1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "vm/elf.h" |
6 | |
7 | #include "platform/elf.h" |
8 | #include "vm/cpu.h" |
9 | #include "vm/dwarf.h" |
10 | #include "vm/hash_map.h" |
11 | #include "vm/image_snapshot.h" |
12 | #include "vm/thread.h" |
13 | #include "vm/zone_text_buffer.h" |
14 | |
15 | namespace dart { |
16 | |
17 | // A wrapper around StreamingWriteStream that provides methods useful for |
18 | // writing ELF files (e.g., using ELF definitions of data sizes). |
19 | class ElfWriteStream : public ValueObject { |
20 | public: |
21 | explicit ElfWriteStream(StreamingWriteStream* stream) |
22 | : stream_(ASSERT_NOTNULL(stream)) {} |
23 | |
24 | intptr_t position() const { return stream_->position(); } |
25 | void Align(const intptr_t alignment) { |
26 | ASSERT(Utils::IsPowerOfTwo(alignment)); |
27 | stream_->Align(alignment); |
28 | } |
29 | void WriteBytes(const uint8_t* b, intptr_t size) { |
30 | stream_->WriteBytes(b, size); |
31 | } |
32 | void WriteByte(uint8_t value) { |
33 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
34 | } |
35 | void WriteHalf(uint16_t value) { |
36 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
37 | } |
38 | void WriteWord(uint32_t value) { |
39 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
40 | } |
41 | void WriteAddr(compiler::target::uword value) { |
42 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
43 | } |
44 | void WriteOff(compiler::target::uword value) { |
45 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
46 | } |
47 | #if defined(TARGET_ARCH_IS_64_BIT) |
48 | void WriteXWord(uint64_t value) { |
49 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
50 | } |
51 | #endif |
52 | |
53 | private: |
54 | StreamingWriteStream* const stream_; |
55 | }; |
56 | |
57 | static constexpr intptr_t kLinearInitValue = -1; |
58 | |
59 | #define DEFINE_LINEAR_FIELD_METHODS(name) \ |
60 | intptr_t name() const { \ |
61 | ASSERT(name##_ != kLinearInitValue); \ |
62 | return name##_; \ |
63 | } \ |
64 | bool name##_is_set() const { return name##_ != kLinearInitValue; } \ |
65 | void set_##name(intptr_t value) { \ |
66 | ASSERT(value != kLinearInitValue); \ |
67 | ASSERT_EQUAL(name##_, kLinearInitValue); \ |
68 | name##_ = value; \ |
69 | } |
70 | |
71 | #define DEFINE_LINEAR_FIELD(name) intptr_t name##_ = kLinearInitValue; |
72 | |
73 | class BitsContainer; |
74 | class Segment; |
75 | |
76 | static constexpr intptr_t kDefaultAlignment = -1; |
77 | // Align note sections and segments to 4 byte boundries. |
78 | static constexpr intptr_t kNoteAlignment = 4; |
79 | |
80 | class Section : public ZoneAllocated { |
81 | public: |
82 | (elf::SectionHeaderType t, |
83 | bool allocate, |
84 | bool executable, |
85 | bool writable, |
86 | intptr_t align = kDefaultAlignment) |
87 | : type(t), |
88 | flags(EncodeFlags(allocate, executable, writable)), |
89 | alignment(align == kDefaultAlignment ? DefaultAlignment(t) : align), |
90 | // Non-segments will never have a memory offset, here represented by 0. |
91 | memory_offset_(allocate ? kLinearInitValue : 0) { |
92 | // Only sections with type SHT_NULL are allowed to have an alignment of 0. |
93 | ASSERT(type == elf::SectionHeaderType::SHT_NULL || alignment > 0); |
94 | // Non-zero alignments must be a power of 2. |
95 | ASSERT(alignment == 0 || Utils::IsPowerOfTwo(alignment)); |
96 | } |
97 | |
98 | virtual ~Section() {} |
99 | |
100 | // Linker view. |
101 | const elf::SectionHeaderType type; |
102 | const intptr_t flags; |
103 | const intptr_t alignment; |
104 | |
105 | // These are fields that only are not set for most kinds of sections and so we |
106 | // set them to a reasonable default. |
107 | intptr_t link = elf::SHN_UNDEF; |
108 | intptr_t info = 0; |
109 | intptr_t entry_size = 0; |
110 | |
111 | // Stores the name for the symbol that should be created in the dynamic (and |
112 | // static, if unstripped) tables for this section. |
113 | const char* symbol_name = nullptr; |
114 | |
115 | #define FOR_EACH_SECTION_LINEAR_FIELD(M) \ |
116 | M(name) \ |
117 | M(index) \ |
118 | M(file_offset) |
119 | |
120 | FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
121 | |
122 | virtual intptr_t FileSize() const = 0; |
123 | |
124 | // Loader view. |
125 | #define FOR_EACH_SEGMENT_LINEAR_FIELD(M) M(memory_offset) |
126 | |
127 | FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
128 | |
129 | // Each section belongs to at most one PT_LOAD segment. |
130 | const Segment* load_segment = nullptr; |
131 | |
132 | virtual intptr_t MemorySize() const = 0; |
133 | |
134 | // Other methods. |
135 | |
136 | bool IsAllocated() const { |
137 | return (flags & elf::SHF_ALLOC) == elf::SHF_ALLOC; |
138 | } |
139 | bool IsExecutable() const { |
140 | return (flags & elf::SHF_EXECINSTR) == elf::SHF_EXECINSTR; |
141 | } |
142 | bool IsWritable() const { return (flags & elf::SHF_WRITE) == elf::SHF_WRITE; } |
143 | |
144 | // Returns whether new content can be added to a section. |
145 | bool HasBeenFinalized() const { |
146 | if (IsAllocated()) { |
147 | // The contents of a section that is allocated (part of a segment) must |
148 | // not change after the section is added. |
149 | return memory_offset_is_set(); |
150 | } else { |
151 | // Unallocated sections can have new content added until we calculate |
152 | // file offsets. |
153 | return file_offset_is_set(); |
154 | } |
155 | } |
156 | |
157 | virtual const BitsContainer* AsBitsContainer() const { return nullptr; } |
158 | |
159 | // Writes the file contents of the section. |
160 | virtual void Write(ElfWriteStream* stream) = 0; |
161 | |
162 | virtual void (ElfWriteStream* stream) { |
163 | #if defined(TARGET_ARCH_IS_32_BIT) |
164 | stream->WriteWord(name()); |
165 | stream->WriteWord(static_cast<uint32_t>(type)); |
166 | stream->WriteWord(flags); |
167 | stream->WriteAddr(memory_offset()); |
168 | stream->WriteOff(file_offset()); |
169 | stream->WriteWord(FileSize()); // Has different meaning for BSS. |
170 | stream->WriteWord(link); |
171 | stream->WriteWord(info); |
172 | stream->WriteWord(alignment); |
173 | stream->WriteWord(entry_size); |
174 | #else |
175 | stream->WriteWord(name()); |
176 | stream->WriteWord(static_cast<uint32_t>(type)); |
177 | stream->WriteXWord(flags); |
178 | stream->WriteAddr(memory_offset()); |
179 | stream->WriteOff(file_offset()); |
180 | stream->WriteXWord(FileSize()); // Has different meaning for BSS. |
181 | stream->WriteWord(link); |
182 | stream->WriteWord(info); |
183 | stream->WriteXWord(alignment); |
184 | stream->WriteXWord(entry_size); |
185 | #endif |
186 | } |
187 | |
188 | private: |
189 | static intptr_t EncodeFlags(bool allocate, bool executable, bool writable) { |
190 | if (!allocate) return 0; |
191 | intptr_t flags = elf::SHF_ALLOC; |
192 | if (executable) flags |= elf::SHF_EXECINSTR; |
193 | if (writable) flags |= elf::SHF_WRITE; |
194 | return flags; |
195 | } |
196 | |
197 | static intptr_t (elf::SectionHeaderType type) { |
198 | switch (type) { |
199 | case elf::SectionHeaderType::SHT_SYMTAB: |
200 | case elf::SectionHeaderType::SHT_DYNSYM: |
201 | case elf::SectionHeaderType::SHT_HASH: |
202 | case elf::SectionHeaderType::SHT_DYNAMIC: |
203 | return compiler::target::kWordSize; |
204 | default: |
205 | return 1; |
206 | } |
207 | } |
208 | |
209 | FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
210 | FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
211 | |
212 | #undef FOR_EACH_SECTION_LINEAR_FIELD |
213 | #undef FOR_EACH_SEGMENT_LINEAR_FIELD |
214 | }; |
215 | |
216 | #undef DEFINE_LINEAR_FIELD |
217 | #undef DEFINE_LINEAR_FIELD_METHODS |
218 | |
219 | class Segment : public ZoneAllocated { |
220 | public: |
221 | (Zone* zone, |
222 | Section* initial_section, |
223 | elf::ProgramHeaderType segment_type) |
224 | : type(segment_type), |
225 | // Flags for the segment are the same as the initial section. |
226 | flags(EncodeFlags(ASSERT_NOTNULL(initial_section)->IsExecutable(), |
227 | ASSERT_NOTNULL(initial_section)->IsWritable())), |
228 | sections_(zone, 0) { |
229 | // Unlike sections, we don't have a reserved segment with the null type, |
230 | // so we never should pass this value. |
231 | ASSERT(segment_type != elf::ProgramHeaderType::PT_NULL); |
232 | // All segments should have at least one section. The first one is added |
233 | // during initialization. Unlike others added later, it should already have |
234 | // a memory offset since we use it to determine the segment memory offset. |
235 | ASSERT(initial_section->IsAllocated()); |
236 | ASSERT(initial_section->memory_offset_is_set()); |
237 | sections_.Add(initial_section); |
238 | if (type == elf::ProgramHeaderType::PT_LOAD) { |
239 | ASSERT(initial_section->load_segment == nullptr); |
240 | initial_section->load_segment = this; |
241 | } |
242 | } |
243 | |
244 | virtual ~Segment() {} |
245 | |
246 | static intptr_t (elf::ProgramHeaderType segment_type) { |
247 | switch (segment_type) { |
248 | case elf::ProgramHeaderType::PT_DYNAMIC: |
249 | return compiler::target::kWordSize; |
250 | case elf::ProgramHeaderType::PT_NOTE: |
251 | return kNoteAlignment; |
252 | default: |
253 | return Elf::kPageSize; |
254 | } |
255 | } |
256 | |
257 | bool IsExecutable() const { return (flags & elf::PF_X) == elf::PF_X; } |
258 | bool IsWritable() const { return (flags & elf::PF_W) == elf::PF_W; } |
259 | |
260 | void (ElfWriteStream* stream) { |
261 | #if defined(TARGET_ARCH_IS_32_BIT) |
262 | stream->WriteWord(static_cast<uint32_t>(type)); |
263 | stream->WriteOff(FileOffset()); |
264 | stream->WriteAddr(MemoryOffset()); // Virtual address. |
265 | stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
266 | stream->WriteWord(FileSize()); |
267 | stream->WriteWord(MemorySize()); |
268 | stream->WriteWord(flags); |
269 | stream->WriteWord(Alignment(type)); |
270 | #else |
271 | stream->WriteWord(static_cast<uint32_t>(type)); |
272 | stream->WriteWord(flags); |
273 | stream->WriteOff(FileOffset()); |
274 | stream->WriteAddr(MemoryOffset()); // Virtual address. |
275 | stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
276 | stream->WriteXWord(FileSize()); |
277 | stream->WriteXWord(MemorySize()); |
278 | stream->WriteXWord(Alignment(type)); |
279 | #endif |
280 | } |
281 | |
282 | // Adds the given section to this segment. |
283 | // |
284 | // Returns whether the Section could be added to the segment. If not, a |
285 | // new segment will need to be created for this section. |
286 | // |
287 | // Sets the memory offset of the section if added. |
288 | bool Add(Section* section) { |
289 | // We only add additional sections to load segments. |
290 | ASSERT(type == elf::ProgramHeaderType::PT_LOAD); |
291 | ASSERT(section != nullptr); |
292 | // Only sections with the allocate flag set should be added to segments, |
293 | // and sections with already-set memory offsets cannot be added. |
294 | ASSERT(section->IsAllocated()); |
295 | ASSERT(!section->memory_offset_is_set()); |
296 | ASSERT(section->load_segment == nullptr); |
297 | switch (sections_.Last()->type) { |
298 | // We only use SHT_NULL sections as pseudo sections that will not appear |
299 | // in the final ELF file. Don't pack sections into these segments, as we |
300 | // may remove/replace the segments during finalization. |
301 | case elf::SectionHeaderType::SHT_NULL: |
302 | // If the last section in the segments is NOBITS, then we don't add it, |
303 | // as otherwise we'll be guaranteed the file offset and memory offset |
304 | // won't be page aligned without padding. |
305 | case elf::SectionHeaderType::SHT_NOBITS: |
306 | return false; |
307 | default: |
308 | break; |
309 | } |
310 | // We don't add if the W or X bits don't match. |
311 | if (IsExecutable() != section->IsExecutable() || |
312 | IsWritable() != section->IsWritable()) { |
313 | return false; |
314 | } |
315 | auto const start_address = Utils::RoundUp(MemoryEnd(), section->alignment); |
316 | section->set_memory_offset(start_address); |
317 | sections_.Add(section); |
318 | section->load_segment = this; |
319 | return true; |
320 | } |
321 | |
322 | intptr_t FileOffset() const { return sections_[0]->file_offset(); } |
323 | |
324 | intptr_t FileSize() const { |
325 | auto const last = sections_.Last(); |
326 | const intptr_t end = last->file_offset() + last->FileSize(); |
327 | return end - FileOffset(); |
328 | } |
329 | |
330 | intptr_t MemoryOffset() const { return sections_[0]->memory_offset(); } |
331 | |
332 | intptr_t MemorySize() const { |
333 | auto const last = sections_.Last(); |
334 | const intptr_t end = last->memory_offset() + last->MemorySize(); |
335 | return end - MemoryOffset(); |
336 | } |
337 | |
338 | intptr_t MemoryEnd() const { return MemoryOffset() + MemorySize(); } |
339 | |
340 | private: |
341 | static constexpr intptr_t kInitValue = -1; |
342 | static_assert(kInitValue < 0, "init value must be negative" ); |
343 | |
344 | static intptr_t EncodeFlags(bool executable, bool writable) { |
345 | intptr_t flags = elf::PF_R; |
346 | if (executable) flags |= elf::PF_X; |
347 | if (writable) flags |= elf::PF_W; |
348 | return flags; |
349 | } |
350 | |
351 | public: |
352 | const elf::ProgramHeaderType type; |
353 | const intptr_t flags; |
354 | |
355 | private: |
356 | GrowableArray<const Section*> sections_; |
357 | }; |
358 | |
359 | // Represents the first entry in the section table, which should only contain |
360 | // zero values and does not correspond to a memory segment. |
361 | class ReservedSection : public Section { |
362 | public: |
363 | ReservedSection() |
364 | : Section(elf::SectionHeaderType::SHT_NULL, |
365 | /*allocate=*/false, |
366 | /*executable=*/false, |
367 | /*writable=*/false, |
368 | /*alignment=*/0) { |
369 | set_name(0); |
370 | set_index(0); |
371 | set_file_offset(0); |
372 | } |
373 | |
374 | intptr_t FileSize() const { return 0; } |
375 | intptr_t MemorySize() const { return 0; } |
376 | void Write(ElfWriteStream* stream) {} |
377 | }; |
378 | |
379 | // Represents portions of the file/memory space which do not correspond to |
380 | // actual sections. Should never be added to sections_. |
381 | class PseudoSection : public Section { |
382 | public: |
383 | PseudoSection(bool executable, |
384 | bool writable, |
385 | intptr_t file_offset, |
386 | intptr_t file_size, |
387 | intptr_t memory_offset, |
388 | intptr_t memory_size) |
389 | : Section(elf::SectionHeaderType::SHT_NULL, |
390 | /*allocate=*/true, |
391 | executable, |
392 | writable, |
393 | /*alignment=*/0), |
394 | file_size_(file_size), |
395 | memory_size_(memory_size) { |
396 | set_file_offset(file_offset); |
397 | set_memory_offset(memory_offset); |
398 | } |
399 | |
400 | intptr_t FileSize() const { return file_size_; } |
401 | intptr_t MemorySize() const { return memory_size_; } |
402 | void (ElfWriteStream* stream) { UNREACHABLE(); } |
403 | void Write(ElfWriteStream* stream) { UNREACHABLE(); } |
404 | |
405 | private: |
406 | const intptr_t file_size_; |
407 | const intptr_t memory_size_; |
408 | }; |
409 | |
410 | // A segment for representing the program header table self-reference in the |
411 | // program header table. |
412 | class ProgramTableSelfSegment : public Segment { |
413 | public: |
414 | ProgramTableSelfSegment(Zone* zone, intptr_t offset, intptr_t size) |
415 | : Segment(zone, |
416 | new (zone) PseudoSection(/*executable=*/false, |
417 | /*writable=*/false, |
418 | offset, |
419 | size, |
420 | offset, |
421 | size), |
422 | elf::ProgramHeaderType::PT_PHDR) {} |
423 | }; |
424 | |
425 | // A segment for representing the program header table load segment in the |
426 | // program header table. |
427 | class ProgramTableLoadSegment : public Segment { |
428 | public: |
429 | // The Android dynamic linker in Jelly Bean incorrectly assumes that all |
430 | // non-writable segments are continguous. Since the BSS segment comes directly |
431 | // after the program header segment, we must make this segment writable so |
432 | // later non-writable segments does not cause the BSS to be also marked as |
433 | // read-only. |
434 | // |
435 | // The bug is here: |
436 | // https://github.com/aosp-mirror/platform_bionic/blob/94963af28e445384e19775a838a29e6a71708179/linker/linker.c#L1991-L2001 |
437 | explicit ProgramTableLoadSegment(Zone* zone, intptr_t size) |
438 | : Segment(zone, |
439 | // This segment should always start at address 0. |
440 | new (zone) PseudoSection(/*executable=*/false, |
441 | /*writable=*/true, |
442 | 0, |
443 | size, |
444 | 0, |
445 | size), |
446 | elf::ProgramHeaderType::PT_LOAD) {} |
447 | }; |
448 | |
449 | class BitsContainer : public Section { |
450 | public: |
451 | // Fully specified BitsContainer information. |
452 | (elf::SectionHeaderType type, |
453 | bool allocate, |
454 | bool executable, |
455 | bool writable, |
456 | intptr_t size, |
457 | const uint8_t* bytes, |
458 | int alignment = kDefaultAlignment) |
459 | : Section(type, allocate, executable, writable, alignment), |
460 | file_size_(type == elf::SectionHeaderType::SHT_NOBITS ? 0 : size), |
461 | memory_size_(allocate ? size : 0), |
462 | bytes_(bytes) { |
463 | ASSERT(type == elf::SectionHeaderType::SHT_NOBITS || bytes != nullptr); |
464 | } |
465 | |
466 | // For BitsContainers used only as sections. |
467 | (elf::SectionHeaderType type, |
468 | intptr_t size, |
469 | const uint8_t* bytes, |
470 | intptr_t alignment = kDefaultAlignment) |
471 | : BitsContainer(type, |
472 | /*allocate=*/false, |
473 | /*executable=*/false, |
474 | /*writable=*/false, |
475 | size, |
476 | bytes, |
477 | alignment) {} |
478 | |
479 | // For BitsContainers used as segments whose type differ on the type of the |
480 | // ELF file. Creates an elf::SHT_NOBITS section if type is DebugInfo, |
481 | // otherwise creates an elf::SHT_PROGBITS section. |
482 | BitsContainer(Elf::Type t, |
483 | bool executable, |
484 | bool writable, |
485 | intptr_t size, |
486 | const uint8_t* bytes, |
487 | intptr_t alignment = kDefaultAlignment) |
488 | : BitsContainer(t == Elf::Type::DebugInfo |
489 | ? elf::SectionHeaderType::SHT_NOBITS |
490 | : elf::SectionHeaderType::SHT_PROGBITS, |
491 | /*allocate=*/true, |
492 | executable, |
493 | writable, |
494 | size, |
495 | bytes, |
496 | alignment) {} |
497 | |
498 | const BitsContainer* AsBitsContainer() const { return this; } |
499 | |
500 | void Write(ElfWriteStream* stream) { |
501 | if (type != elf::SectionHeaderType::SHT_NOBITS) { |
502 | stream->WriteBytes(bytes_, FileSize()); |
503 | } |
504 | } |
505 | |
506 | intptr_t FileSize() const { return file_size_; } |
507 | intptr_t MemorySize() const { return memory_size_; } |
508 | const uint8_t* bytes() const { return bytes_; } |
509 | |
510 | private: |
511 | const intptr_t file_size_; |
512 | const intptr_t memory_size_; |
513 | const uint8_t* const bytes_; |
514 | }; |
515 | |
516 | class StringTable : public Section { |
517 | public: |
518 | explicit StringTable(Zone* zone, bool allocate) |
519 | : Section(elf::SectionHeaderType::SHT_STRTAB, |
520 | allocate, |
521 | /*executable=*/false, |
522 | /*writable=*/false), |
523 | dynamic_(allocate), |
524 | text_(zone, 128), |
525 | text_indices_(zone) { |
526 | text_.AddChar('\0'); |
527 | text_indices_.Insert({"" , 1}); |
528 | } |
529 | |
530 | intptr_t FileSize() const { return text_.length(); } |
531 | intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
532 | |
533 | void Write(ElfWriteStream* stream) { |
534 | stream->WriteBytes(reinterpret_cast<const uint8_t*>(text_.buffer()), |
535 | text_.length()); |
536 | } |
537 | |
538 | intptr_t AddString(const char* str) { |
539 | if (auto const kv = text_indices_.Lookup(str)) return kv->value - 1; |
540 | intptr_t offset = text_.length(); |
541 | text_.AddString(str); |
542 | text_.AddChar('\0'); |
543 | text_indices_.Insert({str, offset + 1}); |
544 | return offset; |
545 | } |
546 | |
547 | const char* At(intptr_t index) { |
548 | ASSERT(index < text_.length()); |
549 | return text_.buffer() + index; |
550 | } |
551 | intptr_t Lookup(const char* str) const { |
552 | return text_indices_.LookupValue(str) - 1; |
553 | } |
554 | |
555 | const bool dynamic_; |
556 | ZoneTextBuffer text_; |
557 | // To avoid kNoValue for intptr_t (0), we store an index n as n + 1. |
558 | CStringMap<intptr_t> text_indices_; |
559 | }; |
560 | |
561 | class Symbol : public ZoneAllocated { |
562 | public: |
563 | Symbol(const char* cstr, |
564 | intptr_t name, |
565 | intptr_t info, |
566 | intptr_t section, |
567 | intptr_t offset, |
568 | intptr_t size) |
569 | : name_index(name), |
570 | info(info), |
571 | section_index(section), |
572 | offset(offset), |
573 | size(size), |
574 | cstr_(cstr) {} |
575 | |
576 | void Write(ElfWriteStream* stream) const { |
577 | const intptr_t start = stream->position(); |
578 | stream->WriteWord(name_index); |
579 | #if defined(TARGET_ARCH_IS_32_BIT) |
580 | stream->WriteAddr(offset); |
581 | stream->WriteWord(size); |
582 | stream->WriteByte(info); |
583 | stream->WriteByte(0); |
584 | stream->WriteHalf(section_index); |
585 | #else |
586 | stream->WriteByte(info); |
587 | stream->WriteByte(0); |
588 | stream->WriteHalf(section_index); |
589 | stream->WriteAddr(offset); |
590 | stream->WriteXWord(size); |
591 | #endif |
592 | ASSERT_EQUAL(stream->position() - start, sizeof(elf::Symbol)); |
593 | } |
594 | |
595 | const intptr_t name_index; |
596 | const intptr_t info; |
597 | const intptr_t section_index; |
598 | const intptr_t offset; |
599 | const intptr_t size; |
600 | |
601 | private: |
602 | friend class SymbolHashTable; // For cstr_ access. |
603 | |
604 | const char* const cstr_; |
605 | }; |
606 | |
607 | class SymbolTable : public Section { |
608 | public: |
609 | SymbolTable(Zone* zone, bool dynamic) |
610 | : Section(dynamic ? elf::SectionHeaderType::SHT_DYNSYM |
611 | : elf::SectionHeaderType::SHT_SYMTAB, |
612 | dynamic, |
613 | /*executable=*/false, |
614 | /*writable=*/false), |
615 | dynamic_(dynamic), |
616 | reserved_("" , 0, 0, 0, 0, 0), |
617 | symbols_(zone, 1) { |
618 | entry_size = sizeof(elf::Symbol); |
619 | // The first symbol table entry is reserved and must be all zeros. |
620 | symbols_.Add(&reserved_); |
621 | info = 1; // One "local" symbol, the reserved first entry. |
622 | } |
623 | |
624 | intptr_t FileSize() const { return Length() * entry_size; } |
625 | intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
626 | |
627 | void Write(ElfWriteStream* stream) { |
628 | for (intptr_t i = 0; i < Length(); i++) { |
629 | auto const symbol = At(i); |
630 | const intptr_t start = stream->position(); |
631 | symbol->Write(stream); |
632 | ASSERT_EQUAL(stream->position() - start, entry_size); |
633 | } |
634 | } |
635 | |
636 | void AddSymbol(const Symbol* symbol) { symbols_.Add(symbol); } |
637 | intptr_t Length() const { return symbols_.length(); } |
638 | const Symbol* At(intptr_t i) const { return symbols_[i]; } |
639 | |
640 | const Symbol* FindSymbolWithNameIndex(intptr_t name_index) const { |
641 | for (intptr_t i = 0; i < Length(); i++) { |
642 | auto const symbol = At(i); |
643 | if (symbol->name_index == name_index) return symbol; |
644 | } |
645 | return nullptr; |
646 | } |
647 | |
648 | private: |
649 | const bool dynamic_; |
650 | const Symbol reserved_; |
651 | GrowableArray<const Symbol*> symbols_; |
652 | }; |
653 | |
654 | static uint32_t ElfHash(const unsigned char* name) { |
655 | uint32_t h = 0; |
656 | while (*name != '\0') { |
657 | h = (h << 4) + *name++; |
658 | uint32_t g = h & 0xf0000000; |
659 | h ^= g; |
660 | h ^= g >> 24; |
661 | } |
662 | return h; |
663 | } |
664 | |
665 | class SymbolHashTable : public Section { |
666 | public: |
667 | SymbolHashTable(Zone* zone, StringTable* strtab, SymbolTable* symtab) |
668 | : Section(elf::SectionHeaderType::SHT_HASH, |
669 | /*allocate=*/true, |
670 | /*executable=*/false, |
671 | /*writable=*/false) { |
672 | link = symtab->index(); |
673 | entry_size = sizeof(int32_t); |
674 | |
675 | nchain_ = symtab->Length(); |
676 | nbucket_ = symtab->Length(); |
677 | |
678 | bucket_ = zone->Alloc<int32_t>(nbucket_); |
679 | for (intptr_t i = 0; i < nbucket_; i++) { |
680 | bucket_[i] = elf::STN_UNDEF; |
681 | } |
682 | |
683 | chain_ = zone->Alloc<int32_t>(nchain_); |
684 | for (intptr_t i = 0; i < nchain_; i++) { |
685 | chain_[i] = elf::STN_UNDEF; |
686 | } |
687 | |
688 | for (intptr_t i = 1; i < symtab->Length(); i++) { |
689 | auto const symbol = symtab->At(i); |
690 | uint32_t hash = ElfHash((const unsigned char*)symbol->cstr_); |
691 | uint32_t probe = hash % nbucket_; |
692 | chain_[i] = bucket_[probe]; // next = head |
693 | bucket_[probe] = i; // head = symbol |
694 | } |
695 | } |
696 | |
697 | intptr_t FileSize() const { return entry_size * (nbucket_ + nchain_ + 2); } |
698 | intptr_t MemorySize() const { return FileSize(); } |
699 | |
700 | void Write(ElfWriteStream* stream) { |
701 | stream->WriteWord(nbucket_); |
702 | stream->WriteWord(nchain_); |
703 | for (intptr_t i = 0; i < nbucket_; i++) { |
704 | stream->WriteWord(bucket_[i]); |
705 | } |
706 | for (intptr_t i = 0; i < nchain_; i++) { |
707 | stream->WriteWord(chain_[i]); |
708 | } |
709 | } |
710 | |
711 | private: |
712 | int32_t nbucket_; |
713 | int32_t nchain_; |
714 | int32_t* bucket_; // "Head" |
715 | int32_t* chain_; // "Next" |
716 | }; |
717 | |
718 | class DynamicTable : public Section { |
719 | public: |
720 | DynamicTable(Zone* zone, |
721 | StringTable* strtab, |
722 | SymbolTable* symtab, |
723 | SymbolHashTable* hash) |
724 | : Section(elf::SectionHeaderType::SHT_DYNAMIC, |
725 | /*allocate=*/true, |
726 | /*executable=*/false, |
727 | /*writable=*/true) { |
728 | link = strtab->index(); |
729 | entry_size = sizeof(elf::DynamicEntry); |
730 | |
731 | AddEntry(zone, elf::DynamicEntryType::DT_HASH, hash->memory_offset()); |
732 | AddEntry(zone, elf::DynamicEntryType::DT_STRTAB, strtab->memory_offset()); |
733 | AddEntry(zone, elf::DynamicEntryType::DT_STRSZ, strtab->MemorySize()); |
734 | AddEntry(zone, elf::DynamicEntryType::DT_SYMTAB, symtab->memory_offset()); |
735 | AddEntry(zone, elf::DynamicEntryType::DT_SYMENT, sizeof(elf::Symbol)); |
736 | AddEntry(zone, elf::DynamicEntryType::DT_NULL, 0); |
737 | } |
738 | |
739 | intptr_t FileSize() const { return entries_.length() * entry_size; } |
740 | intptr_t MemorySize() const { return FileSize(); } |
741 | |
742 | void Write(ElfWriteStream* stream) { |
743 | for (intptr_t i = 0; i < entries_.length(); i++) { |
744 | entries_[i]->Write(stream); |
745 | } |
746 | } |
747 | |
748 | struct Entry : public ZoneAllocated { |
749 | Entry(elf::DynamicEntryType tag, intptr_t value) : tag(tag), value(value) {} |
750 | |
751 | void Write(ElfWriteStream* stream) { |
752 | const intptr_t start = stream->position(); |
753 | #if defined(TARGET_ARCH_IS_32_BIT) |
754 | stream->WriteWord(static_cast<uint32_t>(tag)); |
755 | stream->WriteAddr(value); |
756 | #else |
757 | stream->WriteXWord(static_cast<uint64_t>(tag)); |
758 | stream->WriteAddr(value); |
759 | #endif |
760 | ASSERT_EQUAL(stream->position() - start, sizeof(elf::DynamicEntry)); |
761 | } |
762 | |
763 | elf::DynamicEntryType tag; |
764 | intptr_t value; |
765 | }; |
766 | |
767 | void AddEntry(Zone* zone, elf::DynamicEntryType tag, intptr_t value) { |
768 | auto const entry = new (zone) Entry(tag, value); |
769 | entries_.Add(entry); |
770 | } |
771 | |
772 | private: |
773 | GrowableArray<Entry*> entries_; |
774 | }; |
775 | |
776 | // A segment for representing the dynamic table segment in the program header |
777 | // table. There is no corresponding section for this segment. |
778 | class DynamicSegment : public Segment { |
779 | public: |
780 | explicit DynamicSegment(Zone* zone, DynamicTable* dynamic) |
781 | : Segment(zone, dynamic, elf::ProgramHeaderType::PT_DYNAMIC) {} |
782 | }; |
783 | |
784 | // A segment for representing the dynamic table segment in the program header |
785 | // table. There is no corresponding section for this segment. |
786 | class NoteSegment : public Segment { |
787 | public: |
788 | NoteSegment(Zone* zone, Section* note) |
789 | : Segment(zone, note, elf::ProgramHeaderType::PT_NOTE) { |
790 | ASSERT_EQUAL(static_cast<uint32_t>(note->type), |
791 | static_cast<uint32_t>(elf::SectionHeaderType::SHT_NOTE)); |
792 | } |
793 | }; |
794 | |
795 | static const intptr_t kProgramTableSegmentSize = Elf::kPageSize; |
796 | |
797 | // Here, both VM and isolate will be compiled into a single snapshot. |
798 | // In assembly generation, each serialized text section gets a separate |
799 | // pointer into the BSS segment and BSS slots are created for each, since |
800 | // we may not serialize both VM and isolate. Here, we always serialize both, |
801 | // so make a BSS segment large enough for both, with the VM entries coming |
802 | // first. |
803 | static constexpr const char* kSnapshotBssAsmSymbol = "_kDartBSSData" ; |
804 | static const intptr_t kBssIsolateOffset = |
805 | BSS::kVmEntryCount * compiler::target::kWordSize; |
806 | static const intptr_t kBssSize = |
807 | kBssIsolateOffset + BSS::kIsolateEntryCount * compiler::target::kWordSize; |
808 | |
809 | Elf::Elf(Zone* zone, StreamingWriteStream* stream, Type type, Dwarf* dwarf) |
810 | : zone_(zone), |
811 | unwrapped_stream_(stream), |
812 | type_(type), |
813 | dwarf_(dwarf), |
814 | bss_(CreateBSS(zone, type, kBssSize)), |
815 | shstrtab_(new (zone) StringTable(zone, /*allocate=*/false)), |
816 | dynstrtab_(new (zone) StringTable(zone, /*allocate=*/true)), |
817 | dynsym_(new (zone) SymbolTable(zone, /*dynamic=*/true)) { |
818 | // Separate debugging information should always have a Dwarf object. |
819 | ASSERT(type_ == Type::Snapshot || dwarf_ != nullptr); |
820 | // Assumed by various offset logic in this file. |
821 | ASSERT_EQUAL(unwrapped_stream_->position(), 0); |
822 | // The first section in the section header table is always a reserved |
823 | // entry containing only 0 values. |
824 | sections_.Add(new (zone_) ReservedSection()); |
825 | if (!IsStripped()) { |
826 | // Not a stripped ELF file, so allocate static string and symbol tables. |
827 | strtab_ = new (zone_) StringTable(zone_, /* allocate= */ false); |
828 | symtab_ = new (zone_) SymbolTable(zone, /*dynamic=*/false); |
829 | } |
830 | // We add an initial segment to represent reserved space for the program |
831 | // header, and so we can always assume there's at least one segment in the |
832 | // segments_ array. We later remove this and replace it with appropriately |
833 | // calculated segments in Elf::FinalizeProgramTable(). |
834 | auto const start_segment = |
835 | new (zone_) ProgramTableLoadSegment(zone_, kProgramTableSegmentSize); |
836 | segments_.Add(start_segment); |
837 | // Note that the BSS segment must be the first user-defined segment because |
838 | // it cannot be placed in between any two non-writable segments, due to a bug |
839 | // in Jelly Bean's ELF loader. See also Elf::WriteProgramTable(). |
840 | // |
841 | // We add it in all cases, even to the separate debugging information ELF, |
842 | // to ensure that relocated addresses are consistent between ELF snapshots |
843 | // and ELF separate debugging information. |
844 | AddSection(bss_, ".bss" , kSnapshotBssAsmSymbol); |
845 | } |
846 | |
847 | intptr_t Elf::NextMemoryOffset() const { |
848 | return Utils::RoundUp(LastLoadSegment()->MemoryEnd(), Elf::kPageSize); |
849 | } |
850 | |
851 | uword Elf::BssStart(bool vm) const { |
852 | return bss_->memory_offset() + (vm ? 0 : kBssIsolateOffset); |
853 | } |
854 | |
855 | intptr_t Elf::AddSection(Section* section, |
856 | const char* name, |
857 | const char* symbol_name) { |
858 | ASSERT(section_table_file_size_ < 0); |
859 | ASSERT(!shstrtab_->HasBeenFinalized()); |
860 | section->set_name(shstrtab_->AddString(name)); |
861 | section->set_index(sections_.length()); |
862 | sections_.Add(section); |
863 | |
864 | // No memory offset, so just return -1. |
865 | if (!section->IsAllocated()) return -1; |
866 | |
867 | ASSERT(program_table_file_size_ < 0); |
868 | auto const last_load = LastLoadSegment(); |
869 | if (!last_load->Add(section)) { |
870 | // We can't add this section to the last load segment, so create a new one. |
871 | // The new segment starts at the next aligned address. |
872 | auto const type = elf::ProgramHeaderType::PT_LOAD; |
873 | auto const start_address = |
874 | Utils::RoundUp(last_load->MemoryEnd(), Segment::Alignment(type)); |
875 | section->set_memory_offset(start_address); |
876 | auto const segment = new (zone_) Segment(zone_, section, type); |
877 | segments_.Add(segment); |
878 | } |
879 | if (symbol_name != nullptr) { |
880 | section->symbol_name = symbol_name; |
881 | } |
882 | return section->memory_offset(); |
883 | } |
884 | |
885 | intptr_t Elf::AddText(const char* name, const uint8_t* bytes, intptr_t size) { |
886 | // When making a separate debugging info file for assembly, we don't have |
887 | // the binary text segment contents. |
888 | ASSERT(type_ == Type::DebugInfo || bytes != nullptr); |
889 | auto const image = new (zone_) |
890 | BitsContainer(type_, /*executable=*/true, |
891 | /*writable=*/false, size, bytes, Elf::kPageSize); |
892 | return AddSection(image, ".text" , name); |
893 | } |
894 | |
895 | Section* Elf::CreateBSS(Zone* zone, Type type, intptr_t size) { |
896 | uint8_t* bytes = nullptr; |
897 | if (type != Type::DebugInfo) { |
898 | // Ideally the BSS segment would take no space in the object, but Android's |
899 | // "strip" utility truncates the memory-size of our segments to their |
900 | // file-size. |
901 | // |
902 | // Therefore we must insert zero-filled pages for the BSS. |
903 | bytes = zone->Alloc<uint8_t>(size); |
904 | memset(bytes, 0, size); |
905 | } |
906 | return new (zone) BitsContainer(type, /*executable=*/false, /*writable=*/true, |
907 | kBssSize, bytes, Image::kBssAlignment); |
908 | } |
909 | |
910 | intptr_t Elf::AddROData(const char* name, const uint8_t* bytes, intptr_t size) { |
911 | ASSERT(bytes != nullptr); |
912 | auto const image = new (zone_) |
913 | BitsContainer(type_, /*executable=*/false, |
914 | /*writable=*/false, size, bytes, kMaxObjectAlignment); |
915 | return AddSection(image, ".rodata" , name); |
916 | } |
917 | |
918 | void Elf::AddDebug(const char* name, const uint8_t* bytes, intptr_t size) { |
919 | ASSERT(!IsStripped()); |
920 | ASSERT(bytes != nullptr); |
921 | auto const image = new (zone_) |
922 | BitsContainer(elf::SectionHeaderType::SHT_PROGBITS, size, bytes); |
923 | AddSection(image, name); |
924 | } |
925 | |
926 | void Elf::AddDynamicSymbol(const char* name, |
927 | intptr_t info, |
928 | intptr_t section_index, |
929 | intptr_t address, |
930 | intptr_t size) { |
931 | ASSERT(!dynstrtab_->HasBeenFinalized() && !dynsym_->HasBeenFinalized()); |
932 | auto const name_index = dynstrtab_->AddString(name); |
933 | auto const symbol = |
934 | new (zone_) Symbol(name, name_index, info, section_index, address, size); |
935 | dynsym_->AddSymbol(symbol); |
936 | |
937 | // Some tools assume the static symbol table is a superset of the dynamic |
938 | // symbol table when it exists (see dartbug.com/41783). |
939 | AddStaticSymbol(name, info, section_index, address, size); |
940 | } |
941 | |
942 | void Elf::AddStaticSymbol(const char* name, |
943 | intptr_t info, |
944 | intptr_t section_index, |
945 | intptr_t address, |
946 | intptr_t size) { |
947 | if (IsStripped()) return; // No static info kept in stripped ELF files. |
948 | ASSERT(!symtab_->HasBeenFinalized() && !strtab_->HasBeenFinalized()); |
949 | auto const name_index = strtab_->AddString(name); |
950 | auto const symbol = |
951 | new (zone_) Symbol(name, name_index, info, section_index, address, size); |
952 | symtab_->AddSymbol(symbol); |
953 | } |
954 | |
955 | #if defined(DART_PRECOMPILER) |
956 | class DwarfElfStream : public DwarfWriteStream { |
957 | public: |
958 | explicit DwarfElfStream(Zone* zone, |
959 | WriteStream* stream, |
960 | const CStringMap<intptr_t>& address_map) |
961 | : zone_(zone), |
962 | stream_(ASSERT_NOTNULL(stream)), |
963 | address_map_(address_map) {} |
964 | |
965 | void sleb128(intptr_t value) { |
966 | bool is_last_part = false; |
967 | while (!is_last_part) { |
968 | uint8_t part = value & 0x7F; |
969 | value >>= 7; |
970 | if ((value == 0 && (part & 0x40) == 0) || |
971 | (value == static_cast<intptr_t>(-1) && (part & 0x40) != 0)) { |
972 | is_last_part = true; |
973 | } else { |
974 | part |= 0x80; |
975 | } |
976 | stream_->WriteFixed(part); |
977 | } |
978 | } |
979 | |
980 | void uleb128(uintptr_t value) { |
981 | bool is_last_part = false; |
982 | while (!is_last_part) { |
983 | uint8_t part = value & 0x7F; |
984 | value >>= 7; |
985 | if (value == 0) { |
986 | is_last_part = true; |
987 | } else { |
988 | part |= 0x80; |
989 | } |
990 | stream_->WriteFixed(part); |
991 | } |
992 | } |
993 | |
994 | void u1(uint8_t value) { stream_->WriteFixed(value); } |
995 | // Can't use WriteFixed for these, as we may not be at aligned positions. |
996 | void u2(uint16_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
997 | void u4(uint32_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
998 | void u8(uint64_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
999 | void string(const char* cstr) { // NOLINT |
1000 | stream_->WriteBytes(reinterpret_cast<const uint8_t*>(cstr), |
1001 | strlen(cstr) + 1); |
1002 | } |
1003 | intptr_t position() { return stream_->Position(); } |
1004 | intptr_t ReserveSize(const char* prefix, intptr_t* start) { |
1005 | ASSERT(start != nullptr); |
1006 | intptr_t fixup = position(); |
1007 | // We assume DWARF v2, so all sizes are 32-bit. |
1008 | u4(0); |
1009 | // All sizes for DWARF sections measure the size of the section data _after_ |
1010 | // the size value. |
1011 | *start = position(); |
1012 | return fixup; |
1013 | } |
1014 | void SetSize(intptr_t fixup, const char* prefix, intptr_t start) { |
1015 | const uint32_t value = position() - start; |
1016 | memmove(stream_->buffer() + fixup, &value, sizeof(value)); |
1017 | } |
1018 | void OffsetFromSymbol(const char* symbol, intptr_t offset) { |
1019 | auto const address = address_map_.LookupValue(symbol); |
1020 | ASSERT(address != 0); |
1021 | addr(address + offset); |
1022 | } |
1023 | void DistanceBetweenSymbolOffsets(const char* symbol1, |
1024 | intptr_t offset1, |
1025 | const char* symbol2, |
1026 | intptr_t offset2) { |
1027 | auto const address1 = address_map_.LookupValue(symbol1); |
1028 | ASSERT(address1 != 0); |
1029 | auto const address2 = address_map_.LookupValue(symbol2); |
1030 | ASSERT(address2 != 0); |
1031 | auto const delta = (address1 + offset1) - (address2 + offset2); |
1032 | RELEASE_ASSERT(delta >= 0); |
1033 | uleb128(delta); |
1034 | } |
1035 | void InitializeAbstractOrigins(intptr_t size) { |
1036 | abstract_origins_size_ = size; |
1037 | abstract_origins_ = zone_->Alloc<uint32_t>(abstract_origins_size_); |
1038 | } |
1039 | void RegisterAbstractOrigin(intptr_t index) { |
1040 | ASSERT(abstract_origins_ != nullptr); |
1041 | ASSERT(index < abstract_origins_size_); |
1042 | abstract_origins_[index] = position(); |
1043 | } |
1044 | void AbstractOrigin(intptr_t index) { u4(abstract_origins_[index]); } |
1045 | |
1046 | private: |
1047 | void addr(uword value) { |
1048 | #if defined(TARGET_ARCH_IS_32_BIT) |
1049 | u4(value); |
1050 | #else |
1051 | u8(value); |
1052 | #endif |
1053 | } |
1054 | |
1055 | Zone* const zone_; |
1056 | WriteStream* const stream_; |
1057 | const CStringMap<intptr_t>& address_map_; |
1058 | uint32_t* abstract_origins_ = nullptr; |
1059 | intptr_t abstract_origins_size_ = -1; |
1060 | |
1061 | DISALLOW_COPY_AND_ASSIGN(DwarfElfStream); |
1062 | }; |
1063 | |
1064 | static constexpr intptr_t kInitialDwarfBufferSize = 64 * KB; |
1065 | #endif |
1066 | |
1067 | static uint8_t* ZoneReallocate(uint8_t* ptr, intptr_t len, intptr_t new_len) { |
1068 | return Thread::Current()->zone()->Realloc<uint8_t>(ptr, len, new_len); |
1069 | } |
1070 | |
1071 | Segment* Elf::LastLoadSegment() const { |
1072 | for (intptr_t i = segments_.length() - 1; i >= 0; i--) { |
1073 | auto const segment = segments_.At(i); |
1074 | if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
1075 | return segment; |
1076 | } |
1077 | } |
1078 | // There should always be a load segment, since one is added in construction. |
1079 | UNREACHABLE(); |
1080 | } |
1081 | |
1082 | const Section* Elf::FindSectionForAddress(intptr_t address) const { |
1083 | for (auto const section : sections_) { |
1084 | if (!section->IsAllocated()) continue; |
1085 | auto const start = section->memory_offset(); |
1086 | auto const end = start + section->MemorySize(); |
1087 | if (address >= start && address < end) { |
1088 | return section; |
1089 | } |
1090 | } |
1091 | return nullptr; |
1092 | } |
1093 | |
1094 | void Elf::AddSectionSymbols() { |
1095 | for (auto const section : sections_) { |
1096 | if (section->symbol_name == nullptr) continue; |
1097 | ASSERT(section->memory_offset_is_set()); |
1098 | // While elf::STT_SECTION might seem more appropriate, those symbols are |
1099 | // usually local and dlsym won't return them. |
1100 | auto const info = (elf::STB_GLOBAL << 4) | elf::STT_FUNC; |
1101 | AddDynamicSymbol(section->symbol_name, info, section->index(), |
1102 | section->memory_offset(), section->MemorySize()); |
1103 | } |
1104 | } |
1105 | |
1106 | void Elf::FinalizeDwarfSections() { |
1107 | if (dwarf_ == nullptr) return; |
1108 | #if defined(DART_PRECOMPILER) |
1109 | // Add all the static symbols for Code objects. We'll keep a table of |
1110 | // symbol names to relocated addresses for use in the DwarfElfStream. |
1111 | // The default kNoValue of 0 is okay here, as no symbols are defined for |
1112 | // relocated address 0. |
1113 | CStringMap<intptr_t> symbol_to_address_map; |
1114 | // Prime the map with any existing static symbols. |
1115 | if (symtab_ != nullptr) { |
1116 | ASSERT(strtab_ != nullptr); |
1117 | // Skip the initial reserved entry in the symbol table. |
1118 | for (intptr_t i = 1; i < symtab_->Length(); i++) { |
1119 | auto const symbol = symtab_->At(i); |
1120 | auto const name = strtab_->At(symbol->name_index); |
1121 | symbol_to_address_map.Insert({name, symbol->offset}); |
1122 | } |
1123 | } |
1124 | |
1125 | // Need these to turn offsets into relocated addresses. |
1126 | auto const vm_start = |
1127 | symbol_to_address_map.LookupValue(kVmSnapshotInstructionsAsmSymbol); |
1128 | // vm_start is absent in deferred loading peices. |
1129 | auto const isolate_start = |
1130 | symbol_to_address_map.LookupValue(kIsolateSnapshotInstructionsAsmSymbol); |
1131 | ASSERT(isolate_start > 0); |
1132 | auto const vm_text = FindSectionForAddress(vm_start); |
1133 | // vm_text is absent in deferred loading peices. |
1134 | auto const isolate_text = FindSectionForAddress(isolate_start); |
1135 | ASSERT(isolate_text != nullptr); |
1136 | |
1137 | SnapshotTextObjectNamer namer(zone_); |
1138 | const auto& codes = dwarf_->codes(); |
1139 | if (codes.length() == 0) { |
1140 | return; |
1141 | } |
1142 | for (intptr_t i = 0; i < codes.length(); i++) { |
1143 | const auto& code = *codes[i]; |
1144 | auto const name = namer.SnapshotNameFor(i, code); |
1145 | const auto& pair = dwarf_->CodeAddress(code); |
1146 | ASSERT(pair.offset > 0); |
1147 | auto const section = pair.vm ? vm_text : isolate_text; |
1148 | const intptr_t address = section->memory_offset() + pair.offset; |
1149 | auto const info = (elf::STB_GLOBAL << 4) | elf::STT_FUNC; |
1150 | AddStaticSymbol(name, info, section->index(), address, code.Size()); |
1151 | symbol_to_address_map.Insert({name, address}); |
1152 | } |
1153 | |
1154 | // TODO(rmacnak): Generate .debug_frame / .eh_frame / .arm.exidx to |
1155 | // provide unwinding information. |
1156 | |
1157 | { |
1158 | uint8_t* buffer = nullptr; |
1159 | WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
1160 | DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
1161 | dwarf_->WriteAbbreviations(&dwarf_stream); |
1162 | AddDebug(".debug_abbrev" , buffer, stream.bytes_written()); |
1163 | } |
1164 | |
1165 | { |
1166 | uint8_t* buffer = nullptr; |
1167 | WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
1168 | DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
1169 | dwarf_->WriteDebugInfo(&dwarf_stream); |
1170 | AddDebug(".debug_info" , buffer, stream.bytes_written()); |
1171 | } |
1172 | |
1173 | { |
1174 | uint8_t* buffer = nullptr; |
1175 | WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
1176 | DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
1177 | dwarf_->WriteLineNumberProgram(&dwarf_stream); |
1178 | AddDebug(".debug_line" , buffer, stream.bytes_written()); |
1179 | } |
1180 | #endif |
1181 | } |
1182 | |
1183 | void Elf::Finalize() { |
1184 | AddSectionSymbols(); |
1185 | |
1186 | // The Build ID depends on the symbols being in place, so must be run after |
1187 | // AddSectionSymbols(). Unfortunately, it currently depends on the contents |
1188 | // of the .text and .rodata sections, so it can't come earlier in the file |
1189 | // without changing how we add the .text and .rodata sections (since we |
1190 | // determine memory offsets for those sections when we add them, and the |
1191 | // text sections must have the memory offsets to do BSS relocations). |
1192 | if (auto const build_id = GenerateBuildId()) { |
1193 | AddSection(build_id, ".note.gnu.build-id" , kSnapshotBuildIdAsmSymbol); |
1194 | |
1195 | // Add a PT_NOTE segment for the build ID. |
1196 | segments_.Add(new (zone_) NoteSegment(zone_, build_id)); |
1197 | } |
1198 | |
1199 | // Adding the dynamic symbol table and associated sections. |
1200 | AddSection(dynstrtab_, ".dynstr" ); |
1201 | AddSection(dynsym_, ".dynsym" ); |
1202 | dynsym_->link = dynstrtab_->index(); |
1203 | |
1204 | auto const hash = new (zone_) SymbolHashTable(zone_, dynstrtab_, dynsym_); |
1205 | AddSection(hash, ".hash" ); |
1206 | |
1207 | auto const dynamic = |
1208 | new (zone_) DynamicTable(zone_, dynstrtab_, dynsym_, hash); |
1209 | AddSection(dynamic, ".dynamic" ); |
1210 | |
1211 | // Add a PT_DYNAMIC segment for the dynamic symbol table. |
1212 | segments_.Add(new (zone_) DynamicSegment(zone_, dynamic)); |
1213 | |
1214 | // Currently, we add all (non-reserved) unallocated sections after all |
1215 | // allocated sections. If we put unallocated sections between allocated |
1216 | // sections, they would affect the file offset but not the memory offset |
1217 | // of the later allocated sections. |
1218 | // |
1219 | // However, memory offsets must be page-aligned to the file offset for the |
1220 | // ELF file to be successfully loaded. This means we'd either have to add |
1221 | // extra padding _or_ determine file offsets before memory offsets. The |
1222 | // latter would require us to handle BSS relocations during ELF finalization, |
1223 | // instead of while writing the .text section content. |
1224 | FinalizeDwarfSections(); |
1225 | if (!IsStripped()) { |
1226 | AddSection(strtab_, ".strtab" ); |
1227 | AddSection(symtab_, ".symtab" ); |
1228 | symtab_->link = strtab_->index(); |
1229 | } |
1230 | AddSection(shstrtab_, ".shstrtab" ); |
1231 | |
1232 | // At this point, all non-programmatically calculated sections and segments |
1233 | // have been added. Add any programatically calculated sections and segments |
1234 | // and then calculate file offsets. |
1235 | FinalizeProgramTable(); |
1236 | ComputeFileOffsets(); |
1237 | |
1238 | // Finally, write the ELF file contents. |
1239 | ElfWriteStream wrapped(unwrapped_stream_); |
1240 | WriteHeader(&wrapped); |
1241 | WriteProgramTable(&wrapped); |
1242 | WriteSections(&wrapped); |
1243 | WriteSectionTable(&wrapped); |
1244 | } |
1245 | |
1246 | // Need to include the final \0 terminator in both byte count and byte output. |
1247 | static const uint32_t kBuildIdNameLength = strlen(elf::ELF_NOTE_GNU) + 1; |
1248 | // We generate a 128-bit hash, where each 32 bits is a hash of the contents of |
1249 | // the following segments in order: |
1250 | // |
1251 | // .text(VM) | .text(Isolate) | .rodata(VM) | .rodata(Isolate) |
1252 | static constexpr intptr_t kBuildIdSegmentNamesLength = 4; |
1253 | static constexpr const char* kBuildIdSegmentNames[kBuildIdSegmentNamesLength]{ |
1254 | kVmSnapshotInstructionsAsmSymbol, |
1255 | kIsolateSnapshotInstructionsAsmSymbol, |
1256 | kVmSnapshotDataAsmSymbol, |
1257 | kIsolateSnapshotDataAsmSymbol, |
1258 | }; |
1259 | static constexpr uint32_t kBuildIdDescriptionLength = |
1260 | kBuildIdSegmentNamesLength * sizeof(uint32_t); |
1261 | static const intptr_t kBuildIdDescriptionOffset = |
1262 | sizeof(elf::Note) + kBuildIdNameLength; |
1263 | static const intptr_t kBuildIdSize = |
1264 | kBuildIdDescriptionOffset + kBuildIdDescriptionLength; |
1265 | |
1266 | static const Symbol* LookupSymbol(StringTable* strings, |
1267 | SymbolTable* symbols, |
1268 | const char* name) { |
1269 | ASSERT(strings != nullptr); |
1270 | ASSERT(symbols != nullptr); |
1271 | auto const name_index = strings->Lookup(name); |
1272 | if (name_index < 0) return nullptr; |
1273 | return symbols->FindSymbolWithNameIndex(name_index); |
1274 | } |
1275 | |
1276 | static uint32_t HashBitsContainer(const BitsContainer* bits) { |
1277 | uint32_t hash = 0; |
1278 | auto const size = bits->MemorySize(); |
1279 | auto const end = bits->bytes() + size; |
1280 | auto const non_word_size = size % kWordSize; |
1281 | auto const end_of_words = |
1282 | reinterpret_cast<const uword*>(bits->bytes() + (size - non_word_size)); |
1283 | for (auto cursor = reinterpret_cast<const uword*>(bits->bytes()); |
1284 | cursor < end_of_words; cursor++) { |
1285 | hash = CombineHashes(hash, *cursor); |
1286 | } |
1287 | for (auto cursor = reinterpret_cast<const uint8_t*>(end_of_words); |
1288 | cursor < end; cursor++) { |
1289 | hash = CombineHashes(hash, *cursor); |
1290 | } |
1291 | return FinalizeHash(hash, 32); |
1292 | } |
1293 | |
1294 | Section* Elf::GenerateBuildId() { |
1295 | uint8_t* notes_buffer = nullptr; |
1296 | WriteStream stream(¬es_buffer, ZoneReallocate, kBuildIdSize); |
1297 | stream.WriteFixed(kBuildIdNameLength); |
1298 | stream.WriteFixed(kBuildIdDescriptionLength); |
1299 | stream.WriteFixed(static_cast<uint32_t>(elf::NoteType::NT_GNU_BUILD_ID)); |
1300 | stream.WriteBytes(elf::ELF_NOTE_GNU, kBuildIdNameLength); |
1301 | const intptr_t description_start = stream.bytes_written(); |
1302 | for (intptr_t i = 0; i < kBuildIdSegmentNamesLength; i++) { |
1303 | auto const name = kBuildIdSegmentNames[i]; |
1304 | auto const symbol = LookupSymbol(dynstrtab_, dynsym_, name); |
1305 | if (symbol == nullptr) { |
1306 | stream.WriteFixed(static_cast<uint32_t>(0)); |
1307 | continue; |
1308 | } |
1309 | auto const bits = sections_[symbol->section_index]->AsBitsContainer(); |
1310 | if (bits == nullptr) { |
1311 | FATAL1("Section for symbol %s is not a BitsContainer" , name); |
1312 | } |
1313 | ASSERT_EQUAL(bits->MemorySize(), symbol->size); |
1314 | // We don't actually have the bytes (i.e., this is a separate debugging |
1315 | // info file for an assembly snapshot), so we can't calculate the build ID. |
1316 | if (bits->bytes() == nullptr) return nullptr; |
1317 | |
1318 | stream.WriteFixed(HashBitsContainer(bits)); |
1319 | } |
1320 | ASSERT_EQUAL(stream.bytes_written() - description_start, |
1321 | kBuildIdDescriptionLength); |
1322 | return new (zone_) BitsContainer( |
1323 | elf::SectionHeaderType::SHT_NOTE, /*allocate=*/true, /*executable=*/false, |
1324 | /*writable=*/false, stream.bytes_written(), notes_buffer, kNoteAlignment); |
1325 | } |
1326 | |
1327 | void Elf::FinalizeProgramTable() { |
1328 | ASSERT(program_table_file_size_ < 0); |
1329 | |
1330 | program_table_file_offset_ = sizeof(elf::ElfHeader); |
1331 | |
1332 | // There are two segments we need the size of the program table to create, so |
1333 | // calculate it as if those two segments were already in place. |
1334 | program_table_file_size_ = |
1335 | (2 + segments_.length()) * sizeof(elf::ProgramHeader); |
1336 | |
1337 | // We pre-allocated the virtual memory space for the program table itself. |
1338 | // Check that we didn't generate too many segments. Currently we generate a |
1339 | // fixed num of segments based on the four pieces of a snapshot, but if we |
1340 | // use more in the future we'll likely need to do something more compilated |
1341 | // to generate DWARF without knowing a piece's virtual address in advance. |
1342 | auto const program_table_segment_size = |
1343 | program_table_file_offset_ + program_table_file_size_; |
1344 | RELEASE_ASSERT(program_table_segment_size < kProgramTableSegmentSize); |
1345 | |
1346 | // Remove the original stand-in segment we added in the constructor. |
1347 | segments_.EraseAt(0); |
1348 | |
1349 | // Self-reference to program header table. Required by Android but not by |
1350 | // Linux. Must appear before any PT_LOAD entries. |
1351 | segments_.InsertAt( |
1352 | 0, new (zone_) ProgramTableSelfSegment(zone_, program_table_file_offset_, |
1353 | program_table_file_size_)); |
1354 | |
1355 | // Segment for loading the initial part of the ELF file, including the |
1356 | // program header table. Required by Android but not by Linux. |
1357 | segments_.InsertAt(1, new (zone_) ProgramTableLoadSegment( |
1358 | zone_, program_table_segment_size)); |
1359 | } |
1360 | |
1361 | static const intptr_t kElfSectionTableAlignment = compiler::target::kWordSize; |
1362 | |
1363 | void Elf::ComputeFileOffsets() { |
1364 | // We calculate the size and offset of the program header table during |
1365 | // finalization. |
1366 | ASSERT(program_table_file_offset_ > 0 && program_table_file_size_ > 0); |
1367 | intptr_t file_offset = program_table_file_offset_ + program_table_file_size_; |
1368 | // When calculating file offsets for sections, we'll need to know if we've |
1369 | // changed segments. Start with the one for the program table. |
1370 | const auto* current_segment = segments_[1]; |
1371 | |
1372 | // The non-reserved sections are output to the file in order after the program |
1373 | // header table. If we're entering a new segment, then we need to align |
1374 | // according to the PT_LOAD segment alignment as well to keep the file offsets |
1375 | // aligned with the memory addresses. |
1376 | auto const load_align = Segment::Alignment(elf::ProgramHeaderType::PT_LOAD); |
1377 | for (intptr_t i = 1; i < sections_.length(); i++) { |
1378 | auto const section = sections_[i]; |
1379 | file_offset = Utils::RoundUp(file_offset, section->alignment); |
1380 | if (section->IsAllocated() && section->load_segment != current_segment) { |
1381 | file_offset = Utils::RoundUp(file_offset, load_align); |
1382 | current_segment = section->load_segment; |
1383 | } |
1384 | section->set_file_offset(file_offset); |
1385 | #if defined(DEBUG) |
1386 | if (section->IsAllocated()) { |
1387 | // For files that will be dynamically loaded, make sure the file offsets |
1388 | // of allocated sections are page aligned to the memory offsets. |
1389 | ASSERT_EQUAL(section->file_offset() % load_align, |
1390 | section->memory_offset() % load_align); |
1391 | } |
1392 | #endif |
1393 | file_offset += section->FileSize(); |
1394 | } |
1395 | |
1396 | file_offset = Utils::RoundUp(file_offset, kElfSectionTableAlignment); |
1397 | section_table_file_offset_ = file_offset; |
1398 | section_table_file_size_ = sections_.length() * sizeof(elf::SectionHeader); |
1399 | file_offset += section_table_file_size_; |
1400 | } |
1401 | |
1402 | void Elf::(ElfWriteStream* stream) { |
1403 | #if defined(TARGET_ARCH_IS_32_BIT) |
1404 | uint8_t size = elf::ELFCLASS32; |
1405 | #else |
1406 | uint8_t size = elf::ELFCLASS64; |
1407 | #endif |
1408 | uint8_t e_ident[16] = {0x7f, |
1409 | 'E', |
1410 | 'L', |
1411 | 'F', |
1412 | size, |
1413 | elf::ELFDATA2LSB, |
1414 | elf::EV_CURRENT, |
1415 | elf::ELFOSABI_SYSV, |
1416 | 0, |
1417 | 0, |
1418 | 0, |
1419 | 0, |
1420 | 0, |
1421 | 0, |
1422 | 0, |
1423 | 0}; |
1424 | stream->WriteBytes(e_ident, 16); |
1425 | |
1426 | stream->WriteHalf(elf::ET_DYN); // Shared library. |
1427 | |
1428 | #if defined(TARGET_ARCH_IA32) |
1429 | stream->WriteHalf(elf::EM_386); |
1430 | #elif defined(TARGET_ARCH_X64) |
1431 | stream->WriteHalf(elf::EM_X86_64); |
1432 | #elif defined(TARGET_ARCH_ARM) |
1433 | stream->WriteHalf(elf::EM_ARM); |
1434 | #elif defined(TARGET_ARCH_ARM64) |
1435 | stream->WriteHalf(elf::EM_AARCH64); |
1436 | #else |
1437 | FATAL("Unknown ELF architecture" ); |
1438 | #endif |
1439 | |
1440 | stream->WriteWord(elf::EV_CURRENT); // Version |
1441 | stream->WriteAddr(0); // "Entry point" |
1442 | stream->WriteOff(program_table_file_offset_); |
1443 | stream->WriteOff(section_table_file_offset_); |
1444 | |
1445 | #if defined(TARGET_ARCH_ARM) |
1446 | uword flags = elf::EF_ARM_ABI | (TargetCPUFeatures::hardfp_supported() |
1447 | ? elf::EF_ARM_ABI_FLOAT_HARD |
1448 | : elf::EF_ARM_ABI_FLOAT_SOFT); |
1449 | #else |
1450 | uword flags = 0; |
1451 | #endif |
1452 | stream->WriteWord(flags); |
1453 | |
1454 | stream->WriteHalf(sizeof(elf::ElfHeader)); |
1455 | stream->WriteHalf(sizeof(elf::ProgramHeader)); |
1456 | stream->WriteHalf(segments_.length()); |
1457 | stream->WriteHalf(sizeof(elf::SectionHeader)); |
1458 | stream->WriteHalf(sections_.length()); |
1459 | stream->WriteHalf(shstrtab_->index()); |
1460 | |
1461 | ASSERT_EQUAL(stream->position(), sizeof(elf::ElfHeader)); |
1462 | } |
1463 | |
1464 | void Elf::WriteProgramTable(ElfWriteStream* stream) { |
1465 | ASSERT(program_table_file_size_ >= 0); // Check for finalization. |
1466 | ASSERT(stream->position() == program_table_file_offset_); |
1467 | #if defined(DEBUG) |
1468 | // Here, we count the number of times that a PT_LOAD writable segment is |
1469 | // followed by a non-writable segment. We initialize last_writable to true so |
1470 | // that we catch the case where the first segment is non-writable. |
1471 | bool last_writable = true; |
1472 | int non_writable_groups = 0; |
1473 | #endif |
1474 | for (auto const segment : segments_) { |
1475 | #if defined(DEBUG) |
1476 | if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
1477 | if (last_writable && !segment->IsWritable()) { |
1478 | non_writable_groups++; |
1479 | } |
1480 | last_writable = segment->IsWritable(); |
1481 | } |
1482 | #endif |
1483 | const intptr_t start = stream->position(); |
1484 | segment->WriteProgramHeader(stream); |
1485 | const intptr_t end = stream->position(); |
1486 | ASSERT_EQUAL(end - start, sizeof(elf::ProgramHeader)); |
1487 | } |
1488 | #if defined(DEBUG) |
1489 | // All PT_LOAD non-writable segments must be contiguous. If not, some older |
1490 | // Android dynamic linkers fail to handle writable segments between |
1491 | // non-writable ones. See https://github.com/flutter/flutter/issues/43259. |
1492 | ASSERT(non_writable_groups <= 1); |
1493 | #endif |
1494 | } |
1495 | |
1496 | void Elf::WriteSectionTable(ElfWriteStream* stream) { |
1497 | ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
1498 | stream->Align(kElfSectionTableAlignment); |
1499 | ASSERT_EQUAL(stream->position(), section_table_file_offset_); |
1500 | |
1501 | for (auto const section : sections_) { |
1502 | const intptr_t start = stream->position(); |
1503 | section->WriteSectionHeader(stream); |
1504 | const intptr_t end = stream->position(); |
1505 | ASSERT_EQUAL(end - start, sizeof(elf::SectionHeader)); |
1506 | } |
1507 | } |
1508 | |
1509 | void Elf::WriteSections(ElfWriteStream* stream) { |
1510 | ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
1511 | |
1512 | // Skip the reserved first section, as its alignment is 0 (which will cause |
1513 | // stream->Align() to fail) and it never contains file contents anyway. |
1514 | ASSERT_EQUAL(static_cast<uint32_t>(sections_[0]->type), |
1515 | static_cast<uint32_t>(elf::SectionHeaderType::SHT_NULL)); |
1516 | ASSERT_EQUAL(sections_[0]->alignment, 0); |
1517 | auto const load_align = Segment::Alignment(elf::ProgramHeaderType::PT_LOAD); |
1518 | const Segment* current_segment = segments_[1]; |
1519 | for (intptr_t i = 1; i < sections_.length(); i++) { |
1520 | Section* section = sections_[i]; |
1521 | stream->Align(section->alignment); |
1522 | if (section->IsAllocated() && section->load_segment != current_segment) { |
1523 | // Changing segments, so align accordingly. |
1524 | stream->Align(load_align); |
1525 | current_segment = section->load_segment; |
1526 | } |
1527 | ASSERT_EQUAL(stream->position(), section->file_offset()); |
1528 | section->Write(stream); |
1529 | ASSERT_EQUAL(stream->position(), |
1530 | section->file_offset() + section->FileSize()); |
1531 | } |
1532 | } |
1533 | |
1534 | } // namespace dart |
1535 | |