| 1 | // Copyright (c) 2019, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/elf.h" |
| 6 | |
| 7 | #include "platform/elf.h" |
| 8 | #include "vm/cpu.h" |
| 9 | #include "vm/dwarf.h" |
| 10 | #include "vm/hash_map.h" |
| 11 | #include "vm/image_snapshot.h" |
| 12 | #include "vm/thread.h" |
| 13 | #include "vm/zone_text_buffer.h" |
| 14 | |
| 15 | namespace dart { |
| 16 | |
| 17 | // A wrapper around StreamingWriteStream that provides methods useful for |
| 18 | // writing ELF files (e.g., using ELF definitions of data sizes). |
| 19 | class ElfWriteStream : public ValueObject { |
| 20 | public: |
| 21 | explicit ElfWriteStream(StreamingWriteStream* stream) |
| 22 | : stream_(ASSERT_NOTNULL(stream)) {} |
| 23 | |
| 24 | intptr_t position() const { return stream_->position(); } |
| 25 | void Align(const intptr_t alignment) { |
| 26 | ASSERT(Utils::IsPowerOfTwo(alignment)); |
| 27 | stream_->Align(alignment); |
| 28 | } |
| 29 | void WriteBytes(const uint8_t* b, intptr_t size) { |
| 30 | stream_->WriteBytes(b, size); |
| 31 | } |
| 32 | void WriteByte(uint8_t value) { |
| 33 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 34 | } |
| 35 | void WriteHalf(uint16_t value) { |
| 36 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 37 | } |
| 38 | void WriteWord(uint32_t value) { |
| 39 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 40 | } |
| 41 | void WriteAddr(compiler::target::uword value) { |
| 42 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 43 | } |
| 44 | void WriteOff(compiler::target::uword value) { |
| 45 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 46 | } |
| 47 | #if defined(TARGET_ARCH_IS_64_BIT) |
| 48 | void WriteXWord(uint64_t value) { |
| 49 | stream_->WriteBytes(reinterpret_cast<uint8_t*>(&value), sizeof(value)); |
| 50 | } |
| 51 | #endif |
| 52 | |
| 53 | private: |
| 54 | StreamingWriteStream* const stream_; |
| 55 | }; |
| 56 | |
| 57 | static constexpr intptr_t kLinearInitValue = -1; |
| 58 | |
| 59 | #define DEFINE_LINEAR_FIELD_METHODS(name) \ |
| 60 | intptr_t name() const { \ |
| 61 | ASSERT(name##_ != kLinearInitValue); \ |
| 62 | return name##_; \ |
| 63 | } \ |
| 64 | bool name##_is_set() const { return name##_ != kLinearInitValue; } \ |
| 65 | void set_##name(intptr_t value) { \ |
| 66 | ASSERT(value != kLinearInitValue); \ |
| 67 | ASSERT_EQUAL(name##_, kLinearInitValue); \ |
| 68 | name##_ = value; \ |
| 69 | } |
| 70 | |
| 71 | #define DEFINE_LINEAR_FIELD(name) intptr_t name##_ = kLinearInitValue; |
| 72 | |
| 73 | class BitsContainer; |
| 74 | class Segment; |
| 75 | |
| 76 | static constexpr intptr_t kDefaultAlignment = -1; |
| 77 | // Align note sections and segments to 4 byte boundries. |
| 78 | static constexpr intptr_t kNoteAlignment = 4; |
| 79 | |
| 80 | class Section : public ZoneAllocated { |
| 81 | public: |
| 82 | (elf::SectionHeaderType t, |
| 83 | bool allocate, |
| 84 | bool executable, |
| 85 | bool writable, |
| 86 | intptr_t align = kDefaultAlignment) |
| 87 | : type(t), |
| 88 | flags(EncodeFlags(allocate, executable, writable)), |
| 89 | alignment(align == kDefaultAlignment ? DefaultAlignment(t) : align), |
| 90 | // Non-segments will never have a memory offset, here represented by 0. |
| 91 | memory_offset_(allocate ? kLinearInitValue : 0) { |
| 92 | // Only sections with type SHT_NULL are allowed to have an alignment of 0. |
| 93 | ASSERT(type == elf::SectionHeaderType::SHT_NULL || alignment > 0); |
| 94 | // Non-zero alignments must be a power of 2. |
| 95 | ASSERT(alignment == 0 || Utils::IsPowerOfTwo(alignment)); |
| 96 | } |
| 97 | |
| 98 | virtual ~Section() {} |
| 99 | |
| 100 | // Linker view. |
| 101 | const elf::SectionHeaderType type; |
| 102 | const intptr_t flags; |
| 103 | const intptr_t alignment; |
| 104 | |
| 105 | // These are fields that only are not set for most kinds of sections and so we |
| 106 | // set them to a reasonable default. |
| 107 | intptr_t link = elf::SHN_UNDEF; |
| 108 | intptr_t info = 0; |
| 109 | intptr_t entry_size = 0; |
| 110 | |
| 111 | // Stores the name for the symbol that should be created in the dynamic (and |
| 112 | // static, if unstripped) tables for this section. |
| 113 | const char* symbol_name = nullptr; |
| 114 | |
| 115 | #define FOR_EACH_SECTION_LINEAR_FIELD(M) \ |
| 116 | M(name) \ |
| 117 | M(index) \ |
| 118 | M(file_offset) |
| 119 | |
| 120 | FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
| 121 | |
| 122 | virtual intptr_t FileSize() const = 0; |
| 123 | |
| 124 | // Loader view. |
| 125 | #define FOR_EACH_SEGMENT_LINEAR_FIELD(M) M(memory_offset) |
| 126 | |
| 127 | FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD_METHODS); |
| 128 | |
| 129 | // Each section belongs to at most one PT_LOAD segment. |
| 130 | const Segment* load_segment = nullptr; |
| 131 | |
| 132 | virtual intptr_t MemorySize() const = 0; |
| 133 | |
| 134 | // Other methods. |
| 135 | |
| 136 | bool IsAllocated() const { |
| 137 | return (flags & elf::SHF_ALLOC) == elf::SHF_ALLOC; |
| 138 | } |
| 139 | bool IsExecutable() const { |
| 140 | return (flags & elf::SHF_EXECINSTR) == elf::SHF_EXECINSTR; |
| 141 | } |
| 142 | bool IsWritable() const { return (flags & elf::SHF_WRITE) == elf::SHF_WRITE; } |
| 143 | |
| 144 | // Returns whether new content can be added to a section. |
| 145 | bool HasBeenFinalized() const { |
| 146 | if (IsAllocated()) { |
| 147 | // The contents of a section that is allocated (part of a segment) must |
| 148 | // not change after the section is added. |
| 149 | return memory_offset_is_set(); |
| 150 | } else { |
| 151 | // Unallocated sections can have new content added until we calculate |
| 152 | // file offsets. |
| 153 | return file_offset_is_set(); |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | virtual const BitsContainer* AsBitsContainer() const { return nullptr; } |
| 158 | |
| 159 | // Writes the file contents of the section. |
| 160 | virtual void Write(ElfWriteStream* stream) = 0; |
| 161 | |
| 162 | virtual void (ElfWriteStream* stream) { |
| 163 | #if defined(TARGET_ARCH_IS_32_BIT) |
| 164 | stream->WriteWord(name()); |
| 165 | stream->WriteWord(static_cast<uint32_t>(type)); |
| 166 | stream->WriteWord(flags); |
| 167 | stream->WriteAddr(memory_offset()); |
| 168 | stream->WriteOff(file_offset()); |
| 169 | stream->WriteWord(FileSize()); // Has different meaning for BSS. |
| 170 | stream->WriteWord(link); |
| 171 | stream->WriteWord(info); |
| 172 | stream->WriteWord(alignment); |
| 173 | stream->WriteWord(entry_size); |
| 174 | #else |
| 175 | stream->WriteWord(name()); |
| 176 | stream->WriteWord(static_cast<uint32_t>(type)); |
| 177 | stream->WriteXWord(flags); |
| 178 | stream->WriteAddr(memory_offset()); |
| 179 | stream->WriteOff(file_offset()); |
| 180 | stream->WriteXWord(FileSize()); // Has different meaning for BSS. |
| 181 | stream->WriteWord(link); |
| 182 | stream->WriteWord(info); |
| 183 | stream->WriteXWord(alignment); |
| 184 | stream->WriteXWord(entry_size); |
| 185 | #endif |
| 186 | } |
| 187 | |
| 188 | private: |
| 189 | static intptr_t EncodeFlags(bool allocate, bool executable, bool writable) { |
| 190 | if (!allocate) return 0; |
| 191 | intptr_t flags = elf::SHF_ALLOC; |
| 192 | if (executable) flags |= elf::SHF_EXECINSTR; |
| 193 | if (writable) flags |= elf::SHF_WRITE; |
| 194 | return flags; |
| 195 | } |
| 196 | |
| 197 | static intptr_t (elf::SectionHeaderType type) { |
| 198 | switch (type) { |
| 199 | case elf::SectionHeaderType::SHT_SYMTAB: |
| 200 | case elf::SectionHeaderType::SHT_DYNSYM: |
| 201 | case elf::SectionHeaderType::SHT_HASH: |
| 202 | case elf::SectionHeaderType::SHT_DYNAMIC: |
| 203 | return compiler::target::kWordSize; |
| 204 | default: |
| 205 | return 1; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | FOR_EACH_SECTION_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
| 210 | FOR_EACH_SEGMENT_LINEAR_FIELD(DEFINE_LINEAR_FIELD); |
| 211 | |
| 212 | #undef FOR_EACH_SECTION_LINEAR_FIELD |
| 213 | #undef FOR_EACH_SEGMENT_LINEAR_FIELD |
| 214 | }; |
| 215 | |
| 216 | #undef DEFINE_LINEAR_FIELD |
| 217 | #undef DEFINE_LINEAR_FIELD_METHODS |
| 218 | |
| 219 | class Segment : public ZoneAllocated { |
| 220 | public: |
| 221 | (Zone* zone, |
| 222 | Section* initial_section, |
| 223 | elf::ProgramHeaderType segment_type) |
| 224 | : type(segment_type), |
| 225 | // Flags for the segment are the same as the initial section. |
| 226 | flags(EncodeFlags(ASSERT_NOTNULL(initial_section)->IsExecutable(), |
| 227 | ASSERT_NOTNULL(initial_section)->IsWritable())), |
| 228 | sections_(zone, 0) { |
| 229 | // Unlike sections, we don't have a reserved segment with the null type, |
| 230 | // so we never should pass this value. |
| 231 | ASSERT(segment_type != elf::ProgramHeaderType::PT_NULL); |
| 232 | // All segments should have at least one section. The first one is added |
| 233 | // during initialization. Unlike others added later, it should already have |
| 234 | // a memory offset since we use it to determine the segment memory offset. |
| 235 | ASSERT(initial_section->IsAllocated()); |
| 236 | ASSERT(initial_section->memory_offset_is_set()); |
| 237 | sections_.Add(initial_section); |
| 238 | if (type == elf::ProgramHeaderType::PT_LOAD) { |
| 239 | ASSERT(initial_section->load_segment == nullptr); |
| 240 | initial_section->load_segment = this; |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | virtual ~Segment() {} |
| 245 | |
| 246 | static intptr_t (elf::ProgramHeaderType segment_type) { |
| 247 | switch (segment_type) { |
| 248 | case elf::ProgramHeaderType::PT_DYNAMIC: |
| 249 | return compiler::target::kWordSize; |
| 250 | case elf::ProgramHeaderType::PT_NOTE: |
| 251 | return kNoteAlignment; |
| 252 | default: |
| 253 | return Elf::kPageSize; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | bool IsExecutable() const { return (flags & elf::PF_X) == elf::PF_X; } |
| 258 | bool IsWritable() const { return (flags & elf::PF_W) == elf::PF_W; } |
| 259 | |
| 260 | void (ElfWriteStream* stream) { |
| 261 | #if defined(TARGET_ARCH_IS_32_BIT) |
| 262 | stream->WriteWord(static_cast<uint32_t>(type)); |
| 263 | stream->WriteOff(FileOffset()); |
| 264 | stream->WriteAddr(MemoryOffset()); // Virtual address. |
| 265 | stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
| 266 | stream->WriteWord(FileSize()); |
| 267 | stream->WriteWord(MemorySize()); |
| 268 | stream->WriteWord(flags); |
| 269 | stream->WriteWord(Alignment(type)); |
| 270 | #else |
| 271 | stream->WriteWord(static_cast<uint32_t>(type)); |
| 272 | stream->WriteWord(flags); |
| 273 | stream->WriteOff(FileOffset()); |
| 274 | stream->WriteAddr(MemoryOffset()); // Virtual address. |
| 275 | stream->WriteAddr(MemoryOffset()); // Physical address, not used. |
| 276 | stream->WriteXWord(FileSize()); |
| 277 | stream->WriteXWord(MemorySize()); |
| 278 | stream->WriteXWord(Alignment(type)); |
| 279 | #endif |
| 280 | } |
| 281 | |
| 282 | // Adds the given section to this segment. |
| 283 | // |
| 284 | // Returns whether the Section could be added to the segment. If not, a |
| 285 | // new segment will need to be created for this section. |
| 286 | // |
| 287 | // Sets the memory offset of the section if added. |
| 288 | bool Add(Section* section) { |
| 289 | // We only add additional sections to load segments. |
| 290 | ASSERT(type == elf::ProgramHeaderType::PT_LOAD); |
| 291 | ASSERT(section != nullptr); |
| 292 | // Only sections with the allocate flag set should be added to segments, |
| 293 | // and sections with already-set memory offsets cannot be added. |
| 294 | ASSERT(section->IsAllocated()); |
| 295 | ASSERT(!section->memory_offset_is_set()); |
| 296 | ASSERT(section->load_segment == nullptr); |
| 297 | switch (sections_.Last()->type) { |
| 298 | // We only use SHT_NULL sections as pseudo sections that will not appear |
| 299 | // in the final ELF file. Don't pack sections into these segments, as we |
| 300 | // may remove/replace the segments during finalization. |
| 301 | case elf::SectionHeaderType::SHT_NULL: |
| 302 | // If the last section in the segments is NOBITS, then we don't add it, |
| 303 | // as otherwise we'll be guaranteed the file offset and memory offset |
| 304 | // won't be page aligned without padding. |
| 305 | case elf::SectionHeaderType::SHT_NOBITS: |
| 306 | return false; |
| 307 | default: |
| 308 | break; |
| 309 | } |
| 310 | // We don't add if the W or X bits don't match. |
| 311 | if (IsExecutable() != section->IsExecutable() || |
| 312 | IsWritable() != section->IsWritable()) { |
| 313 | return false; |
| 314 | } |
| 315 | auto const start_address = Utils::RoundUp(MemoryEnd(), section->alignment); |
| 316 | section->set_memory_offset(start_address); |
| 317 | sections_.Add(section); |
| 318 | section->load_segment = this; |
| 319 | return true; |
| 320 | } |
| 321 | |
| 322 | intptr_t FileOffset() const { return sections_[0]->file_offset(); } |
| 323 | |
| 324 | intptr_t FileSize() const { |
| 325 | auto const last = sections_.Last(); |
| 326 | const intptr_t end = last->file_offset() + last->FileSize(); |
| 327 | return end - FileOffset(); |
| 328 | } |
| 329 | |
| 330 | intptr_t MemoryOffset() const { return sections_[0]->memory_offset(); } |
| 331 | |
| 332 | intptr_t MemorySize() const { |
| 333 | auto const last = sections_.Last(); |
| 334 | const intptr_t end = last->memory_offset() + last->MemorySize(); |
| 335 | return end - MemoryOffset(); |
| 336 | } |
| 337 | |
| 338 | intptr_t MemoryEnd() const { return MemoryOffset() + MemorySize(); } |
| 339 | |
| 340 | private: |
| 341 | static constexpr intptr_t kInitValue = -1; |
| 342 | static_assert(kInitValue < 0, "init value must be negative" ); |
| 343 | |
| 344 | static intptr_t EncodeFlags(bool executable, bool writable) { |
| 345 | intptr_t flags = elf::PF_R; |
| 346 | if (executable) flags |= elf::PF_X; |
| 347 | if (writable) flags |= elf::PF_W; |
| 348 | return flags; |
| 349 | } |
| 350 | |
| 351 | public: |
| 352 | const elf::ProgramHeaderType type; |
| 353 | const intptr_t flags; |
| 354 | |
| 355 | private: |
| 356 | GrowableArray<const Section*> sections_; |
| 357 | }; |
| 358 | |
| 359 | // Represents the first entry in the section table, which should only contain |
| 360 | // zero values and does not correspond to a memory segment. |
| 361 | class ReservedSection : public Section { |
| 362 | public: |
| 363 | ReservedSection() |
| 364 | : Section(elf::SectionHeaderType::SHT_NULL, |
| 365 | /*allocate=*/false, |
| 366 | /*executable=*/false, |
| 367 | /*writable=*/false, |
| 368 | /*alignment=*/0) { |
| 369 | set_name(0); |
| 370 | set_index(0); |
| 371 | set_file_offset(0); |
| 372 | } |
| 373 | |
| 374 | intptr_t FileSize() const { return 0; } |
| 375 | intptr_t MemorySize() const { return 0; } |
| 376 | void Write(ElfWriteStream* stream) {} |
| 377 | }; |
| 378 | |
| 379 | // Represents portions of the file/memory space which do not correspond to |
| 380 | // actual sections. Should never be added to sections_. |
| 381 | class PseudoSection : public Section { |
| 382 | public: |
| 383 | PseudoSection(bool executable, |
| 384 | bool writable, |
| 385 | intptr_t file_offset, |
| 386 | intptr_t file_size, |
| 387 | intptr_t memory_offset, |
| 388 | intptr_t memory_size) |
| 389 | : Section(elf::SectionHeaderType::SHT_NULL, |
| 390 | /*allocate=*/true, |
| 391 | executable, |
| 392 | writable, |
| 393 | /*alignment=*/0), |
| 394 | file_size_(file_size), |
| 395 | memory_size_(memory_size) { |
| 396 | set_file_offset(file_offset); |
| 397 | set_memory_offset(memory_offset); |
| 398 | } |
| 399 | |
| 400 | intptr_t FileSize() const { return file_size_; } |
| 401 | intptr_t MemorySize() const { return memory_size_; } |
| 402 | void (ElfWriteStream* stream) { UNREACHABLE(); } |
| 403 | void Write(ElfWriteStream* stream) { UNREACHABLE(); } |
| 404 | |
| 405 | private: |
| 406 | const intptr_t file_size_; |
| 407 | const intptr_t memory_size_; |
| 408 | }; |
| 409 | |
| 410 | // A segment for representing the program header table self-reference in the |
| 411 | // program header table. |
| 412 | class ProgramTableSelfSegment : public Segment { |
| 413 | public: |
| 414 | ProgramTableSelfSegment(Zone* zone, intptr_t offset, intptr_t size) |
| 415 | : Segment(zone, |
| 416 | new (zone) PseudoSection(/*executable=*/false, |
| 417 | /*writable=*/false, |
| 418 | offset, |
| 419 | size, |
| 420 | offset, |
| 421 | size), |
| 422 | elf::ProgramHeaderType::PT_PHDR) {} |
| 423 | }; |
| 424 | |
| 425 | // A segment for representing the program header table load segment in the |
| 426 | // program header table. |
| 427 | class ProgramTableLoadSegment : public Segment { |
| 428 | public: |
| 429 | // The Android dynamic linker in Jelly Bean incorrectly assumes that all |
| 430 | // non-writable segments are continguous. Since the BSS segment comes directly |
| 431 | // after the program header segment, we must make this segment writable so |
| 432 | // later non-writable segments does not cause the BSS to be also marked as |
| 433 | // read-only. |
| 434 | // |
| 435 | // The bug is here: |
| 436 | // https://github.com/aosp-mirror/platform_bionic/blob/94963af28e445384e19775a838a29e6a71708179/linker/linker.c#L1991-L2001 |
| 437 | explicit ProgramTableLoadSegment(Zone* zone, intptr_t size) |
| 438 | : Segment(zone, |
| 439 | // This segment should always start at address 0. |
| 440 | new (zone) PseudoSection(/*executable=*/false, |
| 441 | /*writable=*/true, |
| 442 | 0, |
| 443 | size, |
| 444 | 0, |
| 445 | size), |
| 446 | elf::ProgramHeaderType::PT_LOAD) {} |
| 447 | }; |
| 448 | |
| 449 | class BitsContainer : public Section { |
| 450 | public: |
| 451 | // Fully specified BitsContainer information. |
| 452 | (elf::SectionHeaderType type, |
| 453 | bool allocate, |
| 454 | bool executable, |
| 455 | bool writable, |
| 456 | intptr_t size, |
| 457 | const uint8_t* bytes, |
| 458 | int alignment = kDefaultAlignment) |
| 459 | : Section(type, allocate, executable, writable, alignment), |
| 460 | file_size_(type == elf::SectionHeaderType::SHT_NOBITS ? 0 : size), |
| 461 | memory_size_(allocate ? size : 0), |
| 462 | bytes_(bytes) { |
| 463 | ASSERT(type == elf::SectionHeaderType::SHT_NOBITS || bytes != nullptr); |
| 464 | } |
| 465 | |
| 466 | // For BitsContainers used only as sections. |
| 467 | (elf::SectionHeaderType type, |
| 468 | intptr_t size, |
| 469 | const uint8_t* bytes, |
| 470 | intptr_t alignment = kDefaultAlignment) |
| 471 | : BitsContainer(type, |
| 472 | /*allocate=*/false, |
| 473 | /*executable=*/false, |
| 474 | /*writable=*/false, |
| 475 | size, |
| 476 | bytes, |
| 477 | alignment) {} |
| 478 | |
| 479 | // For BitsContainers used as segments whose type differ on the type of the |
| 480 | // ELF file. Creates an elf::SHT_NOBITS section if type is DebugInfo, |
| 481 | // otherwise creates an elf::SHT_PROGBITS section. |
| 482 | BitsContainer(Elf::Type t, |
| 483 | bool executable, |
| 484 | bool writable, |
| 485 | intptr_t size, |
| 486 | const uint8_t* bytes, |
| 487 | intptr_t alignment = kDefaultAlignment) |
| 488 | : BitsContainer(t == Elf::Type::DebugInfo |
| 489 | ? elf::SectionHeaderType::SHT_NOBITS |
| 490 | : elf::SectionHeaderType::SHT_PROGBITS, |
| 491 | /*allocate=*/true, |
| 492 | executable, |
| 493 | writable, |
| 494 | size, |
| 495 | bytes, |
| 496 | alignment) {} |
| 497 | |
| 498 | const BitsContainer* AsBitsContainer() const { return this; } |
| 499 | |
| 500 | void Write(ElfWriteStream* stream) { |
| 501 | if (type != elf::SectionHeaderType::SHT_NOBITS) { |
| 502 | stream->WriteBytes(bytes_, FileSize()); |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | intptr_t FileSize() const { return file_size_; } |
| 507 | intptr_t MemorySize() const { return memory_size_; } |
| 508 | const uint8_t* bytes() const { return bytes_; } |
| 509 | |
| 510 | private: |
| 511 | const intptr_t file_size_; |
| 512 | const intptr_t memory_size_; |
| 513 | const uint8_t* const bytes_; |
| 514 | }; |
| 515 | |
| 516 | class StringTable : public Section { |
| 517 | public: |
| 518 | explicit StringTable(Zone* zone, bool allocate) |
| 519 | : Section(elf::SectionHeaderType::SHT_STRTAB, |
| 520 | allocate, |
| 521 | /*executable=*/false, |
| 522 | /*writable=*/false), |
| 523 | dynamic_(allocate), |
| 524 | text_(zone, 128), |
| 525 | text_indices_(zone) { |
| 526 | text_.AddChar('\0'); |
| 527 | text_indices_.Insert({"" , 1}); |
| 528 | } |
| 529 | |
| 530 | intptr_t FileSize() const { return text_.length(); } |
| 531 | intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
| 532 | |
| 533 | void Write(ElfWriteStream* stream) { |
| 534 | stream->WriteBytes(reinterpret_cast<const uint8_t*>(text_.buffer()), |
| 535 | text_.length()); |
| 536 | } |
| 537 | |
| 538 | intptr_t AddString(const char* str) { |
| 539 | if (auto const kv = text_indices_.Lookup(str)) return kv->value - 1; |
| 540 | intptr_t offset = text_.length(); |
| 541 | text_.AddString(str); |
| 542 | text_.AddChar('\0'); |
| 543 | text_indices_.Insert({str, offset + 1}); |
| 544 | return offset; |
| 545 | } |
| 546 | |
| 547 | const char* At(intptr_t index) { |
| 548 | ASSERT(index < text_.length()); |
| 549 | return text_.buffer() + index; |
| 550 | } |
| 551 | intptr_t Lookup(const char* str) const { |
| 552 | return text_indices_.LookupValue(str) - 1; |
| 553 | } |
| 554 | |
| 555 | const bool dynamic_; |
| 556 | ZoneTextBuffer text_; |
| 557 | // To avoid kNoValue for intptr_t (0), we store an index n as n + 1. |
| 558 | CStringMap<intptr_t> text_indices_; |
| 559 | }; |
| 560 | |
| 561 | class Symbol : public ZoneAllocated { |
| 562 | public: |
| 563 | Symbol(const char* cstr, |
| 564 | intptr_t name, |
| 565 | intptr_t info, |
| 566 | intptr_t section, |
| 567 | intptr_t offset, |
| 568 | intptr_t size) |
| 569 | : name_index(name), |
| 570 | info(info), |
| 571 | section_index(section), |
| 572 | offset(offset), |
| 573 | size(size), |
| 574 | cstr_(cstr) {} |
| 575 | |
| 576 | void Write(ElfWriteStream* stream) const { |
| 577 | const intptr_t start = stream->position(); |
| 578 | stream->WriteWord(name_index); |
| 579 | #if defined(TARGET_ARCH_IS_32_BIT) |
| 580 | stream->WriteAddr(offset); |
| 581 | stream->WriteWord(size); |
| 582 | stream->WriteByte(info); |
| 583 | stream->WriteByte(0); |
| 584 | stream->WriteHalf(section_index); |
| 585 | #else |
| 586 | stream->WriteByte(info); |
| 587 | stream->WriteByte(0); |
| 588 | stream->WriteHalf(section_index); |
| 589 | stream->WriteAddr(offset); |
| 590 | stream->WriteXWord(size); |
| 591 | #endif |
| 592 | ASSERT_EQUAL(stream->position() - start, sizeof(elf::Symbol)); |
| 593 | } |
| 594 | |
| 595 | const intptr_t name_index; |
| 596 | const intptr_t info; |
| 597 | const intptr_t section_index; |
| 598 | const intptr_t offset; |
| 599 | const intptr_t size; |
| 600 | |
| 601 | private: |
| 602 | friend class SymbolHashTable; // For cstr_ access. |
| 603 | |
| 604 | const char* const cstr_; |
| 605 | }; |
| 606 | |
| 607 | class SymbolTable : public Section { |
| 608 | public: |
| 609 | SymbolTable(Zone* zone, bool dynamic) |
| 610 | : Section(dynamic ? elf::SectionHeaderType::SHT_DYNSYM |
| 611 | : elf::SectionHeaderType::SHT_SYMTAB, |
| 612 | dynamic, |
| 613 | /*executable=*/false, |
| 614 | /*writable=*/false), |
| 615 | dynamic_(dynamic), |
| 616 | reserved_("" , 0, 0, 0, 0, 0), |
| 617 | symbols_(zone, 1) { |
| 618 | entry_size = sizeof(elf::Symbol); |
| 619 | // The first symbol table entry is reserved and must be all zeros. |
| 620 | symbols_.Add(&reserved_); |
| 621 | info = 1; // One "local" symbol, the reserved first entry. |
| 622 | } |
| 623 | |
| 624 | intptr_t FileSize() const { return Length() * entry_size; } |
| 625 | intptr_t MemorySize() const { return dynamic_ ? FileSize() : 0; } |
| 626 | |
| 627 | void Write(ElfWriteStream* stream) { |
| 628 | for (intptr_t i = 0; i < Length(); i++) { |
| 629 | auto const symbol = At(i); |
| 630 | const intptr_t start = stream->position(); |
| 631 | symbol->Write(stream); |
| 632 | ASSERT_EQUAL(stream->position() - start, entry_size); |
| 633 | } |
| 634 | } |
| 635 | |
| 636 | void AddSymbol(const Symbol* symbol) { symbols_.Add(symbol); } |
| 637 | intptr_t Length() const { return symbols_.length(); } |
| 638 | const Symbol* At(intptr_t i) const { return symbols_[i]; } |
| 639 | |
| 640 | const Symbol* FindSymbolWithNameIndex(intptr_t name_index) const { |
| 641 | for (intptr_t i = 0; i < Length(); i++) { |
| 642 | auto const symbol = At(i); |
| 643 | if (symbol->name_index == name_index) return symbol; |
| 644 | } |
| 645 | return nullptr; |
| 646 | } |
| 647 | |
| 648 | private: |
| 649 | const bool dynamic_; |
| 650 | const Symbol reserved_; |
| 651 | GrowableArray<const Symbol*> symbols_; |
| 652 | }; |
| 653 | |
| 654 | static uint32_t ElfHash(const unsigned char* name) { |
| 655 | uint32_t h = 0; |
| 656 | while (*name != '\0') { |
| 657 | h = (h << 4) + *name++; |
| 658 | uint32_t g = h & 0xf0000000; |
| 659 | h ^= g; |
| 660 | h ^= g >> 24; |
| 661 | } |
| 662 | return h; |
| 663 | } |
| 664 | |
| 665 | class SymbolHashTable : public Section { |
| 666 | public: |
| 667 | SymbolHashTable(Zone* zone, StringTable* strtab, SymbolTable* symtab) |
| 668 | : Section(elf::SectionHeaderType::SHT_HASH, |
| 669 | /*allocate=*/true, |
| 670 | /*executable=*/false, |
| 671 | /*writable=*/false) { |
| 672 | link = symtab->index(); |
| 673 | entry_size = sizeof(int32_t); |
| 674 | |
| 675 | nchain_ = symtab->Length(); |
| 676 | nbucket_ = symtab->Length(); |
| 677 | |
| 678 | bucket_ = zone->Alloc<int32_t>(nbucket_); |
| 679 | for (intptr_t i = 0; i < nbucket_; i++) { |
| 680 | bucket_[i] = elf::STN_UNDEF; |
| 681 | } |
| 682 | |
| 683 | chain_ = zone->Alloc<int32_t>(nchain_); |
| 684 | for (intptr_t i = 0; i < nchain_; i++) { |
| 685 | chain_[i] = elf::STN_UNDEF; |
| 686 | } |
| 687 | |
| 688 | for (intptr_t i = 1; i < symtab->Length(); i++) { |
| 689 | auto const symbol = symtab->At(i); |
| 690 | uint32_t hash = ElfHash((const unsigned char*)symbol->cstr_); |
| 691 | uint32_t probe = hash % nbucket_; |
| 692 | chain_[i] = bucket_[probe]; // next = head |
| 693 | bucket_[probe] = i; // head = symbol |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | intptr_t FileSize() const { return entry_size * (nbucket_ + nchain_ + 2); } |
| 698 | intptr_t MemorySize() const { return FileSize(); } |
| 699 | |
| 700 | void Write(ElfWriteStream* stream) { |
| 701 | stream->WriteWord(nbucket_); |
| 702 | stream->WriteWord(nchain_); |
| 703 | for (intptr_t i = 0; i < nbucket_; i++) { |
| 704 | stream->WriteWord(bucket_[i]); |
| 705 | } |
| 706 | for (intptr_t i = 0; i < nchain_; i++) { |
| 707 | stream->WriteWord(chain_[i]); |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | private: |
| 712 | int32_t nbucket_; |
| 713 | int32_t nchain_; |
| 714 | int32_t* bucket_; // "Head" |
| 715 | int32_t* chain_; // "Next" |
| 716 | }; |
| 717 | |
| 718 | class DynamicTable : public Section { |
| 719 | public: |
| 720 | DynamicTable(Zone* zone, |
| 721 | StringTable* strtab, |
| 722 | SymbolTable* symtab, |
| 723 | SymbolHashTable* hash) |
| 724 | : Section(elf::SectionHeaderType::SHT_DYNAMIC, |
| 725 | /*allocate=*/true, |
| 726 | /*executable=*/false, |
| 727 | /*writable=*/true) { |
| 728 | link = strtab->index(); |
| 729 | entry_size = sizeof(elf::DynamicEntry); |
| 730 | |
| 731 | AddEntry(zone, elf::DynamicEntryType::DT_HASH, hash->memory_offset()); |
| 732 | AddEntry(zone, elf::DynamicEntryType::DT_STRTAB, strtab->memory_offset()); |
| 733 | AddEntry(zone, elf::DynamicEntryType::DT_STRSZ, strtab->MemorySize()); |
| 734 | AddEntry(zone, elf::DynamicEntryType::DT_SYMTAB, symtab->memory_offset()); |
| 735 | AddEntry(zone, elf::DynamicEntryType::DT_SYMENT, sizeof(elf::Symbol)); |
| 736 | AddEntry(zone, elf::DynamicEntryType::DT_NULL, 0); |
| 737 | } |
| 738 | |
| 739 | intptr_t FileSize() const { return entries_.length() * entry_size; } |
| 740 | intptr_t MemorySize() const { return FileSize(); } |
| 741 | |
| 742 | void Write(ElfWriteStream* stream) { |
| 743 | for (intptr_t i = 0; i < entries_.length(); i++) { |
| 744 | entries_[i]->Write(stream); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | struct Entry : public ZoneAllocated { |
| 749 | Entry(elf::DynamicEntryType tag, intptr_t value) : tag(tag), value(value) {} |
| 750 | |
| 751 | void Write(ElfWriteStream* stream) { |
| 752 | const intptr_t start = stream->position(); |
| 753 | #if defined(TARGET_ARCH_IS_32_BIT) |
| 754 | stream->WriteWord(static_cast<uint32_t>(tag)); |
| 755 | stream->WriteAddr(value); |
| 756 | #else |
| 757 | stream->WriteXWord(static_cast<uint64_t>(tag)); |
| 758 | stream->WriteAddr(value); |
| 759 | #endif |
| 760 | ASSERT_EQUAL(stream->position() - start, sizeof(elf::DynamicEntry)); |
| 761 | } |
| 762 | |
| 763 | elf::DynamicEntryType tag; |
| 764 | intptr_t value; |
| 765 | }; |
| 766 | |
| 767 | void AddEntry(Zone* zone, elf::DynamicEntryType tag, intptr_t value) { |
| 768 | auto const entry = new (zone) Entry(tag, value); |
| 769 | entries_.Add(entry); |
| 770 | } |
| 771 | |
| 772 | private: |
| 773 | GrowableArray<Entry*> entries_; |
| 774 | }; |
| 775 | |
| 776 | // A segment for representing the dynamic table segment in the program header |
| 777 | // table. There is no corresponding section for this segment. |
| 778 | class DynamicSegment : public Segment { |
| 779 | public: |
| 780 | explicit DynamicSegment(Zone* zone, DynamicTable* dynamic) |
| 781 | : Segment(zone, dynamic, elf::ProgramHeaderType::PT_DYNAMIC) {} |
| 782 | }; |
| 783 | |
| 784 | // A segment for representing the dynamic table segment in the program header |
| 785 | // table. There is no corresponding section for this segment. |
| 786 | class NoteSegment : public Segment { |
| 787 | public: |
| 788 | NoteSegment(Zone* zone, Section* note) |
| 789 | : Segment(zone, note, elf::ProgramHeaderType::PT_NOTE) { |
| 790 | ASSERT_EQUAL(static_cast<uint32_t>(note->type), |
| 791 | static_cast<uint32_t>(elf::SectionHeaderType::SHT_NOTE)); |
| 792 | } |
| 793 | }; |
| 794 | |
| 795 | static const intptr_t kProgramTableSegmentSize = Elf::kPageSize; |
| 796 | |
| 797 | // Here, both VM and isolate will be compiled into a single snapshot. |
| 798 | // In assembly generation, each serialized text section gets a separate |
| 799 | // pointer into the BSS segment and BSS slots are created for each, since |
| 800 | // we may not serialize both VM and isolate. Here, we always serialize both, |
| 801 | // so make a BSS segment large enough for both, with the VM entries coming |
| 802 | // first. |
| 803 | static constexpr const char* kSnapshotBssAsmSymbol = "_kDartBSSData" ; |
| 804 | static const intptr_t kBssIsolateOffset = |
| 805 | BSS::kVmEntryCount * compiler::target::kWordSize; |
| 806 | static const intptr_t kBssSize = |
| 807 | kBssIsolateOffset + BSS::kIsolateEntryCount * compiler::target::kWordSize; |
| 808 | |
| 809 | Elf::Elf(Zone* zone, StreamingWriteStream* stream, Type type, Dwarf* dwarf) |
| 810 | : zone_(zone), |
| 811 | unwrapped_stream_(stream), |
| 812 | type_(type), |
| 813 | dwarf_(dwarf), |
| 814 | bss_(CreateBSS(zone, type, kBssSize)), |
| 815 | shstrtab_(new (zone) StringTable(zone, /*allocate=*/false)), |
| 816 | dynstrtab_(new (zone) StringTable(zone, /*allocate=*/true)), |
| 817 | dynsym_(new (zone) SymbolTable(zone, /*dynamic=*/true)) { |
| 818 | // Separate debugging information should always have a Dwarf object. |
| 819 | ASSERT(type_ == Type::Snapshot || dwarf_ != nullptr); |
| 820 | // Assumed by various offset logic in this file. |
| 821 | ASSERT_EQUAL(unwrapped_stream_->position(), 0); |
| 822 | // The first section in the section header table is always a reserved |
| 823 | // entry containing only 0 values. |
| 824 | sections_.Add(new (zone_) ReservedSection()); |
| 825 | if (!IsStripped()) { |
| 826 | // Not a stripped ELF file, so allocate static string and symbol tables. |
| 827 | strtab_ = new (zone_) StringTable(zone_, /* allocate= */ false); |
| 828 | symtab_ = new (zone_) SymbolTable(zone, /*dynamic=*/false); |
| 829 | } |
| 830 | // We add an initial segment to represent reserved space for the program |
| 831 | // header, and so we can always assume there's at least one segment in the |
| 832 | // segments_ array. We later remove this and replace it with appropriately |
| 833 | // calculated segments in Elf::FinalizeProgramTable(). |
| 834 | auto const start_segment = |
| 835 | new (zone_) ProgramTableLoadSegment(zone_, kProgramTableSegmentSize); |
| 836 | segments_.Add(start_segment); |
| 837 | // Note that the BSS segment must be the first user-defined segment because |
| 838 | // it cannot be placed in between any two non-writable segments, due to a bug |
| 839 | // in Jelly Bean's ELF loader. See also Elf::WriteProgramTable(). |
| 840 | // |
| 841 | // We add it in all cases, even to the separate debugging information ELF, |
| 842 | // to ensure that relocated addresses are consistent between ELF snapshots |
| 843 | // and ELF separate debugging information. |
| 844 | AddSection(bss_, ".bss" , kSnapshotBssAsmSymbol); |
| 845 | } |
| 846 | |
| 847 | intptr_t Elf::NextMemoryOffset() const { |
| 848 | return Utils::RoundUp(LastLoadSegment()->MemoryEnd(), Elf::kPageSize); |
| 849 | } |
| 850 | |
| 851 | uword Elf::BssStart(bool vm) const { |
| 852 | return bss_->memory_offset() + (vm ? 0 : kBssIsolateOffset); |
| 853 | } |
| 854 | |
| 855 | intptr_t Elf::AddSection(Section* section, |
| 856 | const char* name, |
| 857 | const char* symbol_name) { |
| 858 | ASSERT(section_table_file_size_ < 0); |
| 859 | ASSERT(!shstrtab_->HasBeenFinalized()); |
| 860 | section->set_name(shstrtab_->AddString(name)); |
| 861 | section->set_index(sections_.length()); |
| 862 | sections_.Add(section); |
| 863 | |
| 864 | // No memory offset, so just return -1. |
| 865 | if (!section->IsAllocated()) return -1; |
| 866 | |
| 867 | ASSERT(program_table_file_size_ < 0); |
| 868 | auto const last_load = LastLoadSegment(); |
| 869 | if (!last_load->Add(section)) { |
| 870 | // We can't add this section to the last load segment, so create a new one. |
| 871 | // The new segment starts at the next aligned address. |
| 872 | auto const type = elf::ProgramHeaderType::PT_LOAD; |
| 873 | auto const start_address = |
| 874 | Utils::RoundUp(last_load->MemoryEnd(), Segment::Alignment(type)); |
| 875 | section->set_memory_offset(start_address); |
| 876 | auto const segment = new (zone_) Segment(zone_, section, type); |
| 877 | segments_.Add(segment); |
| 878 | } |
| 879 | if (symbol_name != nullptr) { |
| 880 | section->symbol_name = symbol_name; |
| 881 | } |
| 882 | return section->memory_offset(); |
| 883 | } |
| 884 | |
| 885 | intptr_t Elf::AddText(const char* name, const uint8_t* bytes, intptr_t size) { |
| 886 | // When making a separate debugging info file for assembly, we don't have |
| 887 | // the binary text segment contents. |
| 888 | ASSERT(type_ == Type::DebugInfo || bytes != nullptr); |
| 889 | auto const image = new (zone_) |
| 890 | BitsContainer(type_, /*executable=*/true, |
| 891 | /*writable=*/false, size, bytes, Elf::kPageSize); |
| 892 | return AddSection(image, ".text" , name); |
| 893 | } |
| 894 | |
| 895 | Section* Elf::CreateBSS(Zone* zone, Type type, intptr_t size) { |
| 896 | uint8_t* bytes = nullptr; |
| 897 | if (type != Type::DebugInfo) { |
| 898 | // Ideally the BSS segment would take no space in the object, but Android's |
| 899 | // "strip" utility truncates the memory-size of our segments to their |
| 900 | // file-size. |
| 901 | // |
| 902 | // Therefore we must insert zero-filled pages for the BSS. |
| 903 | bytes = zone->Alloc<uint8_t>(size); |
| 904 | memset(bytes, 0, size); |
| 905 | } |
| 906 | return new (zone) BitsContainer(type, /*executable=*/false, /*writable=*/true, |
| 907 | kBssSize, bytes, Image::kBssAlignment); |
| 908 | } |
| 909 | |
| 910 | intptr_t Elf::AddROData(const char* name, const uint8_t* bytes, intptr_t size) { |
| 911 | ASSERT(bytes != nullptr); |
| 912 | auto const image = new (zone_) |
| 913 | BitsContainer(type_, /*executable=*/false, |
| 914 | /*writable=*/false, size, bytes, kMaxObjectAlignment); |
| 915 | return AddSection(image, ".rodata" , name); |
| 916 | } |
| 917 | |
| 918 | void Elf::AddDebug(const char* name, const uint8_t* bytes, intptr_t size) { |
| 919 | ASSERT(!IsStripped()); |
| 920 | ASSERT(bytes != nullptr); |
| 921 | auto const image = new (zone_) |
| 922 | BitsContainer(elf::SectionHeaderType::SHT_PROGBITS, size, bytes); |
| 923 | AddSection(image, name); |
| 924 | } |
| 925 | |
| 926 | void Elf::AddDynamicSymbol(const char* name, |
| 927 | intptr_t info, |
| 928 | intptr_t section_index, |
| 929 | intptr_t address, |
| 930 | intptr_t size) { |
| 931 | ASSERT(!dynstrtab_->HasBeenFinalized() && !dynsym_->HasBeenFinalized()); |
| 932 | auto const name_index = dynstrtab_->AddString(name); |
| 933 | auto const symbol = |
| 934 | new (zone_) Symbol(name, name_index, info, section_index, address, size); |
| 935 | dynsym_->AddSymbol(symbol); |
| 936 | |
| 937 | // Some tools assume the static symbol table is a superset of the dynamic |
| 938 | // symbol table when it exists (see dartbug.com/41783). |
| 939 | AddStaticSymbol(name, info, section_index, address, size); |
| 940 | } |
| 941 | |
| 942 | void Elf::AddStaticSymbol(const char* name, |
| 943 | intptr_t info, |
| 944 | intptr_t section_index, |
| 945 | intptr_t address, |
| 946 | intptr_t size) { |
| 947 | if (IsStripped()) return; // No static info kept in stripped ELF files. |
| 948 | ASSERT(!symtab_->HasBeenFinalized() && !strtab_->HasBeenFinalized()); |
| 949 | auto const name_index = strtab_->AddString(name); |
| 950 | auto const symbol = |
| 951 | new (zone_) Symbol(name, name_index, info, section_index, address, size); |
| 952 | symtab_->AddSymbol(symbol); |
| 953 | } |
| 954 | |
| 955 | #if defined(DART_PRECOMPILER) |
| 956 | class DwarfElfStream : public DwarfWriteStream { |
| 957 | public: |
| 958 | explicit DwarfElfStream(Zone* zone, |
| 959 | WriteStream* stream, |
| 960 | const CStringMap<intptr_t>& address_map) |
| 961 | : zone_(zone), |
| 962 | stream_(ASSERT_NOTNULL(stream)), |
| 963 | address_map_(address_map) {} |
| 964 | |
| 965 | void sleb128(intptr_t value) { |
| 966 | bool is_last_part = false; |
| 967 | while (!is_last_part) { |
| 968 | uint8_t part = value & 0x7F; |
| 969 | value >>= 7; |
| 970 | if ((value == 0 && (part & 0x40) == 0) || |
| 971 | (value == static_cast<intptr_t>(-1) && (part & 0x40) != 0)) { |
| 972 | is_last_part = true; |
| 973 | } else { |
| 974 | part |= 0x80; |
| 975 | } |
| 976 | stream_->WriteFixed(part); |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | void uleb128(uintptr_t value) { |
| 981 | bool is_last_part = false; |
| 982 | while (!is_last_part) { |
| 983 | uint8_t part = value & 0x7F; |
| 984 | value >>= 7; |
| 985 | if (value == 0) { |
| 986 | is_last_part = true; |
| 987 | } else { |
| 988 | part |= 0x80; |
| 989 | } |
| 990 | stream_->WriteFixed(part); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | void u1(uint8_t value) { stream_->WriteFixed(value); } |
| 995 | // Can't use WriteFixed for these, as we may not be at aligned positions. |
| 996 | void u2(uint16_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
| 997 | void u4(uint32_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
| 998 | void u8(uint64_t value) { stream_->WriteBytes(&value, sizeof(value)); } |
| 999 | void string(const char* cstr) { // NOLINT |
| 1000 | stream_->WriteBytes(reinterpret_cast<const uint8_t*>(cstr), |
| 1001 | strlen(cstr) + 1); |
| 1002 | } |
| 1003 | intptr_t position() { return stream_->Position(); } |
| 1004 | intptr_t ReserveSize(const char* prefix, intptr_t* start) { |
| 1005 | ASSERT(start != nullptr); |
| 1006 | intptr_t fixup = position(); |
| 1007 | // We assume DWARF v2, so all sizes are 32-bit. |
| 1008 | u4(0); |
| 1009 | // All sizes for DWARF sections measure the size of the section data _after_ |
| 1010 | // the size value. |
| 1011 | *start = position(); |
| 1012 | return fixup; |
| 1013 | } |
| 1014 | void SetSize(intptr_t fixup, const char* prefix, intptr_t start) { |
| 1015 | const uint32_t value = position() - start; |
| 1016 | memmove(stream_->buffer() + fixup, &value, sizeof(value)); |
| 1017 | } |
| 1018 | void OffsetFromSymbol(const char* symbol, intptr_t offset) { |
| 1019 | auto const address = address_map_.LookupValue(symbol); |
| 1020 | ASSERT(address != 0); |
| 1021 | addr(address + offset); |
| 1022 | } |
| 1023 | void DistanceBetweenSymbolOffsets(const char* symbol1, |
| 1024 | intptr_t offset1, |
| 1025 | const char* symbol2, |
| 1026 | intptr_t offset2) { |
| 1027 | auto const address1 = address_map_.LookupValue(symbol1); |
| 1028 | ASSERT(address1 != 0); |
| 1029 | auto const address2 = address_map_.LookupValue(symbol2); |
| 1030 | ASSERT(address2 != 0); |
| 1031 | auto const delta = (address1 + offset1) - (address2 + offset2); |
| 1032 | RELEASE_ASSERT(delta >= 0); |
| 1033 | uleb128(delta); |
| 1034 | } |
| 1035 | void InitializeAbstractOrigins(intptr_t size) { |
| 1036 | abstract_origins_size_ = size; |
| 1037 | abstract_origins_ = zone_->Alloc<uint32_t>(abstract_origins_size_); |
| 1038 | } |
| 1039 | void RegisterAbstractOrigin(intptr_t index) { |
| 1040 | ASSERT(abstract_origins_ != nullptr); |
| 1041 | ASSERT(index < abstract_origins_size_); |
| 1042 | abstract_origins_[index] = position(); |
| 1043 | } |
| 1044 | void AbstractOrigin(intptr_t index) { u4(abstract_origins_[index]); } |
| 1045 | |
| 1046 | private: |
| 1047 | void addr(uword value) { |
| 1048 | #if defined(TARGET_ARCH_IS_32_BIT) |
| 1049 | u4(value); |
| 1050 | #else |
| 1051 | u8(value); |
| 1052 | #endif |
| 1053 | } |
| 1054 | |
| 1055 | Zone* const zone_; |
| 1056 | WriteStream* const stream_; |
| 1057 | const CStringMap<intptr_t>& address_map_; |
| 1058 | uint32_t* abstract_origins_ = nullptr; |
| 1059 | intptr_t abstract_origins_size_ = -1; |
| 1060 | |
| 1061 | DISALLOW_COPY_AND_ASSIGN(DwarfElfStream); |
| 1062 | }; |
| 1063 | |
| 1064 | static constexpr intptr_t kInitialDwarfBufferSize = 64 * KB; |
| 1065 | #endif |
| 1066 | |
| 1067 | static uint8_t* ZoneReallocate(uint8_t* ptr, intptr_t len, intptr_t new_len) { |
| 1068 | return Thread::Current()->zone()->Realloc<uint8_t>(ptr, len, new_len); |
| 1069 | } |
| 1070 | |
| 1071 | Segment* Elf::LastLoadSegment() const { |
| 1072 | for (intptr_t i = segments_.length() - 1; i >= 0; i--) { |
| 1073 | auto const segment = segments_.At(i); |
| 1074 | if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
| 1075 | return segment; |
| 1076 | } |
| 1077 | } |
| 1078 | // There should always be a load segment, since one is added in construction. |
| 1079 | UNREACHABLE(); |
| 1080 | } |
| 1081 | |
| 1082 | const Section* Elf::FindSectionForAddress(intptr_t address) const { |
| 1083 | for (auto const section : sections_) { |
| 1084 | if (!section->IsAllocated()) continue; |
| 1085 | auto const start = section->memory_offset(); |
| 1086 | auto const end = start + section->MemorySize(); |
| 1087 | if (address >= start && address < end) { |
| 1088 | return section; |
| 1089 | } |
| 1090 | } |
| 1091 | return nullptr; |
| 1092 | } |
| 1093 | |
| 1094 | void Elf::AddSectionSymbols() { |
| 1095 | for (auto const section : sections_) { |
| 1096 | if (section->symbol_name == nullptr) continue; |
| 1097 | ASSERT(section->memory_offset_is_set()); |
| 1098 | // While elf::STT_SECTION might seem more appropriate, those symbols are |
| 1099 | // usually local and dlsym won't return them. |
| 1100 | auto const info = (elf::STB_GLOBAL << 4) | elf::STT_FUNC; |
| 1101 | AddDynamicSymbol(section->symbol_name, info, section->index(), |
| 1102 | section->memory_offset(), section->MemorySize()); |
| 1103 | } |
| 1104 | } |
| 1105 | |
| 1106 | void Elf::FinalizeDwarfSections() { |
| 1107 | if (dwarf_ == nullptr) return; |
| 1108 | #if defined(DART_PRECOMPILER) |
| 1109 | // Add all the static symbols for Code objects. We'll keep a table of |
| 1110 | // symbol names to relocated addresses for use in the DwarfElfStream. |
| 1111 | // The default kNoValue of 0 is okay here, as no symbols are defined for |
| 1112 | // relocated address 0. |
| 1113 | CStringMap<intptr_t> symbol_to_address_map; |
| 1114 | // Prime the map with any existing static symbols. |
| 1115 | if (symtab_ != nullptr) { |
| 1116 | ASSERT(strtab_ != nullptr); |
| 1117 | // Skip the initial reserved entry in the symbol table. |
| 1118 | for (intptr_t i = 1; i < symtab_->Length(); i++) { |
| 1119 | auto const symbol = symtab_->At(i); |
| 1120 | auto const name = strtab_->At(symbol->name_index); |
| 1121 | symbol_to_address_map.Insert({name, symbol->offset}); |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | // Need these to turn offsets into relocated addresses. |
| 1126 | auto const vm_start = |
| 1127 | symbol_to_address_map.LookupValue(kVmSnapshotInstructionsAsmSymbol); |
| 1128 | // vm_start is absent in deferred loading peices. |
| 1129 | auto const isolate_start = |
| 1130 | symbol_to_address_map.LookupValue(kIsolateSnapshotInstructionsAsmSymbol); |
| 1131 | ASSERT(isolate_start > 0); |
| 1132 | auto const vm_text = FindSectionForAddress(vm_start); |
| 1133 | // vm_text is absent in deferred loading peices. |
| 1134 | auto const isolate_text = FindSectionForAddress(isolate_start); |
| 1135 | ASSERT(isolate_text != nullptr); |
| 1136 | |
| 1137 | SnapshotTextObjectNamer namer(zone_); |
| 1138 | const auto& codes = dwarf_->codes(); |
| 1139 | if (codes.length() == 0) { |
| 1140 | return; |
| 1141 | } |
| 1142 | for (intptr_t i = 0; i < codes.length(); i++) { |
| 1143 | const auto& code = *codes[i]; |
| 1144 | auto const name = namer.SnapshotNameFor(i, code); |
| 1145 | const auto& pair = dwarf_->CodeAddress(code); |
| 1146 | ASSERT(pair.offset > 0); |
| 1147 | auto const section = pair.vm ? vm_text : isolate_text; |
| 1148 | const intptr_t address = section->memory_offset() + pair.offset; |
| 1149 | auto const info = (elf::STB_GLOBAL << 4) | elf::STT_FUNC; |
| 1150 | AddStaticSymbol(name, info, section->index(), address, code.Size()); |
| 1151 | symbol_to_address_map.Insert({name, address}); |
| 1152 | } |
| 1153 | |
| 1154 | // TODO(rmacnak): Generate .debug_frame / .eh_frame / .arm.exidx to |
| 1155 | // provide unwinding information. |
| 1156 | |
| 1157 | { |
| 1158 | uint8_t* buffer = nullptr; |
| 1159 | WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
| 1160 | DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
| 1161 | dwarf_->WriteAbbreviations(&dwarf_stream); |
| 1162 | AddDebug(".debug_abbrev" , buffer, stream.bytes_written()); |
| 1163 | } |
| 1164 | |
| 1165 | { |
| 1166 | uint8_t* buffer = nullptr; |
| 1167 | WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
| 1168 | DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
| 1169 | dwarf_->WriteDebugInfo(&dwarf_stream); |
| 1170 | AddDebug(".debug_info" , buffer, stream.bytes_written()); |
| 1171 | } |
| 1172 | |
| 1173 | { |
| 1174 | uint8_t* buffer = nullptr; |
| 1175 | WriteStream stream(&buffer, ZoneReallocate, kInitialDwarfBufferSize); |
| 1176 | DwarfElfStream dwarf_stream(zone_, &stream, symbol_to_address_map); |
| 1177 | dwarf_->WriteLineNumberProgram(&dwarf_stream); |
| 1178 | AddDebug(".debug_line" , buffer, stream.bytes_written()); |
| 1179 | } |
| 1180 | #endif |
| 1181 | } |
| 1182 | |
| 1183 | void Elf::Finalize() { |
| 1184 | AddSectionSymbols(); |
| 1185 | |
| 1186 | // The Build ID depends on the symbols being in place, so must be run after |
| 1187 | // AddSectionSymbols(). Unfortunately, it currently depends on the contents |
| 1188 | // of the .text and .rodata sections, so it can't come earlier in the file |
| 1189 | // without changing how we add the .text and .rodata sections (since we |
| 1190 | // determine memory offsets for those sections when we add them, and the |
| 1191 | // text sections must have the memory offsets to do BSS relocations). |
| 1192 | if (auto const build_id = GenerateBuildId()) { |
| 1193 | AddSection(build_id, ".note.gnu.build-id" , kSnapshotBuildIdAsmSymbol); |
| 1194 | |
| 1195 | // Add a PT_NOTE segment for the build ID. |
| 1196 | segments_.Add(new (zone_) NoteSegment(zone_, build_id)); |
| 1197 | } |
| 1198 | |
| 1199 | // Adding the dynamic symbol table and associated sections. |
| 1200 | AddSection(dynstrtab_, ".dynstr" ); |
| 1201 | AddSection(dynsym_, ".dynsym" ); |
| 1202 | dynsym_->link = dynstrtab_->index(); |
| 1203 | |
| 1204 | auto const hash = new (zone_) SymbolHashTable(zone_, dynstrtab_, dynsym_); |
| 1205 | AddSection(hash, ".hash" ); |
| 1206 | |
| 1207 | auto const dynamic = |
| 1208 | new (zone_) DynamicTable(zone_, dynstrtab_, dynsym_, hash); |
| 1209 | AddSection(dynamic, ".dynamic" ); |
| 1210 | |
| 1211 | // Add a PT_DYNAMIC segment for the dynamic symbol table. |
| 1212 | segments_.Add(new (zone_) DynamicSegment(zone_, dynamic)); |
| 1213 | |
| 1214 | // Currently, we add all (non-reserved) unallocated sections after all |
| 1215 | // allocated sections. If we put unallocated sections between allocated |
| 1216 | // sections, they would affect the file offset but not the memory offset |
| 1217 | // of the later allocated sections. |
| 1218 | // |
| 1219 | // However, memory offsets must be page-aligned to the file offset for the |
| 1220 | // ELF file to be successfully loaded. This means we'd either have to add |
| 1221 | // extra padding _or_ determine file offsets before memory offsets. The |
| 1222 | // latter would require us to handle BSS relocations during ELF finalization, |
| 1223 | // instead of while writing the .text section content. |
| 1224 | FinalizeDwarfSections(); |
| 1225 | if (!IsStripped()) { |
| 1226 | AddSection(strtab_, ".strtab" ); |
| 1227 | AddSection(symtab_, ".symtab" ); |
| 1228 | symtab_->link = strtab_->index(); |
| 1229 | } |
| 1230 | AddSection(shstrtab_, ".shstrtab" ); |
| 1231 | |
| 1232 | // At this point, all non-programmatically calculated sections and segments |
| 1233 | // have been added. Add any programatically calculated sections and segments |
| 1234 | // and then calculate file offsets. |
| 1235 | FinalizeProgramTable(); |
| 1236 | ComputeFileOffsets(); |
| 1237 | |
| 1238 | // Finally, write the ELF file contents. |
| 1239 | ElfWriteStream wrapped(unwrapped_stream_); |
| 1240 | WriteHeader(&wrapped); |
| 1241 | WriteProgramTable(&wrapped); |
| 1242 | WriteSections(&wrapped); |
| 1243 | WriteSectionTable(&wrapped); |
| 1244 | } |
| 1245 | |
| 1246 | // Need to include the final \0 terminator in both byte count and byte output. |
| 1247 | static const uint32_t kBuildIdNameLength = strlen(elf::ELF_NOTE_GNU) + 1; |
| 1248 | // We generate a 128-bit hash, where each 32 bits is a hash of the contents of |
| 1249 | // the following segments in order: |
| 1250 | // |
| 1251 | // .text(VM) | .text(Isolate) | .rodata(VM) | .rodata(Isolate) |
| 1252 | static constexpr intptr_t kBuildIdSegmentNamesLength = 4; |
| 1253 | static constexpr const char* kBuildIdSegmentNames[kBuildIdSegmentNamesLength]{ |
| 1254 | kVmSnapshotInstructionsAsmSymbol, |
| 1255 | kIsolateSnapshotInstructionsAsmSymbol, |
| 1256 | kVmSnapshotDataAsmSymbol, |
| 1257 | kIsolateSnapshotDataAsmSymbol, |
| 1258 | }; |
| 1259 | static constexpr uint32_t kBuildIdDescriptionLength = |
| 1260 | kBuildIdSegmentNamesLength * sizeof(uint32_t); |
| 1261 | static const intptr_t kBuildIdDescriptionOffset = |
| 1262 | sizeof(elf::Note) + kBuildIdNameLength; |
| 1263 | static const intptr_t kBuildIdSize = |
| 1264 | kBuildIdDescriptionOffset + kBuildIdDescriptionLength; |
| 1265 | |
| 1266 | static const Symbol* LookupSymbol(StringTable* strings, |
| 1267 | SymbolTable* symbols, |
| 1268 | const char* name) { |
| 1269 | ASSERT(strings != nullptr); |
| 1270 | ASSERT(symbols != nullptr); |
| 1271 | auto const name_index = strings->Lookup(name); |
| 1272 | if (name_index < 0) return nullptr; |
| 1273 | return symbols->FindSymbolWithNameIndex(name_index); |
| 1274 | } |
| 1275 | |
| 1276 | static uint32_t HashBitsContainer(const BitsContainer* bits) { |
| 1277 | uint32_t hash = 0; |
| 1278 | auto const size = bits->MemorySize(); |
| 1279 | auto const end = bits->bytes() + size; |
| 1280 | auto const non_word_size = size % kWordSize; |
| 1281 | auto const end_of_words = |
| 1282 | reinterpret_cast<const uword*>(bits->bytes() + (size - non_word_size)); |
| 1283 | for (auto cursor = reinterpret_cast<const uword*>(bits->bytes()); |
| 1284 | cursor < end_of_words; cursor++) { |
| 1285 | hash = CombineHashes(hash, *cursor); |
| 1286 | } |
| 1287 | for (auto cursor = reinterpret_cast<const uint8_t*>(end_of_words); |
| 1288 | cursor < end; cursor++) { |
| 1289 | hash = CombineHashes(hash, *cursor); |
| 1290 | } |
| 1291 | return FinalizeHash(hash, 32); |
| 1292 | } |
| 1293 | |
| 1294 | Section* Elf::GenerateBuildId() { |
| 1295 | uint8_t* notes_buffer = nullptr; |
| 1296 | WriteStream stream(¬es_buffer, ZoneReallocate, kBuildIdSize); |
| 1297 | stream.WriteFixed(kBuildIdNameLength); |
| 1298 | stream.WriteFixed(kBuildIdDescriptionLength); |
| 1299 | stream.WriteFixed(static_cast<uint32_t>(elf::NoteType::NT_GNU_BUILD_ID)); |
| 1300 | stream.WriteBytes(elf::ELF_NOTE_GNU, kBuildIdNameLength); |
| 1301 | const intptr_t description_start = stream.bytes_written(); |
| 1302 | for (intptr_t i = 0; i < kBuildIdSegmentNamesLength; i++) { |
| 1303 | auto const name = kBuildIdSegmentNames[i]; |
| 1304 | auto const symbol = LookupSymbol(dynstrtab_, dynsym_, name); |
| 1305 | if (symbol == nullptr) { |
| 1306 | stream.WriteFixed(static_cast<uint32_t>(0)); |
| 1307 | continue; |
| 1308 | } |
| 1309 | auto const bits = sections_[symbol->section_index]->AsBitsContainer(); |
| 1310 | if (bits == nullptr) { |
| 1311 | FATAL1("Section for symbol %s is not a BitsContainer" , name); |
| 1312 | } |
| 1313 | ASSERT_EQUAL(bits->MemorySize(), symbol->size); |
| 1314 | // We don't actually have the bytes (i.e., this is a separate debugging |
| 1315 | // info file for an assembly snapshot), so we can't calculate the build ID. |
| 1316 | if (bits->bytes() == nullptr) return nullptr; |
| 1317 | |
| 1318 | stream.WriteFixed(HashBitsContainer(bits)); |
| 1319 | } |
| 1320 | ASSERT_EQUAL(stream.bytes_written() - description_start, |
| 1321 | kBuildIdDescriptionLength); |
| 1322 | return new (zone_) BitsContainer( |
| 1323 | elf::SectionHeaderType::SHT_NOTE, /*allocate=*/true, /*executable=*/false, |
| 1324 | /*writable=*/false, stream.bytes_written(), notes_buffer, kNoteAlignment); |
| 1325 | } |
| 1326 | |
| 1327 | void Elf::FinalizeProgramTable() { |
| 1328 | ASSERT(program_table_file_size_ < 0); |
| 1329 | |
| 1330 | program_table_file_offset_ = sizeof(elf::ElfHeader); |
| 1331 | |
| 1332 | // There are two segments we need the size of the program table to create, so |
| 1333 | // calculate it as if those two segments were already in place. |
| 1334 | program_table_file_size_ = |
| 1335 | (2 + segments_.length()) * sizeof(elf::ProgramHeader); |
| 1336 | |
| 1337 | // We pre-allocated the virtual memory space for the program table itself. |
| 1338 | // Check that we didn't generate too many segments. Currently we generate a |
| 1339 | // fixed num of segments based on the four pieces of a snapshot, but if we |
| 1340 | // use more in the future we'll likely need to do something more compilated |
| 1341 | // to generate DWARF without knowing a piece's virtual address in advance. |
| 1342 | auto const program_table_segment_size = |
| 1343 | program_table_file_offset_ + program_table_file_size_; |
| 1344 | RELEASE_ASSERT(program_table_segment_size < kProgramTableSegmentSize); |
| 1345 | |
| 1346 | // Remove the original stand-in segment we added in the constructor. |
| 1347 | segments_.EraseAt(0); |
| 1348 | |
| 1349 | // Self-reference to program header table. Required by Android but not by |
| 1350 | // Linux. Must appear before any PT_LOAD entries. |
| 1351 | segments_.InsertAt( |
| 1352 | 0, new (zone_) ProgramTableSelfSegment(zone_, program_table_file_offset_, |
| 1353 | program_table_file_size_)); |
| 1354 | |
| 1355 | // Segment for loading the initial part of the ELF file, including the |
| 1356 | // program header table. Required by Android but not by Linux. |
| 1357 | segments_.InsertAt(1, new (zone_) ProgramTableLoadSegment( |
| 1358 | zone_, program_table_segment_size)); |
| 1359 | } |
| 1360 | |
| 1361 | static const intptr_t kElfSectionTableAlignment = compiler::target::kWordSize; |
| 1362 | |
| 1363 | void Elf::ComputeFileOffsets() { |
| 1364 | // We calculate the size and offset of the program header table during |
| 1365 | // finalization. |
| 1366 | ASSERT(program_table_file_offset_ > 0 && program_table_file_size_ > 0); |
| 1367 | intptr_t file_offset = program_table_file_offset_ + program_table_file_size_; |
| 1368 | // When calculating file offsets for sections, we'll need to know if we've |
| 1369 | // changed segments. Start with the one for the program table. |
| 1370 | const auto* current_segment = segments_[1]; |
| 1371 | |
| 1372 | // The non-reserved sections are output to the file in order after the program |
| 1373 | // header table. If we're entering a new segment, then we need to align |
| 1374 | // according to the PT_LOAD segment alignment as well to keep the file offsets |
| 1375 | // aligned with the memory addresses. |
| 1376 | auto const load_align = Segment::Alignment(elf::ProgramHeaderType::PT_LOAD); |
| 1377 | for (intptr_t i = 1; i < sections_.length(); i++) { |
| 1378 | auto const section = sections_[i]; |
| 1379 | file_offset = Utils::RoundUp(file_offset, section->alignment); |
| 1380 | if (section->IsAllocated() && section->load_segment != current_segment) { |
| 1381 | file_offset = Utils::RoundUp(file_offset, load_align); |
| 1382 | current_segment = section->load_segment; |
| 1383 | } |
| 1384 | section->set_file_offset(file_offset); |
| 1385 | #if defined(DEBUG) |
| 1386 | if (section->IsAllocated()) { |
| 1387 | // For files that will be dynamically loaded, make sure the file offsets |
| 1388 | // of allocated sections are page aligned to the memory offsets. |
| 1389 | ASSERT_EQUAL(section->file_offset() % load_align, |
| 1390 | section->memory_offset() % load_align); |
| 1391 | } |
| 1392 | #endif |
| 1393 | file_offset += section->FileSize(); |
| 1394 | } |
| 1395 | |
| 1396 | file_offset = Utils::RoundUp(file_offset, kElfSectionTableAlignment); |
| 1397 | section_table_file_offset_ = file_offset; |
| 1398 | section_table_file_size_ = sections_.length() * sizeof(elf::SectionHeader); |
| 1399 | file_offset += section_table_file_size_; |
| 1400 | } |
| 1401 | |
| 1402 | void Elf::(ElfWriteStream* stream) { |
| 1403 | #if defined(TARGET_ARCH_IS_32_BIT) |
| 1404 | uint8_t size = elf::ELFCLASS32; |
| 1405 | #else |
| 1406 | uint8_t size = elf::ELFCLASS64; |
| 1407 | #endif |
| 1408 | uint8_t e_ident[16] = {0x7f, |
| 1409 | 'E', |
| 1410 | 'L', |
| 1411 | 'F', |
| 1412 | size, |
| 1413 | elf::ELFDATA2LSB, |
| 1414 | elf::EV_CURRENT, |
| 1415 | elf::ELFOSABI_SYSV, |
| 1416 | 0, |
| 1417 | 0, |
| 1418 | 0, |
| 1419 | 0, |
| 1420 | 0, |
| 1421 | 0, |
| 1422 | 0, |
| 1423 | 0}; |
| 1424 | stream->WriteBytes(e_ident, 16); |
| 1425 | |
| 1426 | stream->WriteHalf(elf::ET_DYN); // Shared library. |
| 1427 | |
| 1428 | #if defined(TARGET_ARCH_IA32) |
| 1429 | stream->WriteHalf(elf::EM_386); |
| 1430 | #elif defined(TARGET_ARCH_X64) |
| 1431 | stream->WriteHalf(elf::EM_X86_64); |
| 1432 | #elif defined(TARGET_ARCH_ARM) |
| 1433 | stream->WriteHalf(elf::EM_ARM); |
| 1434 | #elif defined(TARGET_ARCH_ARM64) |
| 1435 | stream->WriteHalf(elf::EM_AARCH64); |
| 1436 | #else |
| 1437 | FATAL("Unknown ELF architecture" ); |
| 1438 | #endif |
| 1439 | |
| 1440 | stream->WriteWord(elf::EV_CURRENT); // Version |
| 1441 | stream->WriteAddr(0); // "Entry point" |
| 1442 | stream->WriteOff(program_table_file_offset_); |
| 1443 | stream->WriteOff(section_table_file_offset_); |
| 1444 | |
| 1445 | #if defined(TARGET_ARCH_ARM) |
| 1446 | uword flags = elf::EF_ARM_ABI | (TargetCPUFeatures::hardfp_supported() |
| 1447 | ? elf::EF_ARM_ABI_FLOAT_HARD |
| 1448 | : elf::EF_ARM_ABI_FLOAT_SOFT); |
| 1449 | #else |
| 1450 | uword flags = 0; |
| 1451 | #endif |
| 1452 | stream->WriteWord(flags); |
| 1453 | |
| 1454 | stream->WriteHalf(sizeof(elf::ElfHeader)); |
| 1455 | stream->WriteHalf(sizeof(elf::ProgramHeader)); |
| 1456 | stream->WriteHalf(segments_.length()); |
| 1457 | stream->WriteHalf(sizeof(elf::SectionHeader)); |
| 1458 | stream->WriteHalf(sections_.length()); |
| 1459 | stream->WriteHalf(shstrtab_->index()); |
| 1460 | |
| 1461 | ASSERT_EQUAL(stream->position(), sizeof(elf::ElfHeader)); |
| 1462 | } |
| 1463 | |
| 1464 | void Elf::WriteProgramTable(ElfWriteStream* stream) { |
| 1465 | ASSERT(program_table_file_size_ >= 0); // Check for finalization. |
| 1466 | ASSERT(stream->position() == program_table_file_offset_); |
| 1467 | #if defined(DEBUG) |
| 1468 | // Here, we count the number of times that a PT_LOAD writable segment is |
| 1469 | // followed by a non-writable segment. We initialize last_writable to true so |
| 1470 | // that we catch the case where the first segment is non-writable. |
| 1471 | bool last_writable = true; |
| 1472 | int non_writable_groups = 0; |
| 1473 | #endif |
| 1474 | for (auto const segment : segments_) { |
| 1475 | #if defined(DEBUG) |
| 1476 | if (segment->type == elf::ProgramHeaderType::PT_LOAD) { |
| 1477 | if (last_writable && !segment->IsWritable()) { |
| 1478 | non_writable_groups++; |
| 1479 | } |
| 1480 | last_writable = segment->IsWritable(); |
| 1481 | } |
| 1482 | #endif |
| 1483 | const intptr_t start = stream->position(); |
| 1484 | segment->WriteProgramHeader(stream); |
| 1485 | const intptr_t end = stream->position(); |
| 1486 | ASSERT_EQUAL(end - start, sizeof(elf::ProgramHeader)); |
| 1487 | } |
| 1488 | #if defined(DEBUG) |
| 1489 | // All PT_LOAD non-writable segments must be contiguous. If not, some older |
| 1490 | // Android dynamic linkers fail to handle writable segments between |
| 1491 | // non-writable ones. See https://github.com/flutter/flutter/issues/43259. |
| 1492 | ASSERT(non_writable_groups <= 1); |
| 1493 | #endif |
| 1494 | } |
| 1495 | |
| 1496 | void Elf::WriteSectionTable(ElfWriteStream* stream) { |
| 1497 | ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
| 1498 | stream->Align(kElfSectionTableAlignment); |
| 1499 | ASSERT_EQUAL(stream->position(), section_table_file_offset_); |
| 1500 | |
| 1501 | for (auto const section : sections_) { |
| 1502 | const intptr_t start = stream->position(); |
| 1503 | section->WriteSectionHeader(stream); |
| 1504 | const intptr_t end = stream->position(); |
| 1505 | ASSERT_EQUAL(end - start, sizeof(elf::SectionHeader)); |
| 1506 | } |
| 1507 | } |
| 1508 | |
| 1509 | void Elf::WriteSections(ElfWriteStream* stream) { |
| 1510 | ASSERT(section_table_file_size_ >= 0); // Check for finalization. |
| 1511 | |
| 1512 | // Skip the reserved first section, as its alignment is 0 (which will cause |
| 1513 | // stream->Align() to fail) and it never contains file contents anyway. |
| 1514 | ASSERT_EQUAL(static_cast<uint32_t>(sections_[0]->type), |
| 1515 | static_cast<uint32_t>(elf::SectionHeaderType::SHT_NULL)); |
| 1516 | ASSERT_EQUAL(sections_[0]->alignment, 0); |
| 1517 | auto const load_align = Segment::Alignment(elf::ProgramHeaderType::PT_LOAD); |
| 1518 | const Segment* current_segment = segments_[1]; |
| 1519 | for (intptr_t i = 1; i < sections_.length(); i++) { |
| 1520 | Section* section = sections_[i]; |
| 1521 | stream->Align(section->alignment); |
| 1522 | if (section->IsAllocated() && section->load_segment != current_segment) { |
| 1523 | // Changing segments, so align accordingly. |
| 1524 | stream->Align(load_align); |
| 1525 | current_segment = section->load_segment; |
| 1526 | } |
| 1527 | ASSERT_EQUAL(stream->position(), section->file_offset()); |
| 1528 | section->Write(stream); |
| 1529 | ASSERT_EQUAL(stream->position(), |
| 1530 | section->file_offset() + section->FileSize()); |
| 1531 | } |
| 1532 | } |
| 1533 | |
| 1534 | } // namespace dart |
| 1535 | |