject()); |
2229 | } |
2230 | __ jmp(Address(THR, |
2231 | target::Thread::allocate_object_slow_entry_point_offset())); |
2232 | } |
2233 | } |
2234 | |
2235 | // Called for invoking "dynamic noSuchMethod(Invocation invocation)" function |
2236 | // from the entry code of a dart function after an error in passed argument |
2237 | // name or number is detected. |
2238 | // Input parameters: |
2239 | // RSP : points to return address. |
2240 | // RSP + 8 : address of last argument. |
2241 | // R10 : arguments descriptor array. |
2242 | void StubCodeCompiler::GenerateCallClosureNoSuchMethodStub( |
2243 | Assembler* assembler) { |
2244 | __ EnterStubFrame(); |
2245 | |
2246 | // Load the receiver. |
2247 | __ movq(R13, FieldAddress(R10, target::ArgumentsDescriptor::size_offset())); |
2248 | __ movq(RAX, |
2249 | Address(RBP, R13, TIMES_4, |
2250 | target::frame_layout.param_end_from_fp * target::kWordSize)); |
2251 | |
2252 | // Load the function. |
2253 | __ movq(RBX, FieldAddress(RAX, target::Closure::function_offset())); |
2254 | |
2255 | __ pushq(Immediate(0)); // Result slot. |
2256 | __ pushq(RAX); // Receiver. |
2257 | __ pushq(RBX); // Function. |
2258 | __ pushq(R10); // Arguments descriptor array. |
2259 | |
2260 | // Adjust arguments count. |
2261 | __ cmpq( |
2262 | FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
2263 | Immediate(0)); |
2264 | __ movq(R10, R13); |
2265 | Label args_count_ok; |
2266 | __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
2267 | __ addq(R10, Immediate(target::ToRawSmi(1))); // Include the type arguments. |
2268 | __ Bind(&args_count_ok); |
2269 | |
2270 | // R10: Smi-tagged arguments array length. |
2271 | PushArrayOfArguments(assembler); |
2272 | |
2273 | const intptr_t kNumArgs = 4; |
2274 | __ CallRuntime(kNoSuchMethodFromPrologueRuntimeEntry, kNumArgs); |
2275 | // noSuchMethod on closures always throws an error, so it will never return. |
2276 | __ int3(); |
2277 | } |
2278 | |
2279 | // Cannot use function object from ICData as it may be the inlined |
2280 | // function and not the top-scope function. |
2281 | void StubCodeCompiler::GenerateOptimizedUsageCounterIncrement( |
2282 | Assembler* assembler) { |
2283 | if (FLAG_precompiled_mode) { |
2284 | __ Breakpoint(); |
2285 | return; |
2286 | } |
2287 | Register ic_reg = RBX; |
2288 | Register func_reg = RDI; |
2289 | if (FLAG_trace_optimized_ic_calls) { |
2290 | __ EnterStubFrame(); |
2291 | __ pushq(func_reg); // Preserve |
2292 | __ pushq(ic_reg); // Preserve. |
2293 | __ pushq(ic_reg); // Argument. |
2294 | __ pushq(func_reg); // Argument. |
2295 | __ CallRuntime(kTraceICCallRuntimeEntry, 2); |
2296 | __ popq(RAX); // Discard argument; |
2297 | __ popq(RAX); // Discard argument; |
2298 | __ popq(ic_reg); // Restore. |
2299 | __ popq(func_reg); // Restore. |
2300 | __ LeaveStubFrame(); |
2301 | } |
2302 | __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
2303 | } |
2304 | |
2305 | // Loads function into 'temp_reg', preserves 'ic_reg'. |
2306 | void StubCodeCompiler::GenerateUsageCounterIncrement(Assembler* assembler, |
2307 | Register temp_reg) { |
2308 | if (FLAG_precompiled_mode) { |
2309 | __ Breakpoint(); |
2310 | return; |
2311 | } |
2312 | if (FLAG_optimization_counter_threshold >= 0) { |
2313 | Register ic_reg = RBX; |
2314 | Register func_reg = temp_reg; |
2315 | ASSERT(ic_reg != func_reg); |
2316 | __ Comment("Increment function counter" ); |
2317 | __ movq(func_reg, FieldAddress(ic_reg, target::ICData::owner_offset())); |
2318 | __ incl(FieldAddress(func_reg, target::Function::usage_counter_offset())); |
2319 | } |
2320 | } |
2321 | |
2322 | // Note: RBX must be preserved. |
2323 | // Attempt a quick Smi operation for known operations ('kind'). The ICData |
2324 | // must have been primed with a Smi/Smi check that will be used for counting |
2325 | // the invocations. |
2326 | static void EmitFastSmiOp(Assembler* assembler, |
2327 | Token::Kind kind, |
2328 | intptr_t num_args, |
2329 | Label* not_smi_or_overflow) { |
2330 | __ Comment("Fast Smi op" ); |
2331 | ASSERT(num_args == 2); |
2332 | __ movq(RAX, Address(RSP, +2 * target::kWordSize)); // Left. |
2333 | __ movq(RCX, Address(RSP, +1 * target::kWordSize)); // Right |
2334 | __ movq(R13, RCX); |
2335 | __ orq(R13, RAX); |
2336 | __ testq(R13, Immediate(kSmiTagMask)); |
2337 | __ j(NOT_ZERO, not_smi_or_overflow); |
2338 | switch (kind) { |
2339 | case Token::kADD: { |
2340 | __ addq(RAX, RCX); |
2341 | __ j(OVERFLOW, not_smi_or_overflow); |
2342 | break; |
2343 | } |
2344 | case Token::kLT: { |
2345 | __ cmpq(RAX, RCX); |
2346 | __ setcc(GREATER_EQUAL, ByteRegisterOf(RAX)); |
2347 | __ movzxb(RAX, RAX); // RAX := RAX < RCX ? 0 : 1 |
2348 | __ movq(RAX, |
2349 | Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset())); |
2350 | ASSERT(target::Thread::bool_true_offset() + 8 == |
2351 | target::Thread::bool_false_offset()); |
2352 | break; |
2353 | } |
2354 | case Token::kEQ: { |
2355 | __ cmpq(RAX, RCX); |
2356 | __ setcc(NOT_EQUAL, ByteRegisterOf(RAX)); |
2357 | __ movzxb(RAX, RAX); // RAX := RAX == RCX ? 0 : 1 |
2358 | __ movq(RAX, |
2359 | Address(THR, RAX, TIMES_8, target::Thread::bool_true_offset())); |
2360 | ASSERT(target::Thread::bool_true_offset() + 8 == |
2361 | target::Thread::bool_false_offset()); |
2362 | break; |
2363 | } |
2364 | default: |
2365 | UNIMPLEMENTED(); |
2366 | } |
2367 | |
2368 | // RBX: IC data object (preserved). |
2369 | __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
2370 | // R13: ic_data_array with check entries: classes and target functions. |
2371 | __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
2372 | // R13: points directly to the first ic data array element. |
2373 | #if defined(DEBUG) |
2374 | // Check that first entry is for Smi/Smi. |
2375 | Label error, ok; |
2376 | const Immediate& imm_smi_cid = Immediate(target::ToRawSmi(kSmiCid)); |
2377 | __ cmpq(Address(R13, 0 * target::kWordSize), imm_smi_cid); |
2378 | __ j(NOT_EQUAL, &error, Assembler::kNearJump); |
2379 | __ cmpq(Address(R13, 1 * target::kWordSize), imm_smi_cid); |
2380 | __ j(EQUAL, &ok, Assembler::kNearJump); |
2381 | __ Bind(&error); |
2382 | __ Stop("Incorrect IC data" ); |
2383 | __ Bind(&ok); |
2384 | #endif |
2385 | |
2386 | if (FLAG_optimization_counter_threshold >= 0) { |
2387 | const intptr_t count_offset = |
2388 | target::ICData::CountIndexFor(num_args) * target::kWordSize; |
2389 | // Update counter, ignore overflow. |
2390 | __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
2391 | } |
2392 | |
2393 | __ ret(); |
2394 | } |
2395 | |
2396 | // Saves the offset of the target entry-point (from the Function) into R8. |
2397 | // |
2398 | // Must be the first code generated, since any code before will be skipped in |
2399 | // the unchecked entry-point. |
2400 | static void GenerateRecordEntryPoint(Assembler* assembler) { |
2401 | Label done; |
2402 | __ movq(R8, |
2403 | Immediate(target::Function::entry_point_offset() - kHeapObjectTag)); |
2404 | __ jmp(&done); |
2405 | __ BindUncheckedEntryPoint(); |
2406 | __ movq(R8, Immediate(target::Function::entry_point_offset( |
2407 | CodeEntryKind::kUnchecked) - |
2408 | kHeapObjectTag)); |
2409 | __ Bind(&done); |
2410 | } |
2411 | |
2412 | // Generate inline cache check for 'num_args'. |
2413 | // RDX: receiver (if instance call) |
2414 | // RBX: ICData |
2415 | // RSP[0]: return address |
2416 | // Control flow: |
2417 | // - If receiver is null -> jump to IC miss. |
2418 | // - If receiver is Smi -> load Smi class. |
2419 | // - If receiver is not-Smi -> load receiver's class. |
2420 | // - Check if 'num_args' (including receiver) match any IC data group. |
2421 | // - Match found -> jump to target. |
2422 | // - Match not found -> jump to IC miss. |
2423 | void StubCodeCompiler::GenerateNArgsCheckInlineCacheStub( |
2424 | Assembler* assembler, |
2425 | intptr_t num_args, |
2426 | const RuntimeEntry& handle_ic_miss, |
2427 | Token::Kind kind, |
2428 | Optimized optimized, |
2429 | CallType type, |
2430 | Exactness exactness) { |
2431 | if (FLAG_precompiled_mode) { |
2432 | __ Breakpoint(); |
2433 | return; |
2434 | } |
2435 | |
2436 | const bool save_entry_point = kind == Token::kILLEGAL; |
2437 | if (save_entry_point) { |
2438 | GenerateRecordEntryPoint(assembler); |
2439 | } |
2440 | |
2441 | if (optimized == kOptimized) { |
2442 | GenerateOptimizedUsageCounterIncrement(assembler); |
2443 | } else { |
2444 | GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
2445 | } |
2446 | |
2447 | ASSERT(num_args == 1 || num_args == 2); |
2448 | #if defined(DEBUG) |
2449 | { |
2450 | Label ok; |
2451 | // Check that the IC data array has NumArgsTested() == num_args. |
2452 | // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
2453 | __ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset())); |
2454 | ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
2455 | __ andq(RCX, Immediate(target::ICData::NumArgsTestedMask())); |
2456 | __ cmpq(RCX, Immediate(num_args)); |
2457 | __ j(EQUAL, &ok, Assembler::kNearJump); |
2458 | __ Stop("Incorrect stub for IC data" ); |
2459 | __ Bind(&ok); |
2460 | } |
2461 | #endif // DEBUG |
2462 | |
2463 | #if !defined(PRODUCT) |
2464 | Label stepping, done_stepping; |
2465 | if (optimized == kUnoptimized) { |
2466 | __ Comment("Check single stepping" ); |
2467 | __ LoadIsolate(RAX); |
2468 | __ cmpb(Address(RAX, target::Isolate::single_step_offset()), Immediate(0)); |
2469 | __ j(NOT_EQUAL, &stepping); |
2470 | __ Bind(&done_stepping); |
2471 | } |
2472 | #endif |
2473 | |
2474 | Label not_smi_or_overflow; |
2475 | if (kind != Token::kILLEGAL) { |
2476 | EmitFastSmiOp(assembler, kind, num_args, ¬_smi_or_overflow); |
2477 | } |
2478 | __ Bind(¬_smi_or_overflow); |
2479 | |
2480 | __ Comment("Extract ICData initial values and receiver cid" ); |
2481 | // RBX: IC data object (preserved). |
2482 | __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
2483 | // R13: ic_data_array with check entries: classes and target functions. |
2484 | __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
2485 | // R13: points directly to the first ic data array element. |
2486 | |
2487 | if (type == kInstanceCall) { |
2488 | __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
2489 | __ movq(R10, FieldAddress( |
2490 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
2491 | if (num_args == 2) { |
2492 | __ movq(RCX, |
2493 | FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
2494 | __ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize)); |
2495 | __ LoadTaggedClassIdMayBeSmi(RCX, R9); |
2496 | } |
2497 | } else { |
2498 | __ movq(R10, FieldAddress( |
2499 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
2500 | __ movq(RCX, |
2501 | FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
2502 | __ movq(RDX, Address(RSP, RCX, TIMES_4, 0)); |
2503 | __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
2504 | if (num_args == 2) { |
2505 | __ movq(R9, Address(RSP, RCX, TIMES_4, -target::kWordSize)); |
2506 | __ LoadTaggedClassIdMayBeSmi(RCX, R9); |
2507 | } |
2508 | } |
2509 | // RAX: first argument class ID as Smi. |
2510 | // RCX: second argument class ID as Smi. |
2511 | // R10: args descriptor |
2512 | |
2513 | // Loop that checks if there is an IC data match. |
2514 | Label loop, found, miss; |
2515 | __ Comment("ICData loop" ); |
2516 | |
2517 | // We unroll the generic one that is generated once more than the others. |
2518 | const bool optimize = kind == Token::kILLEGAL; |
2519 | const intptr_t target_offset = |
2520 | target::ICData::TargetIndexFor(num_args) * target::kWordSize; |
2521 | const intptr_t count_offset = |
2522 | target::ICData::CountIndexFor(num_args) * target::kWordSize; |
2523 | const intptr_t exactness_offset = |
2524 | target::ICData::ExactnessIndexFor(num_args) * target::kWordSize; |
2525 | |
2526 | __ Bind(&loop); |
2527 | for (int unroll = optimize ? 4 : 2; unroll >= 0; unroll--) { |
2528 | Label update; |
2529 | __ movq(R9, Address(R13, 0)); |
2530 | __ cmpq(RAX, R9); // Class id match? |
2531 | if (num_args == 2) { |
2532 | __ j(NOT_EQUAL, &update); // Continue. |
2533 | __ movq(R9, Address(R13, target::kWordSize)); |
2534 | // R9: next class ID to check (smi). |
2535 | __ cmpq(RCX, R9); // Class id match? |
2536 | } |
2537 | __ j(EQUAL, &found); // Break. |
2538 | |
2539 | __ Bind(&update); |
2540 | |
2541 | const intptr_t entry_size = target::ICData::TestEntryLengthFor( |
2542 | num_args, exactness == kCheckExactness) * |
2543 | target::kWordSize; |
2544 | __ addq(R13, Immediate(entry_size)); // Next entry. |
2545 | |
2546 | __ cmpq(R9, Immediate(target::ToRawSmi(kIllegalCid))); // Done? |
2547 | if (unroll == 0) { |
2548 | __ j(NOT_EQUAL, &loop); |
2549 | } else { |
2550 | __ j(EQUAL, &miss); |
2551 | } |
2552 | } |
2553 | |
2554 | __ Bind(&miss); |
2555 | __ Comment("IC miss" ); |
2556 | // Compute address of arguments (first read number of arguments from |
2557 | // arguments descriptor array and then compute address on the stack). |
2558 | __ movq(RAX, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
2559 | __ leaq(RAX, Address(RSP, RAX, TIMES_4, 0)); // RAX is Smi. |
2560 | __ EnterStubFrame(); |
2561 | if (save_entry_point) { |
2562 | __ SmiTag(R8); // Entry-point offset is not Smi. |
2563 | __ pushq(R8); // Preserve entry point. |
2564 | } |
2565 | __ pushq(R10); // Preserve arguments descriptor array. |
2566 | __ pushq(RBX); // Preserve IC data object. |
2567 | __ pushq(Immediate(0)); // Result slot. |
2568 | // Push call arguments. |
2569 | for (intptr_t i = 0; i < num_args; i++) { |
2570 | __ movq(RCX, Address(RAX, -target::kWordSize * i)); |
2571 | __ pushq(RCX); |
2572 | } |
2573 | __ pushq(RBX); // Pass IC data object. |
2574 | __ CallRuntime(handle_ic_miss, num_args + 1); |
2575 | // Remove the call arguments pushed earlier, including the IC data object. |
2576 | for (intptr_t i = 0; i < num_args + 1; i++) { |
2577 | __ popq(RAX); |
2578 | } |
2579 | __ popq(RAX); // Pop returned function object into RAX. |
2580 | __ popq(RBX); // Restore IC data array. |
2581 | __ popq(R10); // Restore arguments descriptor array. |
2582 | if (save_entry_point) { |
2583 | __ popq(R8); // Restore entry point. |
2584 | __ SmiUntag(R8); // Entry-point offset is not Smi. |
2585 | } |
2586 | __ RestoreCodePointer(); |
2587 | __ LeaveStubFrame(); |
2588 | Label call_target_function; |
2589 | if (!FLAG_lazy_dispatchers) { |
2590 | GenerateDispatcherCode(assembler, &call_target_function); |
2591 | } else { |
2592 | __ jmp(&call_target_function); |
2593 | } |
2594 | |
2595 | __ Bind(&found); |
2596 | // R13: Pointer to an IC data check group. |
2597 | Label call_target_function_through_unchecked_entry; |
2598 | if (exactness == kCheckExactness) { |
2599 | Label exactness_ok; |
2600 | ASSERT(num_args == 1); |
2601 | __ movq(RAX, Address(R13, exactness_offset)); |
2602 | __ cmpq(RAX, Immediate(target::ToRawSmi( |
2603 | StaticTypeExactnessState::HasExactSuperType().Encode()))); |
2604 | __ j(LESS, &exactness_ok); |
2605 | __ j(EQUAL, &call_target_function_through_unchecked_entry); |
2606 | |
2607 | // Check trivial exactness. |
2608 | // Note: ICDataLayout::receivers_static_type_ is guaranteed to be not null |
2609 | // because we only emit calls to this stub when it is not null. |
2610 | __ movq(RCX, |
2611 | FieldAddress(RBX, target::ICData::receivers_static_type_offset())); |
2612 | __ movq(RCX, FieldAddress(RCX, target::Type::arguments_offset())); |
2613 | // RAX contains an offset to type arguments in words as a smi, |
2614 | // hence TIMES_4. RDX is guaranteed to be non-smi because it is expected |
2615 | // to have type arguments. |
2616 | __ cmpq(RCX, FieldAddress(RDX, RAX, TIMES_4, 0)); |
2617 | __ j(EQUAL, &call_target_function_through_unchecked_entry); |
2618 | |
2619 | // Update exactness state (not-exact anymore). |
2620 | __ movq(Address(R13, exactness_offset), |
2621 | Immediate(target::ToRawSmi( |
2622 | StaticTypeExactnessState::NotExact().Encode()))); |
2623 | __ Bind(&exactness_ok); |
2624 | } |
2625 | __ movq(RAX, Address(R13, target_offset)); |
2626 | |
2627 | if (FLAG_optimization_counter_threshold >= 0) { |
2628 | __ Comment("Update ICData counter" ); |
2629 | // Ignore overflow. |
2630 | __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
2631 | } |
2632 | |
2633 | __ Comment("Call target (via specified entry point)" ); |
2634 | __ Bind(&call_target_function); |
2635 | // RAX: Target function. |
2636 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
2637 | if (save_entry_point) { |
2638 | __ addq(R8, RAX); |
2639 | __ jmp(Address(R8, 0)); |
2640 | } else { |
2641 | __ jmp(FieldAddress(RAX, target::Function::entry_point_offset())); |
2642 | } |
2643 | |
2644 | if (exactness == kCheckExactness) { |
2645 | __ Bind(&call_target_function_through_unchecked_entry); |
2646 | if (FLAG_optimization_counter_threshold >= 0) { |
2647 | __ Comment("Update ICData counter" ); |
2648 | // Ignore overflow. |
2649 | __ addq(Address(R13, count_offset), Immediate(target::ToRawSmi(1))); |
2650 | } |
2651 | __ Comment("Call target (via unchecked entry point)" ); |
2652 | __ movq(RAX, Address(R13, target_offset)); |
2653 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
2654 | __ jmp(FieldAddress( |
2655 | RAX, target::Function::entry_point_offset(CodeEntryKind::kUnchecked))); |
2656 | } |
2657 | |
2658 | #if !defined(PRODUCT) |
2659 | if (optimized == kUnoptimized) { |
2660 | __ Bind(&stepping); |
2661 | __ EnterStubFrame(); |
2662 | if (type == kInstanceCall) { |
2663 | __ pushq(RDX); // Preserve receiver. |
2664 | } |
2665 | __ pushq(RBX); // Preserve ICData. |
2666 | if (save_entry_point) { |
2667 | __ SmiTag(R8); // Entry-point offset is not Smi. |
2668 | __ pushq(R8); // Preserve entry point. |
2669 | } |
2670 | __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
2671 | if (save_entry_point) { |
2672 | __ popq(R8); // Restore entry point. |
2673 | __ SmiUntag(R8); |
2674 | } |
2675 | __ popq(RBX); // Restore ICData. |
2676 | if (type == kInstanceCall) { |
2677 | __ popq(RDX); // Restore receiver. |
2678 | } |
2679 | __ RestoreCodePointer(); |
2680 | __ LeaveStubFrame(); |
2681 | __ jmp(&done_stepping); |
2682 | } |
2683 | #endif |
2684 | } |
2685 | |
2686 | // RDX: receiver |
2687 | // RBX: ICData |
2688 | // RSP[0]: return address |
2689 | void StubCodeCompiler::GenerateOneArgCheckInlineCacheStub( |
2690 | Assembler* assembler) { |
2691 | GenerateNArgsCheckInlineCacheStub( |
2692 | assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
2693 | kUnoptimized, kInstanceCall, kIgnoreExactness); |
2694 | } |
2695 | |
2696 | // RDX: receiver |
2697 | // RBX: ICData |
2698 | // RSP[0]: return address |
2699 | void StubCodeCompiler::GenerateOneArgCheckInlineCacheWithExactnessCheckStub( |
2700 | Assembler* assembler) { |
2701 | GenerateNArgsCheckInlineCacheStub( |
2702 | assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
2703 | kUnoptimized, kInstanceCall, kCheckExactness); |
2704 | } |
2705 | |
2706 | // RDX: receiver |
2707 | // RBX: ICData |
2708 | // RSP[0]: return address |
2709 | void StubCodeCompiler::GenerateTwoArgsCheckInlineCacheStub( |
2710 | Assembler* assembler) { |
2711 | GenerateNArgsCheckInlineCacheStub( |
2712 | assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
2713 | kUnoptimized, kInstanceCall, kIgnoreExactness); |
2714 | } |
2715 | |
2716 | // RDX: receiver |
2717 | // RBX: ICData |
2718 | // RSP[0]: return address |
2719 | void StubCodeCompiler::GenerateSmiAddInlineCacheStub(Assembler* assembler) { |
2720 | GenerateNArgsCheckInlineCacheStub( |
2721 | assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kADD, |
2722 | kUnoptimized, kInstanceCall, kIgnoreExactness); |
2723 | } |
2724 | |
2725 | // RDX: receiver |
2726 | // RBX: ICData |
2727 | // RSP[0]: return address |
2728 | void StubCodeCompiler::GenerateSmiLessInlineCacheStub(Assembler* assembler) { |
2729 | GenerateNArgsCheckInlineCacheStub( |
2730 | assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kLT, |
2731 | kUnoptimized, kInstanceCall, kIgnoreExactness); |
2732 | } |
2733 | |
2734 | // RDX: receiver |
2735 | // RBX: ICData |
2736 | // RSP[0]: return address |
2737 | void StubCodeCompiler::GenerateSmiEqualInlineCacheStub(Assembler* assembler) { |
2738 | GenerateNArgsCheckInlineCacheStub( |
2739 | assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kEQ, |
2740 | kUnoptimized, kInstanceCall, kIgnoreExactness); |
2741 | } |
2742 | |
2743 | // RDX: receiver |
2744 | // RBX: ICData |
2745 | // RDI: Function |
2746 | // RSP[0]: return address |
2747 | void StubCodeCompiler::GenerateOneArgOptimizedCheckInlineCacheStub( |
2748 | Assembler* assembler) { |
2749 | GenerateNArgsCheckInlineCacheStub( |
2750 | assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
2751 | kOptimized, kInstanceCall, kIgnoreExactness); |
2752 | } |
2753 | |
2754 | // RDX: receiver |
2755 | // RBX: ICData |
2756 | // RDI: Function |
2757 | // RSP[0]: return address |
2758 | void StubCodeCompiler:: |
2759 | GenerateOneArgOptimizedCheckInlineCacheWithExactnessCheckStub( |
2760 | Assembler* assembler) { |
2761 | GenerateNArgsCheckInlineCacheStub( |
2762 | assembler, 1, kInlineCacheMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
2763 | kOptimized, kInstanceCall, kCheckExactness); |
2764 | } |
2765 | |
2766 | // RDX: receiver |
2767 | // RBX: ICData |
2768 | // RDI: Function |
2769 | // RSP[0]: return address |
2770 | void StubCodeCompiler::GenerateTwoArgsOptimizedCheckInlineCacheStub( |
2771 | Assembler* assembler) { |
2772 | GenerateNArgsCheckInlineCacheStub( |
2773 | assembler, 2, kInlineCacheMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
2774 | kOptimized, kInstanceCall, kIgnoreExactness); |
2775 | } |
2776 | |
2777 | // RBX: ICData |
2778 | // RSP[0]: return address |
2779 | void StubCodeCompiler::GenerateZeroArgsUnoptimizedStaticCallStub( |
2780 | Assembler* assembler) { |
2781 | GenerateRecordEntryPoint(assembler); |
2782 | GenerateUsageCounterIncrement(assembler, /* scratch */ RCX); |
2783 | #if defined(DEBUG) |
2784 | { |
2785 | Label ok; |
2786 | // Check that the IC data array has NumArgsTested() == 0. |
2787 | // 'NumArgsTested' is stored in the least significant bits of 'state_bits'. |
2788 | __ movl(RCX, FieldAddress(RBX, target::ICData::state_bits_offset())); |
2789 | ASSERT(target::ICData::NumArgsTestedShift() == 0); // No shift needed. |
2790 | __ andq(RCX, Immediate(target::ICData::NumArgsTestedMask())); |
2791 | __ cmpq(RCX, Immediate(0)); |
2792 | __ j(EQUAL, &ok, Assembler::kNearJump); |
2793 | __ Stop("Incorrect IC data for unoptimized static call" ); |
2794 | __ Bind(&ok); |
2795 | } |
2796 | #endif // DEBUG |
2797 | |
2798 | #if !defined(PRODUCT) |
2799 | // Check single stepping. |
2800 | Label stepping, done_stepping; |
2801 | __ LoadIsolate(RAX); |
2802 | __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
2803 | __ cmpq(RAX, Immediate(0)); |
2804 | #if defined(DEBUG) |
2805 | static const bool kJumpLength = Assembler::kFarJump; |
2806 | #else |
2807 | static const bool kJumpLength = Assembler::kNearJump; |
2808 | #endif // DEBUG |
2809 | __ j(NOT_EQUAL, &stepping, kJumpLength); |
2810 | __ Bind(&done_stepping); |
2811 | #endif |
2812 | |
2813 | // RBX: IC data object (preserved). |
2814 | __ movq(R12, FieldAddress(RBX, target::ICData::entries_offset())); |
2815 | // R12: ic_data_array with entries: target functions and count. |
2816 | __ leaq(R12, FieldAddress(R12, target::Array::data_offset())); |
2817 | // R12: points directly to the first ic data array element. |
2818 | const intptr_t target_offset = |
2819 | target::ICData::TargetIndexFor(0) * target::kWordSize; |
2820 | const intptr_t count_offset = |
2821 | target::ICData::CountIndexFor(0) * target::kWordSize; |
2822 | |
2823 | if (FLAG_optimization_counter_threshold >= 0) { |
2824 | // Increment count for this call, ignore overflow. |
2825 | __ addq(Address(R12, count_offset), Immediate(target::ToRawSmi(1))); |
2826 | } |
2827 | |
2828 | // Load arguments descriptor into R10. |
2829 | __ movq(R10, FieldAddress( |
2830 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
2831 | |
2832 | // Get function and call it, if possible. |
2833 | __ movq(RAX, Address(R12, target_offset)); |
2834 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
2835 | |
2836 | __ addq(R8, RAX); |
2837 | __ jmp(Address(R8, 0)); |
2838 | |
2839 | #if !defined(PRODUCT) |
2840 | __ Bind(&stepping); |
2841 | __ EnterStubFrame(); |
2842 | __ pushq(RBX); // Preserve IC data object. |
2843 | __ SmiTag(R8); // Entry-point is not Smi. |
2844 | __ pushq(R8); // Preserve entry-point. |
2845 | __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
2846 | __ popq(R8); // Restore entry-point. |
2847 | __ SmiUntag(R8); |
2848 | __ popq(RBX); |
2849 | __ RestoreCodePointer(); |
2850 | __ LeaveStubFrame(); |
2851 | __ jmp(&done_stepping, Assembler::kNearJump); |
2852 | #endif |
2853 | } |
2854 | |
2855 | // RBX: ICData |
2856 | // RSP[0]: return address |
2857 | void StubCodeCompiler::GenerateOneArgUnoptimizedStaticCallStub( |
2858 | Assembler* assembler) { |
2859 | GenerateNArgsCheckInlineCacheStub( |
2860 | assembler, 1, kStaticCallMissHandlerOneArgRuntimeEntry, Token::kILLEGAL, |
2861 | kUnoptimized, kStaticCall, kIgnoreExactness); |
2862 | } |
2863 | |
2864 | // RBX: ICData |
2865 | // RSP[0]: return address |
2866 | void StubCodeCompiler::GenerateTwoArgsUnoptimizedStaticCallStub( |
2867 | Assembler* assembler) { |
2868 | GenerateNArgsCheckInlineCacheStub( |
2869 | assembler, 2, kStaticCallMissHandlerTwoArgsRuntimeEntry, Token::kILLEGAL, |
2870 | kUnoptimized, kStaticCall, kIgnoreExactness); |
2871 | } |
2872 | |
2873 | // Stub for compiling a function and jumping to the compiled code. |
2874 | // R10: Arguments descriptor. |
2875 | // RAX: Function. |
2876 | void StubCodeCompiler::GenerateLazyCompileStub(Assembler* assembler) { |
2877 | __ EnterStubFrame(); |
2878 | __ pushq(R10); // Preserve arguments descriptor array. |
2879 | __ pushq(RAX); // Pass function. |
2880 | __ CallRuntime(kCompileFunctionRuntimeEntry, 1); |
2881 | __ popq(RAX); // Restore function. |
2882 | __ popq(R10); // Restore arguments descriptor array. |
2883 | __ LeaveStubFrame(); |
2884 | |
2885 | // When using the interpreter, the function's code may now point to the |
2886 | // InterpretCall stub. Make sure RAX, R10, and RBX are preserved. |
2887 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
2888 | __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
2889 | __ jmp(RCX); |
2890 | } |
2891 | |
2892 | // Stub for interpreting a function call. |
2893 | // R10: Arguments descriptor. |
2894 | // RAX: Function. |
2895 | void StubCodeCompiler::GenerateInterpretCallStub(Assembler* assembler) { |
2896 | if (FLAG_precompiled_mode) { |
2897 | __ Stop("Not using interpreter" ); |
2898 | return; |
2899 | } |
2900 | |
2901 | __ EnterStubFrame(); |
2902 | |
2903 | #if defined(DEBUG) |
2904 | { |
2905 | Label ok; |
2906 | // Check that we are always entering from Dart code. |
2907 | __ movq(R8, Immediate(VMTag::kDartCompiledTagId)); |
2908 | __ cmpq(R8, Assembler::VMTagAddress()); |
2909 | __ j(EQUAL, &ok, Assembler::kNearJump); |
2910 | __ Stop("Not coming from Dart code." ); |
2911 | __ Bind(&ok); |
2912 | } |
2913 | #endif |
2914 | |
2915 | // Adjust arguments count for type arguments vector. |
2916 | __ movq(R11, FieldAddress(R10, target::ArgumentsDescriptor::count_offset())); |
2917 | __ SmiUntag(R11); |
2918 | __ cmpq( |
2919 | FieldAddress(R10, target::ArgumentsDescriptor::type_args_len_offset()), |
2920 | Immediate(0)); |
2921 | Label args_count_ok; |
2922 | __ j(EQUAL, &args_count_ok, Assembler::kNearJump); |
2923 | __ incq(R11); |
2924 | __ Bind(&args_count_ok); |
2925 | |
2926 | // Compute argv. |
2927 | __ leaq(R12, |
2928 | Address(RBP, R11, TIMES_8, |
2929 | target::frame_layout.param_end_from_fp * target::kWordSize)); |
2930 | |
2931 | // Indicate decreasing memory addresses of arguments with negative argc. |
2932 | __ negq(R11); |
2933 | |
2934 | // Reserve shadow space for args and align frame before entering C++ world. |
2935 | __ subq(RSP, Immediate(5 * target::kWordSize)); |
2936 | if (OS::ActivationFrameAlignment() > 1) { |
2937 | __ andq(RSP, Immediate(~(OS::ActivationFrameAlignment() - 1))); |
2938 | } |
2939 | |
2940 | __ movq(CallingConventions::kArg1Reg, RAX); // Function. |
2941 | __ movq(CallingConventions::kArg2Reg, R10); // Arguments descriptor. |
2942 | __ movq(CallingConventions::kArg3Reg, R11); // Negative argc. |
2943 | __ movq(CallingConventions::kArg4Reg, R12); // Argv. |
2944 | |
2945 | #if defined(TARGET_OS_WINDOWS) |
2946 | __ movq(Address(RSP, 0 * target::kWordSize), THR); // Thread. |
2947 | #else |
2948 | __ movq(CallingConventions::kArg5Reg, THR); // Thread. |
2949 | #endif |
2950 | // Save exit frame information to enable stack walking as we are about |
2951 | // to transition to Dart VM C++ code. |
2952 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), RBP); |
2953 | |
2954 | // Mark that the thread exited generated code through a runtime call. |
2955 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
2956 | Immediate(target::Thread::exit_through_runtime_call())); |
2957 | |
2958 | // Mark that the thread is executing VM code. |
2959 | __ movq(RAX, |
2960 | Address(THR, target::Thread::interpret_call_entry_point_offset())); |
2961 | __ movq(Assembler::VMTagAddress(), RAX); |
2962 | |
2963 | __ call(RAX); |
2964 | |
2965 | // Mark that the thread is executing Dart code. |
2966 | __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
2967 | |
2968 | // Mark that the thread has not exited generated Dart code. |
2969 | __ movq(Address(THR, target::Thread::exit_through_ffi_offset()), |
2970 | Immediate(0)); |
2971 | |
2972 | // Reset exit frame information in Isolate's mutator thread structure. |
2973 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
2974 | Immediate(0)); |
2975 | |
2976 | __ LeaveStubFrame(); |
2977 | __ ret(); |
2978 | } |
2979 | |
2980 | // RBX: Contains an ICData. |
2981 | // TOS(0): return address (Dart code). |
2982 | void StubCodeCompiler::GenerateICCallBreakpointStub(Assembler* assembler) { |
2983 | #if defined(PRODUCT) |
2984 | __ Stop("No debugging in PRODUCT mode" ); |
2985 | #else |
2986 | __ EnterStubFrame(); |
2987 | __ pushq(RDX); // Preserve receiver. |
2988 | __ pushq(RBX); // Preserve IC data. |
2989 | __ pushq(Immediate(0)); // Result slot. |
2990 | __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
2991 | __ popq(CODE_REG); // Original stub. |
2992 | __ popq(RBX); // Restore IC data. |
2993 | __ popq(RDX); // Restore receiver. |
2994 | __ LeaveStubFrame(); |
2995 | |
2996 | __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
2997 | __ jmp(RAX); // Jump to original stub. |
2998 | #endif // defined(PRODUCT) |
2999 | } |
3000 | |
3001 | void StubCodeCompiler::GenerateUnoptStaticCallBreakpointStub( |
3002 | Assembler* assembler) { |
3003 | #if defined(PRODUCT) |
3004 | __ Stop("No debugging in PRODUCT mode" ); |
3005 | #else |
3006 | __ EnterStubFrame(); |
3007 | __ pushq(RDX); // Preserve receiver. |
3008 | __ pushq(RBX); // Preserve IC data. |
3009 | __ pushq(Immediate(0)); // Result slot. |
3010 | __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
3011 | __ popq(CODE_REG); // Original stub. |
3012 | __ popq(RBX); // Restore IC data. |
3013 | __ popq(RDX); // Restore receiver. |
3014 | __ LeaveStubFrame(); |
3015 | |
3016 | __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
3017 | __ jmp(RAX); // Jump to original stub. |
3018 | #endif // defined(PRODUCT) |
3019 | } |
3020 | |
3021 | // TOS(0): return address (Dart code). |
3022 | void StubCodeCompiler::GenerateRuntimeCallBreakpointStub(Assembler* assembler) { |
3023 | #if defined(PRODUCT) |
3024 | __ Stop("No debugging in PRODUCT mode" ); |
3025 | #else |
3026 | __ EnterStubFrame(); |
3027 | __ pushq(Immediate(0)); // Result slot. |
3028 | __ CallRuntime(kBreakpointRuntimeHandlerRuntimeEntry, 0); |
3029 | __ popq(CODE_REG); // Original stub. |
3030 | __ LeaveStubFrame(); |
3031 | |
3032 | __ movq(RAX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
3033 | __ jmp(RAX); // Jump to original stub. |
3034 | #endif // defined(PRODUCT) |
3035 | } |
3036 | |
3037 | // Called only from unoptimized code. |
3038 | void StubCodeCompiler::GenerateDebugStepCheckStub(Assembler* assembler) { |
3039 | #if defined(PRODUCT) |
3040 | __ Stop("No debugging in PRODUCT mode" ); |
3041 | #else |
3042 | // Check single stepping. |
3043 | Label stepping, done_stepping; |
3044 | __ LoadIsolate(RAX); |
3045 | __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
3046 | __ cmpq(RAX, Immediate(0)); |
3047 | __ j(NOT_EQUAL, &stepping, Assembler::kNearJump); |
3048 | __ Bind(&done_stepping); |
3049 | __ ret(); |
3050 | |
3051 | __ Bind(&stepping); |
3052 | __ EnterStubFrame(); |
3053 | __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
3054 | __ LeaveStubFrame(); |
3055 | __ jmp(&done_stepping, Assembler::kNearJump); |
3056 | #endif // defined(PRODUCT) |
3057 | } |
3058 | |
3059 | // Used to check class and type arguments. Arguments passed in registers: |
3060 | // |
3061 | // Inputs: |
3062 | // - R9 : RawSubtypeTestCache |
3063 | // - RAX : instance to test against. |
3064 | // - RDX : instantiator type arguments (for n=4). |
3065 | // - RCX : function type arguments (for n=4). |
3066 | // |
3067 | // - TOS + 0: return address. |
3068 | // |
3069 | // Preserves R9/RAX/RCX/RDX, RBX. |
3070 | // |
3071 | // Result in R8: null -> not found, otherwise result (true or false). |
3072 | static void GenerateSubtypeNTestCacheStub(Assembler* assembler, int n) { |
3073 | ASSERT(n == 1 || n == 2 || n == 4 || n == 6); |
3074 | |
3075 | const Register kInstanceCidOrFunction = R10; |
3076 | const Register kInstanceInstantiatorTypeArgumentsReg = R13; |
3077 | const Register kInstanceParentFunctionTypeArgumentsReg = PP; |
3078 | const Register kInstanceDelayedFunctionTypeArgumentsReg = CODE_REG; |
3079 | |
3080 | const Register kNullReg = R8; |
3081 | |
3082 | __ LoadObject(kNullReg, NullObject()); |
3083 | |
3084 | // Free up these 2 registers to be used for 6-value test. |
3085 | if (n >= 6) { |
3086 | __ pushq(kInstanceParentFunctionTypeArgumentsReg); |
3087 | __ pushq(kInstanceDelayedFunctionTypeArgumentsReg); |
3088 | } |
3089 | |
3090 | // Loop initialization (moved up here to avoid having all dependent loads |
3091 | // after each other). |
3092 | |
3093 | // We avoid a load-acquire barrier here by relying on the fact that all other |
3094 | // loads from the array are data-dependent loads. |
3095 | __ movq(RSI, FieldAddress(TypeTestABI::kSubtypeTestCacheReg, |
3096 | target::SubtypeTestCache::cache_offset())); |
3097 | __ addq(RSI, Immediate(target::Array::data_offset() - kHeapObjectTag)); |
3098 | |
3099 | Label loop, not_closure; |
3100 | if (n >= 4) { |
3101 | __ LoadClassIdMayBeSmi(kInstanceCidOrFunction, TypeTestABI::kInstanceReg); |
3102 | } else { |
3103 | __ LoadClassId(kInstanceCidOrFunction, TypeTestABI::kInstanceReg); |
3104 | } |
3105 | __ cmpq(kInstanceCidOrFunction, Immediate(kClosureCid)); |
3106 | __ j(NOT_EQUAL, ¬_closure, Assembler::kNearJump); |
3107 | |
3108 | // Closure handling. |
3109 | { |
3110 | __ movq(kInstanceCidOrFunction, |
3111 | FieldAddress(TypeTestABI::kInstanceReg, |
3112 | target::Closure::function_offset())); |
3113 | if (n >= 2) { |
3114 | __ movq( |
3115 | kInstanceInstantiatorTypeArgumentsReg, |
3116 | FieldAddress(TypeTestABI::kInstanceReg, |
3117 | target::Closure::instantiator_type_arguments_offset())); |
3118 | if (n >= 6) { |
3119 | ASSERT(n == 6); |
3120 | __ movq( |
3121 | kInstanceParentFunctionTypeArgumentsReg, |
3122 | FieldAddress(TypeTestABI::kInstanceReg, |
3123 | target::Closure::function_type_arguments_offset())); |
3124 | __ movq(kInstanceDelayedFunctionTypeArgumentsReg, |
3125 | FieldAddress(TypeTestABI::kInstanceReg, |
3126 | target::Closure::delayed_type_arguments_offset())); |
3127 | } |
3128 | } |
3129 | __ jmp(&loop, Assembler::kNearJump); |
3130 | } |
3131 | |
3132 | // Non-Closure handling. |
3133 | { |
3134 | __ Bind(¬_closure); |
3135 | if (n >= 2) { |
3136 | Label has_no_type_arguments; |
3137 | __ LoadClassById(RDI, kInstanceCidOrFunction); |
3138 | __ movq(kInstanceInstantiatorTypeArgumentsReg, kNullReg); |
3139 | __ movl(RDI, |
3140 | FieldAddress( |
3141 | RDI, target::Class:: |
3142 | host_type_arguments_field_offset_in_words_offset())); |
3143 | __ cmpl(RDI, Immediate(target::Class::kNoTypeArguments)); |
3144 | __ j(EQUAL, &has_no_type_arguments, Assembler::kNearJump); |
3145 | __ movq(kInstanceInstantiatorTypeArgumentsReg, |
3146 | FieldAddress(TypeTestABI::kInstanceReg, RDI, TIMES_8, 0)); |
3147 | __ Bind(&has_no_type_arguments); |
3148 | |
3149 | if (n >= 6) { |
3150 | __ movq(kInstanceParentFunctionTypeArgumentsReg, kNullReg); |
3151 | __ movq(kInstanceDelayedFunctionTypeArgumentsReg, kNullReg); |
3152 | } |
3153 | } |
3154 | __ SmiTag(kInstanceCidOrFunction); |
3155 | } |
3156 | |
3157 | Label found, not_found, next_iteration; |
3158 | |
3159 | // Loop header. |
3160 | __ Bind(&loop); |
3161 | __ movq( |
3162 | RDI, |
3163 | Address(RSI, target::kWordSize * |
3164 | target::SubtypeTestCache::kInstanceClassIdOrFunction)); |
3165 | __ cmpq(RDI, kNullReg); |
3166 | __ j(EQUAL, ¬_found, Assembler::kNearJump); |
3167 | __ cmpq(RDI, kInstanceCidOrFunction); |
3168 | if (n == 1) { |
3169 | __ j(EQUAL, &found, Assembler::kNearJump); |
3170 | } else { |
3171 | __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
3172 | __ cmpq(kInstanceInstantiatorTypeArgumentsReg, |
3173 | Address(RSI, target::kWordSize * |
3174 | target::SubtypeTestCache::kInstanceTypeArguments)); |
3175 | if (n == 2) { |
3176 | __ j(EQUAL, &found, Assembler::kNearJump); |
3177 | } else { |
3178 | __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
3179 | __ cmpq( |
3180 | TypeTestABI::kInstantiatorTypeArgumentsReg, |
3181 | Address(RSI, |
3182 | target::kWordSize * |
3183 | target::SubtypeTestCache::kInstantiatorTypeArguments)); |
3184 | __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
3185 | __ cmpq( |
3186 | TypeTestABI::kFunctionTypeArgumentsReg, |
3187 | Address(RSI, target::kWordSize * |
3188 | target::SubtypeTestCache::kFunctionTypeArguments)); |
3189 | |
3190 | if (n == 4) { |
3191 | __ j(EQUAL, &found, Assembler::kNearJump); |
3192 | } else { |
3193 | ASSERT(n == 6); |
3194 | __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
3195 | |
3196 | __ cmpq(kInstanceParentFunctionTypeArgumentsReg, |
3197 | Address(RSI, target::kWordSize * |
3198 | target::SubtypeTestCache:: |
3199 | kInstanceParentFunctionTypeArguments)); |
3200 | __ j(NOT_EQUAL, &next_iteration, Assembler::kNearJump); |
3201 | __ cmpq(kInstanceDelayedFunctionTypeArgumentsReg, |
3202 | Address(RSI, target::kWordSize * |
3203 | target::SubtypeTestCache:: |
3204 | kInstanceDelayedFunctionTypeArguments)); |
3205 | __ j(EQUAL, &found, Assembler::kNearJump); |
3206 | } |
3207 | } |
3208 | } |
3209 | |
3210 | __ Bind(&next_iteration); |
3211 | __ addq(RSI, Immediate(target::kWordSize * |
3212 | target::SubtypeTestCache::kTestEntryLength)); |
3213 | __ jmp(&loop, Assembler::kNearJump); |
3214 | |
3215 | __ Bind(&found); |
3216 | __ movq(R8, Address(RSI, target::kWordSize * |
3217 | target::SubtypeTestCache::kTestResult)); |
3218 | if (n >= 6) { |
3219 | __ popq(kInstanceDelayedFunctionTypeArgumentsReg); |
3220 | __ popq(kInstanceParentFunctionTypeArgumentsReg); |
3221 | } |
3222 | __ ret(); |
3223 | |
3224 | __ Bind(¬_found); |
3225 | if (n >= 6) { |
3226 | __ popq(kInstanceDelayedFunctionTypeArgumentsReg); |
3227 | __ popq(kInstanceParentFunctionTypeArgumentsReg); |
3228 | } |
3229 | __ ret(); |
3230 | } |
3231 | |
3232 | // See comment on [GenerateSubtypeNTestCacheStub]. |
3233 | void StubCodeCompiler::GenerateSubtype1TestCacheStub(Assembler* assembler) { |
3234 | GenerateSubtypeNTestCacheStub(assembler, 1); |
3235 | } |
3236 | |
3237 | // See comment on [GenerateSubtypeNTestCacheStub]. |
3238 | void StubCodeCompiler::GenerateSubtype2TestCacheStub(Assembler* assembler) { |
3239 | GenerateSubtypeNTestCacheStub(assembler, 2); |
3240 | } |
3241 | |
3242 | // See comment on [GenerateSubtypeNTestCacheStub]. |
3243 | void StubCodeCompiler::GenerateSubtype4TestCacheStub(Assembler* assembler) { |
3244 | GenerateSubtypeNTestCacheStub(assembler, 4); |
3245 | } |
3246 | |
3247 | // See comment on [GenerateSubtypeNTestCacheStub]. |
3248 | void StubCodeCompiler::GenerateSubtype6TestCacheStub(Assembler* assembler) { |
3249 | GenerateSubtypeNTestCacheStub(assembler, 6); |
3250 | } |
3251 | |
3252 | // Used to test whether a given value is of a given type (different variants, |
3253 | // all have the same calling convention). |
3254 | // |
3255 | // Inputs: |
3256 | // - R9 : RawSubtypeTestCache |
3257 | // - RAX : instance to test against. |
3258 | // - RDX : instantiator type arguments (if needed). |
3259 | // - RCX : function type arguments (if needed). |
3260 | // |
3261 | // - RBX : type to test against. |
3262 | // - R10 : name of destination variable. |
3263 | // |
3264 | // Preserves R9/RAX/RCX/RDX, RBX, R10. |
3265 | // |
3266 | // Note of warning: The caller will not populate CODE_REG and we have therefore |
3267 | // no access to the pool. |
3268 | void StubCodeCompiler::GenerateDefaultTypeTestStub(Assembler* assembler) { |
3269 | __ movq(CODE_REG, Address(THR, target::Thread::slow_type_test_stub_offset())); |
3270 | __ jmp(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
3271 | } |
3272 | |
3273 | // Used instead of DefaultTypeTestStub when null is assignable. |
3274 | void StubCodeCompiler::GenerateDefaultNullableTypeTestStub( |
3275 | Assembler* assembler) { |
3276 | Label done; |
3277 | |
3278 | // Fast case for 'null'. |
3279 | __ CompareObject(TypeTestABI::kInstanceReg, NullObject()); |
3280 | __ BranchIf(EQUAL, &done); |
3281 | |
3282 | __ movq(CODE_REG, Address(THR, target::Thread::slow_type_test_stub_offset())); |
3283 | __ jmp(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
3284 | |
3285 | __ Bind(&done); |
3286 | __ Ret(); |
3287 | } |
3288 | |
3289 | void StubCodeCompiler::GenerateTopTypeTypeTestStub(Assembler* assembler) { |
3290 | __ Ret(); |
3291 | } |
3292 | |
3293 | void StubCodeCompiler::GenerateUnreachableTypeTestStub(Assembler* assembler) { |
3294 | __ Breakpoint(); |
3295 | } |
3296 | |
3297 | static void InvokeTypeCheckFromTypeTestStub(Assembler* assembler, |
3298 | TypeCheckMode mode) { |
3299 | __ PushObject(NullObject()); // Make room for result. |
3300 | __ pushq(TypeTestABI::kInstanceReg); |
3301 | __ pushq(TypeTestABI::kDstTypeReg); |
3302 | __ pushq(TypeTestABI::kInstantiatorTypeArgumentsReg); |
3303 | __ pushq(TypeTestABI::kFunctionTypeArgumentsReg); |
3304 | __ PushObject(NullObject()); |
3305 | __ pushq(TypeTestABI::kSubtypeTestCacheReg); |
3306 | __ PushImmediate(Immediate(target::ToRawSmi(mode))); |
3307 | __ CallRuntime(kTypeCheckRuntimeEntry, 7); |
3308 | __ Drop(1); // mode |
3309 | __ popq(TypeTestABI::kSubtypeTestCacheReg); |
3310 | __ Drop(1); |
3311 | __ popq(TypeTestABI::kFunctionTypeArgumentsReg); |
3312 | __ popq(TypeTestABI::kInstantiatorTypeArgumentsReg); |
3313 | __ popq(TypeTestABI::kDstTypeReg); |
3314 | __ popq(TypeTestABI::kInstanceReg); |
3315 | __ Drop(1); // Discard return value. |
3316 | } |
3317 | |
3318 | void StubCodeCompiler::GenerateLazySpecializeTypeTestStub( |
3319 | Assembler* assembler) { |
3320 | __ movq( |
3321 | CODE_REG, |
3322 | Address(THR, target::Thread::lazy_specialize_type_test_stub_offset())); |
3323 | __ EnterStubFrame(); |
3324 | InvokeTypeCheckFromTypeTestStub(assembler, kTypeCheckFromLazySpecializeStub); |
3325 | __ LeaveStubFrame(); |
3326 | __ Ret(); |
3327 | } |
3328 | |
3329 | // Used instead of LazySpecializeTypeTestStub when null is assignable. |
3330 | void StubCodeCompiler::GenerateLazySpecializeNullableTypeTestStub( |
3331 | Assembler* assembler) { |
3332 | Label done; |
3333 | |
3334 | // Fast case for 'null'. |
3335 | __ CompareObject(TypeTestABI::kInstanceReg, NullObject()); |
3336 | __ BranchIf(EQUAL, &done); |
3337 | |
3338 | __ movq( |
3339 | CODE_REG, |
3340 | Address(THR, target::Thread::lazy_specialize_type_test_stub_offset())); |
3341 | __ EnterStubFrame(); |
3342 | InvokeTypeCheckFromTypeTestStub(assembler, kTypeCheckFromLazySpecializeStub); |
3343 | __ LeaveStubFrame(); |
3344 | |
3345 | __ Bind(&done); |
3346 | __ Ret(); |
3347 | } |
3348 | |
3349 | void StubCodeCompiler::GenerateSlowTypeTestStub(Assembler* assembler) { |
3350 | Label done, call_runtime; |
3351 | |
3352 | if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) { |
3353 | __ movq(CODE_REG, |
3354 | Address(THR, target::Thread::slow_type_test_stub_offset())); |
3355 | } |
3356 | __ EnterStubFrame(); |
3357 | |
3358 | // If the subtype-cache is null, it needs to be lazily-created by the runtime. |
3359 | __ CompareObject(TypeTestABI::kSubtypeTestCacheReg, NullObject()); |
3360 | __ BranchIf(EQUAL, &call_runtime); |
3361 | |
3362 | const Register kTmp = RDI; |
3363 | |
3364 | // If this is not a [Type] object, we'll go to the runtime. |
3365 | Label is_simple_case, is_complex_case; |
3366 | __ LoadClassId(kTmp, TypeTestABI::kDstTypeReg); |
3367 | __ cmpq(kTmp, Immediate(kTypeCid)); |
3368 | __ BranchIf(NOT_EQUAL, &is_complex_case); |
3369 | |
3370 | // Check whether this [Type] is instantiated/uninstantiated. |
3371 | __ cmpb( |
3372 | FieldAddress(TypeTestABI::kDstTypeReg, target::Type::type_state_offset()), |
3373 | Immediate(target::AbstractTypeLayout::kTypeStateFinalizedInstantiated)); |
3374 | __ BranchIf(NOT_EQUAL, &is_complex_case); |
3375 | |
3376 | // Check whether this [Type] is a function type. |
3377 | __ movq(kTmp, FieldAddress(TypeTestABI::kDstTypeReg, |
3378 | target::Type::signature_offset())); |
3379 | __ CompareObject(kTmp, NullObject()); |
3380 | __ BranchIf(NOT_EQUAL, &is_complex_case); |
3381 | |
3382 | // This [Type] could be a FutureOr. Subtype2TestCache does not support Smi. |
3383 | __ BranchIfSmi(TypeTestABI::kInstanceReg, &is_complex_case); |
3384 | |
3385 | // Fall through to &is_simple_case |
3386 | |
3387 | __ Bind(&is_simple_case); |
3388 | { |
3389 | __ Call(StubCodeSubtype2TestCache()); |
3390 | __ CompareObject(R8, CastHandle<Object>(TrueObject())); |
3391 | __ BranchIf(EQUAL, &done); // Cache said: yes. |
3392 | __ Jump(&call_runtime); |
3393 | } |
3394 | |
3395 | __ Bind(&is_complex_case); |
3396 | { |
3397 | __ Call(StubCodeSubtype6TestCache()); |
3398 | __ CompareObject(R8, CastHandle<Object>(TrueObject())); |
3399 | __ BranchIf(EQUAL, &done); // Cache said: yes. |
3400 | // Fall through to runtime_call |
3401 | } |
3402 | |
3403 | __ Bind(&call_runtime); |
3404 | |
3405 | InvokeTypeCheckFromTypeTestStub(assembler, kTypeCheckFromSlowStub); |
3406 | |
3407 | __ Bind(&done); |
3408 | __ LeaveStubFrame(); |
3409 | __ Ret(); |
3410 | } |
3411 | |
3412 | // Return the current stack pointer address, used to stack alignment |
3413 | // checks. |
3414 | // TOS + 0: return address |
3415 | // Result in RAX. |
3416 | void StubCodeCompiler::GenerateGetCStackPointerStub(Assembler* assembler) { |
3417 | __ leaq(RAX, Address(RSP, target::kWordSize)); |
3418 | __ ret(); |
3419 | } |
3420 | |
3421 | // Jump to a frame on the call stack. |
3422 | // TOS + 0: return address |
3423 | // Arg1: program counter |
3424 | // Arg2: stack pointer |
3425 | // Arg3: frame_pointer |
3426 | // Arg4: thread |
3427 | // No Result. |
3428 | void StubCodeCompiler::GenerateJumpToFrameStub(Assembler* assembler) { |
3429 | __ movq(THR, CallingConventions::kArg4Reg); |
3430 | __ movq(RBP, CallingConventions::kArg3Reg); |
3431 | __ movq(RSP, CallingConventions::kArg2Reg); |
3432 | #if defined(USING_SHADOW_CALL_STACK) |
3433 | #error Unimplemented |
3434 | #endif |
3435 | Label exit_through_non_ffi; |
3436 | // Check if we exited generated from FFI. If so do transition. |
3437 | __ cmpq(compiler::Address( |
3438 | THR, compiler::target::Thread::exit_through_ffi_offset()), |
3439 | compiler::Immediate(target::Thread::exit_through_ffi())); |
3440 | __ j(NOT_EQUAL, &exit_through_non_ffi, compiler::Assembler::kNearJump); |
3441 | __ TransitionNativeToGenerated(/*leave_safepoint=*/true); |
3442 | __ Bind(&exit_through_non_ffi); |
3443 | |
3444 | // Set the tag. |
3445 | __ movq(Assembler::VMTagAddress(), Immediate(VMTag::kDartCompiledTagId)); |
3446 | // Clear top exit frame. |
3447 | __ movq(Address(THR, target::Thread::top_exit_frame_info_offset()), |
3448 | Immediate(0)); |
3449 | // Restore the pool pointer. |
3450 | __ RestoreCodePointer(); |
3451 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
3452 | __ movq(PP, Address(THR, target::Thread::global_object_pool_offset())); |
3453 | } else { |
3454 | __ LoadPoolPointer(PP); |
3455 | } |
3456 | __ jmp(CallingConventions::kArg1Reg); // Jump to program counter. |
3457 | } |
3458 | |
3459 | // Run an exception handler. Execution comes from JumpToFrame stub. |
3460 | // |
3461 | // The arguments are stored in the Thread object. |
3462 | // No result. |
3463 | void StubCodeCompiler::GenerateRunExceptionHandlerStub(Assembler* assembler) { |
3464 | ASSERT(kExceptionObjectReg == RAX); |
3465 | ASSERT(kStackTraceObjectReg == RDX); |
3466 | __ movq(CallingConventions::kArg1Reg, |
3467 | Address(THR, target::Thread::resume_pc_offset())); |
3468 | |
3469 | word offset_from_thread = 0; |
3470 | bool ok = target::CanLoadFromThread(NullObject(), &offset_from_thread); |
3471 | ASSERT(ok); |
3472 | __ movq(TMP, Address(THR, offset_from_thread)); |
3473 | |
3474 | // Load the exception from the current thread. |
3475 | Address exception_addr(THR, target::Thread::active_exception_offset()); |
3476 | __ movq(kExceptionObjectReg, exception_addr); |
3477 | __ movq(exception_addr, TMP); |
3478 | |
3479 | // Load the stacktrace from the current thread. |
3480 | Address stacktrace_addr(THR, target::Thread::active_stacktrace_offset()); |
3481 | __ movq(kStackTraceObjectReg, stacktrace_addr); |
3482 | __ movq(stacktrace_addr, TMP); |
3483 | |
3484 | __ jmp(CallingConventions::kArg1Reg); // Jump to continuation point. |
3485 | } |
3486 | |
3487 | // Deoptimize a frame on the call stack before rewinding. |
3488 | // The arguments are stored in the Thread object. |
3489 | // No result. |
3490 | void StubCodeCompiler::GenerateDeoptForRewindStub(Assembler* assembler) { |
3491 | // Push zap value instead of CODE_REG. |
3492 | __ pushq(Immediate(kZapCodeReg)); |
3493 | |
3494 | // Push the deopt pc. |
3495 | __ pushq(Address(THR, target::Thread::resume_pc_offset())); |
3496 | #if defined(USING_SHADOW_CALL_STACK) |
3497 | #error Unimplemented |
3498 | #endif |
3499 | GenerateDeoptimizationSequence(assembler, kEagerDeopt); |
3500 | |
3501 | // After we have deoptimized, jump to the correct frame. |
3502 | __ EnterStubFrame(); |
3503 | __ CallRuntime(kRewindPostDeoptRuntimeEntry, 0); |
3504 | __ LeaveStubFrame(); |
3505 | __ int3(); |
3506 | } |
3507 | |
3508 | // Calls to the runtime to optimize the given function. |
3509 | // RDI: function to be reoptimized. |
3510 | // R10: argument descriptor (preserved). |
3511 | void StubCodeCompiler::GenerateOptimizeFunctionStub(Assembler* assembler) { |
3512 | __ movq(CODE_REG, Address(THR, target::Thread::optimize_stub_offset())); |
3513 | __ EnterStubFrame(); |
3514 | __ pushq(R10); // Preserve args descriptor. |
3515 | __ pushq(Immediate(0)); // Result slot. |
3516 | __ pushq(RDI); // Arg0: function to optimize |
3517 | __ CallRuntime(kOptimizeInvokedFunctionRuntimeEntry, 1); |
3518 | __ popq(RAX); // Discard argument. |
3519 | __ popq(RAX); // Get Code object. |
3520 | __ popq(R10); // Restore argument descriptor. |
3521 | __ LeaveStubFrame(); |
3522 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
3523 | __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
3524 | __ jmp(RCX); |
3525 | __ int3(); |
3526 | } |
3527 | |
3528 | // Does identical check (object references are equal or not equal) with special |
3529 | // checks for boxed numbers. |
3530 | // Left and right are pushed on stack. |
3531 | // Return ZF set. |
3532 | // Note: A Mint cannot contain a value that would fit in Smi. |
3533 | static void GenerateIdenticalWithNumberCheckStub(Assembler* assembler, |
3534 | const Register left, |
3535 | const Register right) { |
3536 | Label reference_compare, done, check_mint; |
3537 | // If any of the arguments is Smi do reference compare. |
3538 | __ testq(left, Immediate(kSmiTagMask)); |
3539 | __ j(ZERO, &reference_compare); |
3540 | __ testq(right, Immediate(kSmiTagMask)); |
3541 | __ j(ZERO, &reference_compare); |
3542 | |
3543 | // Value compare for two doubles. |
3544 | __ CompareClassId(left, kDoubleCid); |
3545 | __ j(NOT_EQUAL, &check_mint, Assembler::kNearJump); |
3546 | __ CompareClassId(right, kDoubleCid); |
3547 | __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
3548 | |
3549 | // Double values bitwise compare. |
3550 | __ movq(left, FieldAddress(left, target::Double::value_offset())); |
3551 | __ cmpq(left, FieldAddress(right, target::Double::value_offset())); |
3552 | __ jmp(&done, Assembler::kFarJump); |
3553 | |
3554 | __ Bind(&check_mint); |
3555 | __ CompareClassId(left, kMintCid); |
3556 | __ j(NOT_EQUAL, &reference_compare, Assembler::kNearJump); |
3557 | __ CompareClassId(right, kMintCid); |
3558 | __ j(NOT_EQUAL, &done, Assembler::kFarJump); |
3559 | __ movq(left, FieldAddress(left, target::Mint::value_offset())); |
3560 | __ cmpq(left, FieldAddress(right, target::Mint::value_offset())); |
3561 | __ jmp(&done, Assembler::kFarJump); |
3562 | |
3563 | __ Bind(&reference_compare); |
3564 | __ cmpq(left, right); |
3565 | __ Bind(&done); |
3566 | } |
3567 | |
3568 | // Called only from unoptimized code. All relevant registers have been saved. |
3569 | // TOS + 0: return address |
3570 | // TOS + 1: right argument. |
3571 | // TOS + 2: left argument. |
3572 | // Returns ZF set. |
3573 | void StubCodeCompiler::GenerateUnoptimizedIdenticalWithNumberCheckStub( |
3574 | Assembler* assembler) { |
3575 | #if !defined(PRODUCT) |
3576 | // Check single stepping. |
3577 | Label stepping, done_stepping; |
3578 | __ LoadIsolate(RAX); |
3579 | __ movzxb(RAX, Address(RAX, target::Isolate::single_step_offset())); |
3580 | __ cmpq(RAX, Immediate(0)); |
3581 | __ j(NOT_EQUAL, &stepping); |
3582 | __ Bind(&done_stepping); |
3583 | #endif |
3584 | |
3585 | const Register left = RAX; |
3586 | const Register right = RDX; |
3587 | |
3588 | __ movq(left, Address(RSP, 2 * target::kWordSize)); |
3589 | __ movq(right, Address(RSP, 1 * target::kWordSize)); |
3590 | GenerateIdenticalWithNumberCheckStub(assembler, left, right); |
3591 | __ ret(); |
3592 | |
3593 | #if !defined(PRODUCT) |
3594 | __ Bind(&stepping); |
3595 | __ EnterStubFrame(); |
3596 | __ CallRuntime(kSingleStepHandlerRuntimeEntry, 0); |
3597 | __ RestoreCodePointer(); |
3598 | __ LeaveStubFrame(); |
3599 | __ jmp(&done_stepping); |
3600 | #endif |
3601 | } |
3602 | |
3603 | // Called from optimized code only. |
3604 | // TOS + 0: return address |
3605 | // TOS + 1: right argument. |
3606 | // TOS + 2: left argument. |
3607 | // Returns ZF set. |
3608 | void StubCodeCompiler::GenerateOptimizedIdenticalWithNumberCheckStub( |
3609 | Assembler* assembler) { |
3610 | const Register left = RAX; |
3611 | const Register right = RDX; |
3612 | |
3613 | __ movq(left, Address(RSP, 2 * target::kWordSize)); |
3614 | __ movq(right, Address(RSP, 1 * target::kWordSize)); |
3615 | GenerateIdenticalWithNumberCheckStub(assembler, left, right); |
3616 | __ ret(); |
3617 | } |
3618 | |
3619 | // Called from megamorphic calls. |
3620 | // RDX: receiver (passed to target) |
3621 | // RBX: target::MegamorphicCache (preserved) |
3622 | // Passed to target: |
3623 | // CODE_REG: target Code |
3624 | // R10: arguments descriptor |
3625 | void StubCodeCompiler::GenerateMegamorphicCallStub(Assembler* assembler) { |
3626 | // Jump if receiver is a smi. |
3627 | Label smi_case; |
3628 | __ testq(RDX, Immediate(kSmiTagMask)); |
3629 | // Jump out of line for smi case. |
3630 | __ j(ZERO, &smi_case, Assembler::kNearJump); |
3631 | |
3632 | // Loads the cid of the object. |
3633 | __ LoadClassId(RAX, RDX); |
3634 | |
3635 | Label cid_loaded; |
3636 | __ Bind(&cid_loaded); |
3637 | __ movq(R9, FieldAddress(RBX, target::MegamorphicCache::mask_offset())); |
3638 | __ movq(RDI, FieldAddress(RBX, target::MegamorphicCache::buckets_offset())); |
3639 | // R9: mask as a smi. |
3640 | // RDI: cache buckets array. |
3641 | |
3642 | // Tag cid as a smi. |
3643 | __ addq(RAX, RAX); |
3644 | |
3645 | // Compute the table index. |
3646 | ASSERT(target::MegamorphicCache::kSpreadFactor == 7); |
3647 | // Use leaq and subq multiply with 7 == 8 - 1. |
3648 | __ leaq(RCX, Address(RAX, TIMES_8, 0)); |
3649 | __ subq(RCX, RAX); |
3650 | |
3651 | Label loop; |
3652 | __ Bind(&loop); |
3653 | __ andq(RCX, R9); |
3654 | |
3655 | const intptr_t base = target::Array::data_offset(); |
3656 | // RCX is smi tagged, but table entries are two words, so TIMES_8. |
3657 | Label probe_failed; |
3658 | __ cmpq(RAX, FieldAddress(RDI, RCX, TIMES_8, base)); |
3659 | __ j(NOT_EQUAL, &probe_failed, Assembler::kNearJump); |
3660 | |
3661 | Label load_target; |
3662 | __ Bind(&load_target); |
3663 | // Call the target found in the cache. For a class id match, this is a |
3664 | // proper target for the given name and arguments descriptor. If the |
3665 | // illegal class id was found, the target is a cache miss handler that can |
3666 | // be invoked as a normal Dart function. |
3667 | const auto target_address = |
3668 | FieldAddress(RDI, RCX, TIMES_8, base + target::kWordSize); |
3669 | if (FLAG_precompiled_mode && FLAG_use_bare_instructions) { |
3670 | __ movq(R10, FieldAddress( |
3671 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
3672 | __ jmp(target_address); |
3673 | } else { |
3674 | __ movq(RAX, target_address); |
3675 | __ movq(R10, FieldAddress( |
3676 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
3677 | __ movq(RCX, FieldAddress(RAX, target::Function::entry_point_offset())); |
3678 | __ movq(CODE_REG, FieldAddress(RAX, target::Function::code_offset())); |
3679 | __ jmp(RCX); |
3680 | } |
3681 | |
3682 | // Probe failed, check if it is a miss. |
3683 | __ Bind(&probe_failed); |
3684 | __ cmpq(FieldAddress(RDI, RCX, TIMES_8, base), |
3685 | Immediate(target::ToRawSmi(kIllegalCid))); |
3686 | Label miss; |
3687 | __ j(ZERO, &miss, Assembler::kNearJump); |
3688 | |
3689 | // Try next entry in the table. |
3690 | __ AddImmediate(RCX, Immediate(target::ToRawSmi(1))); |
3691 | __ jmp(&loop); |
3692 | |
3693 | // Load cid for the Smi case. |
3694 | __ Bind(&smi_case); |
3695 | __ movq(RAX, Immediate(kSmiCid)); |
3696 | __ jmp(&cid_loaded); |
3697 | |
3698 | __ Bind(&miss); |
3699 | GenerateSwitchableCallMissStub(assembler); |
3700 | } |
3701 | |
3702 | // Input: |
3703 | // RBX - icdata |
3704 | // RDX - receiver object |
3705 | void StubCodeCompiler::GenerateICCallThroughCodeStub(Assembler* assembler) { |
3706 | Label loop, found, miss; |
3707 | __ movq(R13, FieldAddress(RBX, target::ICData::entries_offset())); |
3708 | __ movq(R10, FieldAddress( |
3709 | RBX, target::CallSiteData::arguments_descriptor_offset())); |
3710 | __ leaq(R13, FieldAddress(R13, target::Array::data_offset())); |
3711 | // R13: first IC entry |
3712 | __ LoadTaggedClassIdMayBeSmi(RAX, RDX); |
3713 | // RAX: receiver cid as Smi |
3714 | |
3715 | __ Bind(&loop); |
3716 | __ movq(R9, Address(R13, 0)); |
3717 | __ cmpq(RAX, R9); |
3718 | __ j(EQUAL, &found, Assembler::kNearJump); |
3719 | |
3720 | ASSERT(target::ToRawSmi(kIllegalCid) == 0); |
3721 | __ testq(R9, R9); |
3722 | __ j(ZERO, &miss, Assembler::kNearJump); |
3723 | |
3724 | const intptr_t entry_length = |
3725 | target::ICData::TestEntryLengthFor(1, /*tracking_exactness=*/false) * |
3726 | target::kWordSize; |
3727 | __ addq(R13, Immediate(entry_length)); // Next entry. |
3728 | __ jmp(&loop); |
3729 | |
3730 | __ Bind(&found); |
3731 | const intptr_t code_offset = |
3732 | target::ICData::CodeIndexFor(1) * target::kWordSize; |
3733 | const intptr_t entry_offset = |
3734 | target::ICData::EntryPointIndexFor(1) * target::kWordSize; |
3735 | if (!(FLAG_precompiled_mode && FLAG_use_bare_instructions)) { |
3736 | __ movq(CODE_REG, Address(R13, code_offset)); |
3737 | } |
3738 | __ jmp(Address(R13, entry_offset)); |
3739 | |
3740 | __ Bind(&miss); |
3741 | __ LoadIsolate(RAX); |
3742 | __ movq(CODE_REG, Address(RAX, target::Isolate::ic_miss_code_offset())); |
3743 | __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
3744 | __ jmp(RCX); |
3745 | } |
3746 | |
3747 | void StubCodeCompiler::GenerateMonomorphicSmiableCheckStub( |
3748 | Assembler* assembler) { |
3749 | Label have_cid, miss; |
3750 | |
3751 | __ movq(RAX, Immediate(kSmiCid)); |
3752 | __ movzxw( |
3753 | RCX, |
3754 | FieldAddress(RBX, target::MonomorphicSmiableCall::expected_cid_offset())); |
3755 | __ testq(RDX, Immediate(kSmiTagMask)); |
3756 | __ j(ZERO, &have_cid, Assembler::kNearJump); |
3757 | __ LoadClassId(RAX, RDX); |
3758 | __ Bind(&have_cid); |
3759 | __ cmpq(RAX, RCX); |
3760 | __ j(NOT_EQUAL, &miss, Assembler::kNearJump); |
3761 | if (FLAG_use_bare_instructions) { |
3762 | __ jmp( |
3763 | FieldAddress(RBX, target::MonomorphicSmiableCall::entrypoint_offset())); |
3764 | } else { |
3765 | __ movq(CODE_REG, |
3766 | FieldAddress(RBX, target::MonomorphicSmiableCall::target_offset())); |
3767 | __ jmp(FieldAddress(CODE_REG, target::Code::entry_point_offset())); |
3768 | } |
3769 | |
3770 | __ Bind(&miss); |
3771 | __ jmp(Address(THR, target::Thread::switchable_call_miss_entry_offset())); |
3772 | } |
3773 | |
3774 | // Called from switchable IC calls. |
3775 | // RDX: receiver |
3776 | void StubCodeCompiler::GenerateSwitchableCallMissStub(Assembler* assembler) { |
3777 | __ movq(CODE_REG, |
3778 | Address(THR, target::Thread::switchable_call_miss_stub_offset())); |
3779 | __ EnterStubFrame(); |
3780 | __ pushq(RDX); // Preserve receiver. |
3781 | |
3782 | __ pushq(Immediate(0)); // Result slot. |
3783 | __ pushq(Immediate(0)); // Arg0: stub out. |
3784 | __ pushq(RDX); // Arg1: Receiver |
3785 | __ CallRuntime(kSwitchableCallMissRuntimeEntry, 2); |
3786 | __ popq(RBX); |
3787 | __ popq(CODE_REG); // result = stub |
3788 | __ popq(RBX); // result = IC |
3789 | |
3790 | __ popq(RDX); // Restore receiver. |
3791 | __ LeaveStubFrame(); |
3792 | |
3793 | __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
3794 | CodeEntryKind::kNormal))); |
3795 | __ jmp(RCX); |
3796 | } |
3797 | |
3798 | // Called from switchable IC calls. |
3799 | // RDX: receiver |
3800 | // RBX: SingleTargetCache |
3801 | // Passed to target:: |
3802 | // CODE_REG: target Code object |
3803 | void StubCodeCompiler::GenerateSingleTargetCallStub(Assembler* assembler) { |
3804 | Label miss; |
3805 | __ LoadClassIdMayBeSmi(RAX, RDX); |
3806 | __ movzxw(R9, |
3807 | FieldAddress(RBX, target::SingleTargetCache::lower_limit_offset())); |
3808 | __ movzxw(R10, |
3809 | FieldAddress(RBX, target::SingleTargetCache::upper_limit_offset())); |
3810 | __ cmpq(RAX, R9); |
3811 | __ j(LESS, &miss, Assembler::kNearJump); |
3812 | __ cmpq(RAX, R10); |
3813 | __ j(GREATER, &miss, Assembler::kNearJump); |
3814 | __ movq(RCX, |
3815 | FieldAddress(RBX, target::SingleTargetCache::entry_point_offset())); |
3816 | __ movq(CODE_REG, |
3817 | FieldAddress(RBX, target::SingleTargetCache::target_offset())); |
3818 | __ jmp(RCX); |
3819 | |
3820 | __ Bind(&miss); |
3821 | __ EnterStubFrame(); |
3822 | __ pushq(RDX); // Preserve receiver. |
3823 | |
3824 | __ pushq(Immediate(0)); // Result slot. |
3825 | __ pushq(Immediate(0)); // Arg0: stub out |
3826 | __ pushq(RDX); // Arg1: Receiver |
3827 | __ CallRuntime(kSwitchableCallMissRuntimeEntry, 2); |
3828 | __ popq(RBX); |
3829 | __ popq(CODE_REG); // result = stub |
3830 | __ popq(RBX); // result = IC |
3831 | |
3832 | __ popq(RDX); // Restore receiver. |
3833 | __ LeaveStubFrame(); |
3834 | |
3835 | __ movq(RCX, FieldAddress(CODE_REG, target::Code::entry_point_offset( |
3836 | CodeEntryKind::kMonomorphic))); |
3837 | __ jmp(RCX); |
3838 | } |
3839 | |
3840 | void StubCodeCompiler::GenerateFrameAwaitingMaterializationStub( |
3841 | Assembler* assembler) { |
3842 | __ int3(); |
3843 | } |
3844 | |
3845 | void StubCodeCompiler::GenerateAsynchronousGapMarkerStub(Assembler* assembler) { |
3846 | __ int3(); |
3847 | } |
3848 | |
3849 | void StubCodeCompiler::GenerateNotLoadedStub(Assembler* assembler) { |
3850 | __ EnterStubFrame(); |
3851 | __ CallRuntime(kNotLoadedRuntimeEntry, 0); |
3852 | __ int3(); |
3853 | } |
3854 | |
3855 | // Instantiate type arguments from instantiator and function type args. |
3856 | // RBX: uninstantiated type arguments. |
3857 | // RDX: instantiator type arguments. |
3858 | // RCX: function type arguments. |
3859 | // Returns instantiated type arguments in RAX. |
3860 | void StubCodeCompiler::GenerateInstantiateTypeArgumentsStub( |
3861 | Assembler* assembler) { |
3862 | // Lookup cache before calling runtime. |
3863 | __ movq(RAX, compiler::FieldAddress( |
3864 | InstantiationABI::kUninstantiatedTypeArgumentsReg, |
3865 | target::TypeArguments::instantiations_offset())); |
3866 | __ leaq(RAX, compiler::FieldAddress(RAX, Array::data_offset())); |
3867 | |
3868 | // The instantiations cache is initialized with Object::zero_array() and is |
3869 | // therefore guaranteed to contain kNoInstantiator. No length check needed. |
3870 | compiler::Label loop, next, found, call_runtime; |
3871 | __ Bind(&loop); |
3872 | |
3873 | // Use load-acquire to test for sentinel, if we found non-sentinel it is safe |
3874 | // to access the other entries. If we found a sentinel we go to runtime. |
3875 | __ LoadAcquire(RDI, RAX, |
3876 | TypeArguments::Instantiation::kInstantiatorTypeArgsIndex * |
3877 | target::kWordSize); |
3878 | __ CompareImmediate(RDI, Smi::RawValue(TypeArguments::kNoInstantiator)); |
3879 | __ j(EQUAL, &call_runtime, compiler::Assembler::kNearJump); |
3880 | |
3881 | __ cmpq(RDI, InstantiationABI::kInstantiatorTypeArgumentsReg); |
3882 | __ j(NOT_EQUAL, &next, compiler::Assembler::kNearJump); |
3883 | __ movq(R10, compiler::Address( |
3884 | RAX, TypeArguments::Instantiation::kFunctionTypeArgsIndex * |
3885 | target::kWordSize)); |
3886 | __ cmpq(R10, InstantiationABI::kFunctionTypeArgumentsReg); |
3887 | __ j(EQUAL, &found, compiler::Assembler::kNearJump); |
3888 | __ Bind(&next); |
3889 | __ addq(RAX, compiler::Immediate(TypeArguments::Instantiation::kSizeInWords * |
3890 | target::kWordSize)); |
3891 | __ jmp(&loop); |
3892 | |
3893 | // Instantiate non-null type arguments. |
3894 | // A runtime call to instantiate the type arguments is required. |
3895 | __ Bind(&call_runtime); |
3896 | __ EnterStubFrame(); |
3897 | __ PushObject(Object::null_object()); // Make room for the result. |
3898 | __ pushq(InstantiationABI::kUninstantiatedTypeArgumentsReg); |
3899 | __ pushq(InstantiationABI::kInstantiatorTypeArgumentsReg); |
3900 | __ pushq(InstantiationABI::kFunctionTypeArgumentsReg); |
3901 | __ CallRuntime(kInstantiateTypeArgumentsRuntimeEntry, 3); |
3902 | __ Drop(3); // Drop 2 type vectors, and uninstantiated type. |
3903 | __ popq(InstantiationABI::kResultTypeArgumentsReg); |
3904 | __ LeaveStubFrame(); |
3905 | __ ret(); |
3906 | |
3907 | __ Bind(&found); |
3908 | __ movq(InstantiationABI::kResultTypeArgumentsReg, |
3909 | compiler::Address( |
3910 | RAX, TypeArguments::Instantiation::kInstantiatedTypeArgsIndex * |
3911 | target::kWordSize)); |
3912 | __ ret(); |
3913 | } |
3914 | |
3915 | void StubCodeCompiler:: |
3916 | GenerateInstantiateTypeArgumentsMayShareInstantiatorTAStub( |
3917 | Assembler* assembler) { |
3918 | // Return the instantiator type arguments if its nullability is compatible for |
3919 | // sharing, otherwise proceed to instantiation cache lookup. |
3920 | compiler::Label cache_lookup; |
3921 | __ movq(RAX, compiler::FieldAddress( |
3922 | InstantiationABI::kUninstantiatedTypeArgumentsReg, |
3923 | target::TypeArguments::nullability_offset())); |
3924 | __ movq(RDI, compiler::FieldAddress( |
3925 | InstantiationABI::kInstantiatorTypeArgumentsReg, |
3926 | target::TypeArguments::nullability_offset())); |
3927 | __ andq(RDI, RAX); |
3928 | __ cmpq(RDI, RAX); |
3929 | __ j(NOT_EQUAL, &cache_lookup, compiler::Assembler::kNearJump); |
3930 | __ movq(InstantiationABI::kResultTypeArgumentsReg, |
3931 | InstantiationABI::kInstantiatorTypeArgumentsReg); |
3932 | __ ret(); |
3933 | |
3934 | __ Bind(&cache_lookup); |
3935 | GenerateInstantiateTypeArgumentsStub(assembler); |
3936 | } |
3937 | |
3938 | void StubCodeCompiler::GenerateInstantiateTypeArgumentsMayShareFunctionTAStub( |
3939 | Assembler* assembler) { |
3940 | // Return the function type arguments if its nullability is compatible for |
3941 | // sharing, otherwise proceed to instantiation cache lookup. |
3942 | compiler::Label cache_lookup; |
3943 | __ movq(RAX, compiler::FieldAddress( |
3944 | InstantiationABI::kUninstantiatedTypeArgumentsReg, |
3945 | target::TypeArguments::nullability_offset())); |
3946 | __ movq(RDI, |
3947 | compiler::FieldAddress(InstantiationABI::kFunctionTypeArgumentsReg, |
3948 | target::TypeArguments::nullability_offset())); |
3949 | __ andq(RDI, RAX); |
3950 | __ cmpq(RDI, RAX); |
3951 | __ j(NOT_EQUAL, &cache_lookup, compiler::Assembler::kNearJump); |
3952 | __ movq(InstantiationABI::kResultTypeArgumentsReg, |
3953 | InstantiationABI::kFunctionTypeArgumentsReg); |
3954 | __ ret(); |
3955 | |
3956 | __ Bind(&cache_lookup); |
3957 | GenerateInstantiateTypeArgumentsStub(assembler); |
3958 | } |
3959 | |
3960 | } // namespace compiler |
3961 | |
3962 | } // namespace dart |
3963 | |
3964 | #endif // defined(TARGET_ARCH_X64) |
3965 | |