1 | // Copyright (c) 2020, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include <functional> |
6 | |
7 | #include "vm/compiler/backend/flow_graph.h" |
8 | #include "vm/compiler/compiler_pass.h" |
9 | #include "vm/compiler/write_barrier_elimination.h" |
10 | |
11 | namespace dart { |
12 | |
13 | #if defined(DEBUG) |
14 | DEFINE_FLAG(bool, |
15 | trace_write_barrier_elimination, |
16 | false, |
17 | "Trace WriteBarrierElimination pass." ); |
18 | #endif |
19 | |
20 | class DefinitionIndexPairTrait { |
21 | public: |
22 | typedef Definition* Key; |
23 | typedef intptr_t Value; |
24 | struct Pair { |
25 | Definition* definition = nullptr; |
26 | intptr_t index = -1; |
27 | Pair() {} |
28 | Pair(Definition* definition, intptr_t index) |
29 | : definition(definition), index(index) {} |
30 | }; |
31 | |
32 | static Key KeyOf(Pair kv) { return kv.definition; } |
33 | static Value ValueOf(Pair kv) { return kv.index; } |
34 | static inline intptr_t Hashcode(Key key) { return std::hash<Key>()(key); } |
35 | static inline bool IsKeyEqual(Pair kv, Key key) { |
36 | return kv.definition == key; |
37 | } |
38 | }; |
39 | |
40 | typedef DirectChainedHashMap<DefinitionIndexPairTrait> DefinitionIndexMap; |
41 | |
42 | // Inter-block write-barrier elimination. |
43 | // |
44 | // This optimization removes write barriers from some store instructions under |
45 | // certain assumptions which the runtime is responsible to sustain. |
46 | // |
47 | // We can skip a write barrier on a StoreInstanceField to a container object X |
48 | // if we know that either: |
49 | // - X is in new-space, or |
50 | // - X is in old-space, and: |
51 | // - X is in the store buffer, and |
52 | // - X is in the deferred marking stack (if concurrent marking is enabled) |
53 | // |
54 | // The result of an Allocation instruction (Instruction::IsAllocation()) will |
55 | // satisfy one of these requirements immediately after the instruction |
56 | // if WillAllocateNewOrRemembered() is true. |
57 | // |
58 | // Without runtime support, we would have to assume that any instruction which |
59 | // can trigger a new-space scavenge (Instruction::CanTriggerGC()) might promote |
60 | // a new-space temporary into old-space, and we could not skip a store barrier |
61 | // on a write into it afterward. |
62 | // |
63 | // However, many instructions can trigger GC in unlikely cases, like |
64 | // CheckStackOverflow and Box. To avoid interrupting write barrier elimination |
65 | // across these instructions, the runtime ensures that any live temporaries |
66 | // (except arrays) promoted during a scavenge caused by a non-Dart-call |
67 | // instruction (see Instruction::CanCallDart()) will be added to the store |
68 | // buffer. Additionally, if concurrent marking was initiated, the runtime |
69 | // ensures that all live temporaries are also in the deferred marking stack. |
70 | // |
71 | // See also Thread::RememberLiveTemporaries() and |
72 | // Thread::DeferredMarkLiveTemporaries(). |
73 | class WriteBarrierElimination : public ValueObject { |
74 | public: |
75 | WriteBarrierElimination(Zone* zone, FlowGraph* flow_graph); |
76 | |
77 | void Analyze(); |
78 | void SaveResults(); |
79 | |
80 | private: |
81 | void IndexDefinitions(Zone* zone); |
82 | |
83 | bool AnalyzeBlock(BlockEntryInstr* entry); |
84 | void MergePredecessors(BlockEntryInstr* entry); |
85 | |
86 | void UpdateVectorForBlock(BlockEntryInstr* entry, bool finalize); |
87 | |
88 | static intptr_t Index(BlockEntryInstr* entry) { |
89 | return entry->postorder_number(); |
90 | } |
91 | |
92 | intptr_t Index(Definition* def) { |
93 | ASSERT(IsUsable(def)); |
94 | return definition_indices_.LookupValue(def); |
95 | } |
96 | |
97 | bool IsUsable(Definition* def) { |
98 | return def->IsPhi() || (def->IsAllocation() && |
99 | def->AsAllocation()->WillAllocateNewOrRemembered()); |
100 | } |
101 | |
102 | #if defined(DEBUG) |
103 | static bool SlotEligibleForWBE(const Slot& slot); |
104 | #endif |
105 | |
106 | FlowGraph* const flow_graph_; |
107 | const GrowableArray<BlockEntryInstr*>* const block_order_; |
108 | |
109 | // Number of usable definitions in the graph. |
110 | intptr_t definition_count_ = 0; |
111 | |
112 | // Maps each usable definition to its index in the bitvectors. |
113 | DefinitionIndexMap definition_indices_; |
114 | |
115 | // Bitvector with all non-Array-allocation instructions set. Used to |
116 | // un-mark Array allocations as usable. |
117 | BitVector* array_allocations_mask_; |
118 | |
119 | // Bitvectors for each block of which allocations are new or remembered |
120 | // at the start (after Phis). |
121 | GrowableArray<BitVector*> usable_allocs_in_; |
122 | |
123 | // Bitvectors for each block of which allocations are new or remembered |
124 | // at the end of the block. |
125 | GrowableArray<BitVector*> usable_allocs_out_; |
126 | |
127 | // Remaining blocks to process. |
128 | GrowableArray<BlockEntryInstr*> worklist_; |
129 | |
130 | // Temporary used in many functions to avoid repeated zone allocation. |
131 | BitVector* vector_; |
132 | |
133 | // Bitvector of blocks which have been processed, to ensure each block |
134 | // is processed at least once. |
135 | BitVector* processed_blocks_; |
136 | |
137 | #if defined(DEBUG) |
138 | bool tracing_ = false; |
139 | #else |
140 | static constexpr bool tracing_ = false; |
141 | #endif |
142 | }; |
143 | |
144 | WriteBarrierElimination::WriteBarrierElimination(Zone* zone, |
145 | FlowGraph* flow_graph) |
146 | : flow_graph_(flow_graph), block_order_(&flow_graph->postorder()) { |
147 | #if defined(DEBUG) |
148 | if (flow_graph->should_print() && FLAG_trace_write_barrier_elimination) { |
149 | tracing_ = true; |
150 | } |
151 | #endif |
152 | |
153 | IndexDefinitions(zone); |
154 | |
155 | for (intptr_t i = 0; i < block_order_->length(); ++i) { |
156 | usable_allocs_in_.Add(new (zone) BitVector(zone, definition_count_)); |
157 | usable_allocs_in_[i]->CopyFrom(vector_); |
158 | |
159 | usable_allocs_out_.Add(new (zone) BitVector(zone, definition_count_)); |
160 | usable_allocs_out_[i]->CopyFrom(vector_); |
161 | } |
162 | |
163 | processed_blocks_ = new (zone) BitVector(zone, block_order_->length()); |
164 | } |
165 | |
166 | void WriteBarrierElimination::Analyze() { |
167 | for (intptr_t i = 0; i < block_order_->length(); ++i) { |
168 | worklist_.Add(block_order_->At(i)); |
169 | } |
170 | |
171 | while (!worklist_.is_empty()) { |
172 | auto* const entry = worklist_.RemoveLast(); |
173 | if (AnalyzeBlock(entry)) { |
174 | for (intptr_t i = 0; i < entry->last_instruction()->SuccessorCount(); |
175 | ++i) { |
176 | if (tracing_) { |
177 | THR_Print("Enqueueing block %" Pd "\n" , entry->block_id()); |
178 | } |
179 | worklist_.Add(entry->last_instruction()->SuccessorAt(i)); |
180 | } |
181 | } |
182 | } |
183 | } |
184 | |
185 | void WriteBarrierElimination::SaveResults() { |
186 | for (intptr_t i = 0; i < block_order_->length(); ++i) { |
187 | vector_->CopyFrom(usable_allocs_in_[i]); |
188 | UpdateVectorForBlock(block_order_->At(i), /*finalize=*/true); |
189 | } |
190 | } |
191 | |
192 | void WriteBarrierElimination::IndexDefinitions(Zone* zone) { |
193 | BitmapBuilder array_allocations; |
194 | |
195 | for (intptr_t i = 0; i < block_order_->length(); ++i) { |
196 | BlockEntryInstr* const block = block_order_->At(i); |
197 | if (auto join_block = block->AsJoinEntry()) { |
198 | for (PhiIterator it(join_block); !it.Done(); it.Advance()) { |
199 | array_allocations.Set(definition_count_, false); |
200 | definition_indices_.Insert({it.Current(), definition_count_++}); |
201 | #if defined(DEBUG) |
202 | if (tracing_) { |
203 | THR_Print("Definition (%" Pd ") has index %" Pd ".\n" , |
204 | it.Current()->ssa_temp_index(), definition_count_ - 1); |
205 | } |
206 | #endif |
207 | } |
208 | } |
209 | for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
210 | if (Definition* current = it.Current()->AsDefinition()) { |
211 | if (IsUsable(current)) { |
212 | array_allocations.Set(definition_count_, current->IsCreateArray()); |
213 | definition_indices_.Insert({current, definition_count_++}); |
214 | #if defined(DEBUG) |
215 | if (tracing_) { |
216 | THR_Print("Definition (%" Pd ") has index %" Pd ".\n" , |
217 | current->ssa_temp_index(), definition_count_ - 1); |
218 | } |
219 | #endif |
220 | } |
221 | } |
222 | } |
223 | } |
224 | |
225 | vector_ = new (zone) BitVector(zone, definition_count_); |
226 | vector_->SetAll(); |
227 | array_allocations_mask_ = new (zone) BitVector(zone, definition_count_); |
228 | for (intptr_t i = 0; i < definition_count_; ++i) { |
229 | if (!array_allocations.Get(i)) array_allocations_mask_->Add(i); |
230 | } |
231 | } |
232 | |
233 | void WriteBarrierElimination::MergePredecessors(BlockEntryInstr* entry) { |
234 | vector_->Clear(); |
235 | for (intptr_t i = 0; i < entry->PredecessorCount(); ++i) { |
236 | BitVector* predecessor_set = |
237 | usable_allocs_out_[Index(entry->PredecessorAt(i))]; |
238 | if (i == 0) { |
239 | vector_->AddAll(predecessor_set); |
240 | } else { |
241 | vector_->Intersect(predecessor_set); |
242 | } |
243 | } |
244 | |
245 | if (JoinEntryInstr* join = entry->AsJoinEntry()) { |
246 | // A Phi is usable if and only if all its inputs are usable. |
247 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
248 | PhiInstr* phi = it.Current(); |
249 | ASSERT(phi->InputCount() == entry->PredecessorCount()); |
250 | bool is_usable = true; |
251 | for (intptr_t i = 0; i < phi->InputCount(); ++i) { |
252 | BitVector* const predecessor_set = |
253 | usable_allocs_out_[Index(entry->PredecessorAt(i))]; |
254 | Definition* const origin = phi->InputAt(i)->definition(); |
255 | if (!IsUsable(origin) || !predecessor_set->Contains(Index(origin))) { |
256 | is_usable = false; |
257 | break; |
258 | } |
259 | } |
260 | vector_->Set(Index(phi), is_usable); |
261 | } |
262 | |
263 | #if defined(DEBUG) |
264 | if (tracing_) { |
265 | THR_Print("Merge predecessors for %" Pd ".\n" , entry->block_id()); |
266 | for (PhiIterator it(join); !it.Done(); it.Advance()) { |
267 | PhiInstr* phi = it.Current(); |
268 | THR_Print("%" Pd ": %s\n" , phi->ssa_temp_index(), |
269 | vector_->Contains(Index(phi)) ? "true" : "false" ); |
270 | } |
271 | } |
272 | #endif |
273 | } |
274 | } |
275 | |
276 | bool WriteBarrierElimination::AnalyzeBlock(BlockEntryInstr* entry) { |
277 | // Recompute the usable allocs in-set. |
278 | MergePredecessors(entry); |
279 | |
280 | // If the in-set has not changed, there's no work to do. |
281 | BitVector* const in_set = usable_allocs_in_[Index(entry)]; |
282 | ASSERT(vector_->SubsetOf(*in_set)); // convergence |
283 | if (vector_->Equals(*in_set) && processed_blocks_->Contains(Index(entry))) { |
284 | if (tracing_) { |
285 | THR_Print("Bailout of block %" Pd ": inputs didn't change.\n" , |
286 | entry->block_id()); |
287 | } |
288 | return false; |
289 | } else if (tracing_) { |
290 | THR_Print("Inputs of block %" Pd " changed: " , entry->block_id()); |
291 | in_set->Print(); |
292 | THR_Print(" -> " ); |
293 | vector_->Print(); |
294 | THR_Print("\n" ); |
295 | } |
296 | |
297 | usable_allocs_in_[Index(entry)]->CopyFrom(vector_); |
298 | UpdateVectorForBlock(entry, /*finalize=*/false); |
299 | |
300 | processed_blocks_->Add(Index(entry)); |
301 | |
302 | // Successors only need to be updated if the out-set changes. |
303 | if (vector_->Equals(*usable_allocs_out_[Index(entry)])) { |
304 | if (tracing_) { |
305 | THR_Print("Bailout of block %" Pd ": out-set didn't change.\n" , |
306 | entry->block_id()); |
307 | } |
308 | return false; |
309 | } |
310 | |
311 | BitVector* const out_set = usable_allocs_out_[Index(entry)]; |
312 | ASSERT(vector_->SubsetOf(*out_set)); // convergence |
313 | out_set->CopyFrom(vector_); |
314 | if (tracing_) { |
315 | THR_Print("Block %" Pd " changed.\n" , entry->block_id()); |
316 | } |
317 | return true; |
318 | } |
319 | |
320 | #if defined(DEBUG) |
321 | bool WriteBarrierElimination::SlotEligibleForWBE(const Slot& slot) { |
322 | // We assume that Dart code only stores into Instances, Contexts, and |
323 | // UnhandledExceptions. This assumption is used in |
324 | // RestoreWriteBarrierInvariantVisitor::VisitPointers. |
325 | |
326 | switch (slot.kind()) { |
327 | case Slot::Kind::kCapturedVariable: // Context |
328 | return true; |
329 | case Slot::Kind::kDartField: // Instance |
330 | return true; |
331 | |
332 | #define FOR_EACH_NATIVE_SLOT(class, underlying_type, field, type, modifiers) \ |
333 | case Slot::Kind::k##class##_##field: \ |
334 | return std::is_base_of<InstanceLayout, underlying_type>::value || \ |
335 | std::is_base_of<ContextLayout, underlying_type>::value || \ |
336 | std::is_base_of<UnhandledExceptionLayout, underlying_type>::value; |
337 | |
338 | NATIVE_SLOTS_LIST(FOR_EACH_NATIVE_SLOT) |
339 | #undef FOR_EACH_NATIVE_SLOT |
340 | |
341 | default: |
342 | return false; |
343 | } |
344 | } |
345 | #endif |
346 | |
347 | void WriteBarrierElimination::UpdateVectorForBlock(BlockEntryInstr* entry, |
348 | bool finalize) { |
349 | for (ForwardInstructionIterator it(entry); !it.Done(); it.Advance()) { |
350 | Instruction* const current = it.Current(); |
351 | |
352 | if (finalize) { |
353 | if (StoreInstanceFieldInstr* instr = current->AsStoreInstanceField()) { |
354 | Definition* const container = instr->instance()->definition(); |
355 | if (IsUsable(container) && vector_->Contains(Index(container))) { |
356 | DEBUG_ASSERT(SlotEligibleForWBE(instr->slot())); |
357 | instr->set_emit_store_barrier(kNoStoreBarrier); |
358 | } |
359 | } else if (StoreIndexedInstr* instr = current->AsStoreIndexed()) { |
360 | Definition* const array = instr->array()->definition(); |
361 | if (IsUsable(array) && vector_->Contains(Index(array))) { |
362 | instr->set_emit_store_barrier(StoreBarrierType::kNoStoreBarrier); |
363 | } |
364 | } |
365 | } |
366 | |
367 | if (current->CanCallDart()) { |
368 | vector_->Clear(); |
369 | } else if (current->CanTriggerGC()) { |
370 | // Clear array allocations. These are not added to the remembered set |
371 | // by Thread::RememberLiveTemporaries() after a scavenge. |
372 | vector_->Intersect(array_allocations_mask_); |
373 | } |
374 | |
375 | if (AllocationInstr* const alloc = current->AsAllocation()) { |
376 | if (alloc->WillAllocateNewOrRemembered()) { |
377 | vector_->Add(Index(alloc)); |
378 | } |
379 | } |
380 | } |
381 | } |
382 | |
383 | void EliminateWriteBarriers(FlowGraph* flow_graph) { |
384 | WriteBarrierElimination elimination(Thread::Current()->zone(), flow_graph); |
385 | elimination.Analyze(); |
386 | elimination.SaveResults(); |
387 | } |
388 | |
389 | } // namespace dart |
390 | |