| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include <memory> |
| 6 | #include <utility> |
| 7 | |
| 8 | #include "vm/heap/heap.h" |
| 9 | |
| 10 | #include "platform/assert.h" |
| 11 | #include "platform/utils.h" |
| 12 | #include "vm/compiler/jit/compiler.h" |
| 13 | #include "vm/flags.h" |
| 14 | #include "vm/heap/pages.h" |
| 15 | #include "vm/heap/safepoint.h" |
| 16 | #include "vm/heap/scavenger.h" |
| 17 | #include "vm/heap/verifier.h" |
| 18 | #include "vm/heap/weak_table.h" |
| 19 | #include "vm/isolate.h" |
| 20 | #include "vm/lockers.h" |
| 21 | #include "vm/object.h" |
| 22 | #include "vm/object_set.h" |
| 23 | #include "vm/os.h" |
| 24 | #include "vm/raw_object.h" |
| 25 | #include "vm/service.h" |
| 26 | #include "vm/service_event.h" |
| 27 | #include "vm/service_isolate.h" |
| 28 | #include "vm/stack_frame.h" |
| 29 | #include "vm/tags.h" |
| 30 | #include "vm/thread_pool.h" |
| 31 | #include "vm/timeline.h" |
| 32 | #include "vm/virtual_memory.h" |
| 33 | |
| 34 | namespace dart { |
| 35 | |
| 36 | DEFINE_FLAG(bool, write_protect_vm_isolate, true, "Write protect vm_isolate." ); |
| 37 | DEFINE_FLAG(bool, |
| 38 | disable_heap_verification, |
| 39 | false, |
| 40 | "Explicitly disable heap verification." ); |
| 41 | |
| 42 | // We ensure that the GC does not use the current isolate. |
| 43 | class NoActiveIsolateScope { |
| 44 | public: |
| 45 | NoActiveIsolateScope() : thread_(Thread::Current()) { |
| 46 | saved_isolate_ = thread_->isolate_; |
| 47 | thread_->isolate_ = nullptr; |
| 48 | } |
| 49 | ~NoActiveIsolateScope() { |
| 50 | ASSERT(thread_->isolate_ == nullptr); |
| 51 | thread_->isolate_ = saved_isolate_; |
| 52 | } |
| 53 | |
| 54 | private: |
| 55 | Thread* thread_; |
| 56 | Isolate* saved_isolate_; |
| 57 | }; |
| 58 | |
| 59 | Heap::Heap(IsolateGroup* isolate_group, |
| 60 | intptr_t max_new_gen_semi_words, |
| 61 | intptr_t max_old_gen_words) |
| 62 | : isolate_group_(isolate_group), |
| 63 | new_space_(this, max_new_gen_semi_words), |
| 64 | old_space_(this, max_old_gen_words), |
| 65 | barrier_(), |
| 66 | barrier_done_(), |
| 67 | read_only_(false), |
| 68 | gc_new_space_in_progress_(false), |
| 69 | gc_old_space_in_progress_(false), |
| 70 | last_gc_was_old_space_(false), |
| 71 | assume_scavenge_will_fail_(false), |
| 72 | gc_on_nth_allocation_(kNoForcedGarbageCollection) { |
| 73 | UpdateGlobalMaxUsed(); |
| 74 | for (int sel = 0; sel < kNumWeakSelectors; sel++) { |
| 75 | new_weak_tables_[sel] = new WeakTable(); |
| 76 | old_weak_tables_[sel] = new WeakTable(); |
| 77 | } |
| 78 | stats_.num_ = 0; |
| 79 | } |
| 80 | |
| 81 | Heap::~Heap() { |
| 82 | for (int sel = 0; sel < kNumWeakSelectors; sel++) { |
| 83 | delete new_weak_tables_[sel]; |
| 84 | delete old_weak_tables_[sel]; |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | uword Heap::AllocateNew(intptr_t size) { |
| 89 | ASSERT(Thread::Current()->no_safepoint_scope_depth() == 0); |
| 90 | CollectForDebugging(); |
| 91 | Thread* thread = Thread::Current(); |
| 92 | uword addr = new_space_.TryAllocate(thread, size); |
| 93 | if (LIKELY(addr != 0)) { |
| 94 | return addr; |
| 95 | } |
| 96 | if (!assume_scavenge_will_fail_ && new_space_.GrowthControlState()) { |
| 97 | // This call to CollectGarbage might end up "reusing" a collection spawned |
| 98 | // from a different thread and will be racing to allocate the requested |
| 99 | // memory with other threads being released after the collection. |
| 100 | CollectGarbage(kNew); |
| 101 | |
| 102 | addr = new_space_.TryAllocate(thread, size); |
| 103 | if (LIKELY(addr != 0)) { |
| 104 | return addr; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // It is possible a GC doesn't clear enough space. |
| 109 | // In that case, we must fall through and allocate into old space. |
| 110 | return AllocateOld(size, OldPage::kData); |
| 111 | } |
| 112 | |
| 113 | uword Heap::AllocateOld(intptr_t size, OldPage::PageType type) { |
| 114 | ASSERT(Thread::Current()->no_safepoint_scope_depth() == 0); |
| 115 | CollectForDebugging(); |
| 116 | uword addr = old_space_.TryAllocate(size, type); |
| 117 | if (addr != 0) { |
| 118 | return addr; |
| 119 | } |
| 120 | // If we are in the process of running a sweep, wait for the sweeper to free |
| 121 | // memory. |
| 122 | Thread* thread = Thread::Current(); |
| 123 | if (old_space_.GrowthControlState()) { |
| 124 | // Wait for any GC tasks that are in progress. |
| 125 | WaitForSweeperTasks(thread); |
| 126 | addr = old_space_.TryAllocate(size, type); |
| 127 | if (addr != 0) { |
| 128 | return addr; |
| 129 | } |
| 130 | // All GC tasks finished without allocating successfully. Collect both |
| 131 | // generations. |
| 132 | CollectMostGarbage(); |
| 133 | addr = old_space_.TryAllocate(size, type); |
| 134 | if (addr != 0) { |
| 135 | return addr; |
| 136 | } |
| 137 | // Wait for all of the concurrent tasks to finish before giving up. |
| 138 | WaitForSweeperTasks(thread); |
| 139 | addr = old_space_.TryAllocate(size, type); |
| 140 | if (addr != 0) { |
| 141 | return addr; |
| 142 | } |
| 143 | // Force growth before attempting another synchronous GC. |
| 144 | addr = old_space_.TryAllocate(size, type, PageSpace::kForceGrowth); |
| 145 | if (addr != 0) { |
| 146 | return addr; |
| 147 | } |
| 148 | // Before throwing an out-of-memory error try a synchronous GC. |
| 149 | CollectAllGarbage(kLowMemory); |
| 150 | WaitForSweeperTasks(thread); |
| 151 | } |
| 152 | addr = old_space_.TryAllocate(size, type, PageSpace::kForceGrowth); |
| 153 | if (addr != 0) { |
| 154 | return addr; |
| 155 | } |
| 156 | // Give up allocating this object. |
| 157 | OS::PrintErr("Exhausted heap space, trying to allocate %" Pd " bytes.\n" , |
| 158 | size); |
| 159 | return 0; |
| 160 | } |
| 161 | |
| 162 | void Heap::AllocatedExternal(intptr_t size, Space space) { |
| 163 | ASSERT(Thread::Current()->no_safepoint_scope_depth() == 0); |
| 164 | if (space == kNew) { |
| 165 | Isolate::Current()->AssertCurrentThreadIsMutator(); |
| 166 | new_space_.AllocatedExternal(size); |
| 167 | if (new_space_.ExternalInWords() <= (4 * new_space_.CapacityInWords())) { |
| 168 | return; |
| 169 | } |
| 170 | // Attempt to free some external allocation by a scavenge. (If the total |
| 171 | // remains above the limit, next external alloc will trigger another.) |
| 172 | CollectGarbage(kScavenge, kExternal); |
| 173 | // Promotion may have pushed old space over its limit. Fall through for old |
| 174 | // space GC check. |
| 175 | } else { |
| 176 | ASSERT(space == kOld); |
| 177 | old_space_.AllocatedExternal(size); |
| 178 | } |
| 179 | |
| 180 | if (old_space_.ReachedHardThreshold()) { |
| 181 | CollectGarbage(kMarkSweep, kExternal); |
| 182 | } else { |
| 183 | CheckStartConcurrentMarking(Thread::Current(), kExternal); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | void Heap::FreedExternal(intptr_t size, Space space) { |
| 188 | if (space == kNew) { |
| 189 | new_space_.FreedExternal(size); |
| 190 | } else { |
| 191 | ASSERT(space == kOld); |
| 192 | old_space_.FreedExternal(size); |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | void Heap::PromotedExternal(intptr_t size) { |
| 197 | new_space_.FreedExternal(size); |
| 198 | old_space_.AllocatedExternal(size); |
| 199 | } |
| 200 | |
| 201 | bool Heap::Contains(uword addr) const { |
| 202 | return new_space_.Contains(addr) || old_space_.Contains(addr); |
| 203 | } |
| 204 | |
| 205 | bool Heap::NewContains(uword addr) const { |
| 206 | return new_space_.Contains(addr); |
| 207 | } |
| 208 | |
| 209 | bool Heap::OldContains(uword addr) const { |
| 210 | return old_space_.Contains(addr); |
| 211 | } |
| 212 | |
| 213 | bool Heap::CodeContains(uword addr) const { |
| 214 | return old_space_.Contains(addr, OldPage::kExecutable); |
| 215 | } |
| 216 | |
| 217 | bool Heap::DataContains(uword addr) const { |
| 218 | return old_space_.DataContains(addr); |
| 219 | } |
| 220 | |
| 221 | void Heap::VisitObjects(ObjectVisitor* visitor) { |
| 222 | new_space_.VisitObjects(visitor); |
| 223 | old_space_.VisitObjects(visitor); |
| 224 | } |
| 225 | |
| 226 | void Heap::VisitObjectsNoImagePages(ObjectVisitor* visitor) { |
| 227 | new_space_.VisitObjects(visitor); |
| 228 | old_space_.VisitObjectsNoImagePages(visitor); |
| 229 | } |
| 230 | |
| 231 | void Heap::VisitObjectsImagePages(ObjectVisitor* visitor) const { |
| 232 | old_space_.VisitObjectsImagePages(visitor); |
| 233 | } |
| 234 | |
| 235 | HeapIterationScope::HeapIterationScope(Thread* thread, bool writable) |
| 236 | : ThreadStackResource(thread), |
| 237 | heap_(isolate()->heap()), |
| 238 | old_space_(heap_->old_space()), |
| 239 | writable_(writable) { |
| 240 | { |
| 241 | // It's not safe to iterate over old space when concurrent marking or |
| 242 | // sweeping is in progress, or another thread is iterating the heap, so wait |
| 243 | // for any such task to complete first. |
| 244 | MonitorLocker ml(old_space_->tasks_lock()); |
| 245 | #if defined(DEBUG) |
| 246 | // We currently don't support nesting of HeapIterationScopes. |
| 247 | ASSERT(old_space_->iterating_thread_ != thread); |
| 248 | #endif |
| 249 | while ((old_space_->tasks() > 0) || |
| 250 | (old_space_->phase() != PageSpace::kDone)) { |
| 251 | if (old_space_->phase() == PageSpace::kAwaitingFinalization) { |
| 252 | ml.Exit(); |
| 253 | heap_->CollectOldSpaceGarbage(thread, Heap::kMarkSweep, |
| 254 | Heap::kFinalize); |
| 255 | ml.Enter(); |
| 256 | } |
| 257 | while (old_space_->tasks() > 0) { |
| 258 | ml.WaitWithSafepointCheck(thread); |
| 259 | } |
| 260 | } |
| 261 | #if defined(DEBUG) |
| 262 | ASSERT(old_space_->iterating_thread_ == NULL); |
| 263 | old_space_->iterating_thread_ = thread; |
| 264 | #endif |
| 265 | old_space_->set_tasks(1); |
| 266 | } |
| 267 | |
| 268 | isolate()->safepoint_handler()->SafepointThreads(thread); |
| 269 | |
| 270 | if (writable_) { |
| 271 | heap_->WriteProtectCode(false); |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | HeapIterationScope::~HeapIterationScope() { |
| 276 | if (writable_) { |
| 277 | heap_->WriteProtectCode(true); |
| 278 | } |
| 279 | |
| 280 | isolate()->safepoint_handler()->ResumeThreads(thread()); |
| 281 | |
| 282 | MonitorLocker ml(old_space_->tasks_lock()); |
| 283 | #if defined(DEBUG) |
| 284 | ASSERT(old_space_->iterating_thread_ == thread()); |
| 285 | old_space_->iterating_thread_ = NULL; |
| 286 | #endif |
| 287 | ASSERT(old_space_->tasks() == 1); |
| 288 | old_space_->set_tasks(0); |
| 289 | ml.NotifyAll(); |
| 290 | } |
| 291 | |
| 292 | void HeapIterationScope::IterateObjects(ObjectVisitor* visitor) const { |
| 293 | heap_->VisitObjects(visitor); |
| 294 | } |
| 295 | |
| 296 | void HeapIterationScope::IterateObjectsNoImagePages( |
| 297 | ObjectVisitor* visitor) const { |
| 298 | heap_->new_space()->VisitObjects(visitor); |
| 299 | heap_->old_space()->VisitObjectsNoImagePages(visitor); |
| 300 | } |
| 301 | |
| 302 | void HeapIterationScope::IterateOldObjects(ObjectVisitor* visitor) const { |
| 303 | old_space_->VisitObjects(visitor); |
| 304 | } |
| 305 | |
| 306 | void HeapIterationScope::IterateOldObjectsNoImagePages( |
| 307 | ObjectVisitor* visitor) const { |
| 308 | old_space_->VisitObjectsNoImagePages(visitor); |
| 309 | } |
| 310 | |
| 311 | void HeapIterationScope::IterateVMIsolateObjects(ObjectVisitor* visitor) const { |
| 312 | Dart::vm_isolate()->heap()->VisitObjects(visitor); |
| 313 | } |
| 314 | |
| 315 | void HeapIterationScope::IterateObjectPointers( |
| 316 | ObjectPointerVisitor* visitor, |
| 317 | ValidationPolicy validate_frames) { |
| 318 | isolate_group()->VisitObjectPointers(visitor, validate_frames); |
| 319 | } |
| 320 | |
| 321 | void HeapIterationScope::IterateStackPointers( |
| 322 | ObjectPointerVisitor* visitor, |
| 323 | ValidationPolicy validate_frames) { |
| 324 | isolate_group()->VisitStackPointers(visitor, validate_frames); |
| 325 | } |
| 326 | |
| 327 | void Heap::VisitObjectPointers(ObjectPointerVisitor* visitor) { |
| 328 | new_space_.VisitObjectPointers(visitor); |
| 329 | old_space_.VisitObjectPointers(visitor); |
| 330 | } |
| 331 | |
| 332 | InstructionsPtr Heap::FindObjectInCodeSpace(FindObjectVisitor* visitor) const { |
| 333 | // Only executable pages can have RawInstructions objects. |
| 334 | ObjectPtr raw_obj = old_space_.FindObject(visitor, OldPage::kExecutable); |
| 335 | ASSERT((raw_obj == Object::null()) || |
| 336 | (raw_obj->GetClassId() == kInstructionsCid)); |
| 337 | return static_cast<InstructionsPtr>(raw_obj); |
| 338 | } |
| 339 | |
| 340 | ObjectPtr Heap::FindOldObject(FindObjectVisitor* visitor) const { |
| 341 | return old_space_.FindObject(visitor, OldPage::kData); |
| 342 | } |
| 343 | |
| 344 | ObjectPtr Heap::FindNewObject(FindObjectVisitor* visitor) { |
| 345 | return new_space_.FindObject(visitor); |
| 346 | } |
| 347 | |
| 348 | ObjectPtr Heap::FindObject(FindObjectVisitor* visitor) { |
| 349 | // The visitor must not allocate from the heap. |
| 350 | NoSafepointScope no_safepoint_scope; |
| 351 | ObjectPtr raw_obj = FindNewObject(visitor); |
| 352 | if (raw_obj != Object::null()) { |
| 353 | return raw_obj; |
| 354 | } |
| 355 | raw_obj = FindOldObject(visitor); |
| 356 | if (raw_obj != Object::null()) { |
| 357 | return raw_obj; |
| 358 | } |
| 359 | raw_obj = FindObjectInCodeSpace(visitor); |
| 360 | return raw_obj; |
| 361 | } |
| 362 | |
| 363 | bool Heap::BeginNewSpaceGC(Thread* thread) { |
| 364 | MonitorLocker ml(&gc_in_progress_monitor_); |
| 365 | bool start_gc_on_thread = true; |
| 366 | while (gc_new_space_in_progress_ || gc_old_space_in_progress_) { |
| 367 | start_gc_on_thread = !gc_new_space_in_progress_; |
| 368 | ml.WaitWithSafepointCheck(thread); |
| 369 | } |
| 370 | if (start_gc_on_thread) { |
| 371 | gc_new_space_in_progress_ = true; |
| 372 | return true; |
| 373 | } |
| 374 | return false; |
| 375 | } |
| 376 | |
| 377 | void Heap::EndNewSpaceGC() { |
| 378 | MonitorLocker ml(&gc_in_progress_monitor_); |
| 379 | ASSERT(gc_new_space_in_progress_); |
| 380 | gc_new_space_in_progress_ = false; |
| 381 | last_gc_was_old_space_ = false; |
| 382 | ml.NotifyAll(); |
| 383 | } |
| 384 | |
| 385 | bool Heap::BeginOldSpaceGC(Thread* thread) { |
| 386 | MonitorLocker ml(&gc_in_progress_monitor_); |
| 387 | bool start_gc_on_thread = true; |
| 388 | while (gc_new_space_in_progress_ || gc_old_space_in_progress_) { |
| 389 | start_gc_on_thread = !gc_old_space_in_progress_; |
| 390 | ml.WaitWithSafepointCheck(thread); |
| 391 | } |
| 392 | if (start_gc_on_thread) { |
| 393 | gc_old_space_in_progress_ = true; |
| 394 | return true; |
| 395 | } |
| 396 | return false; |
| 397 | } |
| 398 | |
| 399 | void Heap::EndOldSpaceGC() { |
| 400 | MonitorLocker ml(&gc_in_progress_monitor_); |
| 401 | ASSERT(gc_old_space_in_progress_); |
| 402 | gc_old_space_in_progress_ = false; |
| 403 | last_gc_was_old_space_ = true; |
| 404 | assume_scavenge_will_fail_ = false; |
| 405 | ml.NotifyAll(); |
| 406 | } |
| 407 | |
| 408 | void Heap::HintFreed(intptr_t size) { |
| 409 | old_space_.HintFreed(size); |
| 410 | } |
| 411 | |
| 412 | void Heap::NotifyIdle(int64_t deadline) { |
| 413 | Thread* thread = Thread::Current(); |
| 414 | // Check if we want to collect new-space first, because if we want to collect |
| 415 | // both new-space and old-space, the new-space collection should run first |
| 416 | // to shrink the root set (make old-space GC faster) and avoid |
| 417 | // intergenerational garbage (make old-space GC free more memory). |
| 418 | if (new_space_.ShouldPerformIdleScavenge(deadline)) { |
| 419 | TIMELINE_FUNCTION_GC_DURATION(thread, "IdleGC" ); |
| 420 | CollectNewSpaceGarbage(thread, kIdle); |
| 421 | } |
| 422 | |
| 423 | // Check if we want to collect old-space, in decreasing order of cost. |
| 424 | // Because we use a deadline instead of a timeout, we automatically take any |
| 425 | // time used up by a scavenge into account when deciding if we can complete |
| 426 | // a mark-sweep on time. |
| 427 | if (old_space_.ShouldPerformIdleMarkCompact(deadline)) { |
| 428 | // We prefer mark-compact over other old space GCs if we have enough time, |
| 429 | // since it removes old space fragmentation and frees up most memory. |
| 430 | // Blocks for O(heap), roughtly twice as costly as mark-sweep. |
| 431 | TIMELINE_FUNCTION_GC_DURATION(thread, "IdleGC" ); |
| 432 | CollectOldSpaceGarbage(thread, kMarkCompact, kIdle); |
| 433 | } else if (old_space_.ReachedHardThreshold()) { |
| 434 | // Even though the following GC may exceed our idle deadline, we need to |
| 435 | // ensure than that promotions during idle scavenges do not lead to |
| 436 | // unbounded growth of old space. If a program is allocating only in new |
| 437 | // space and all scavenges happen during idle time, then NotifyIdle will be |
| 438 | // the only place that checks the old space allocation limit. |
| 439 | // Compare the tail end of Heap::CollectNewSpaceGarbage. |
| 440 | // Blocks for O(heap). |
| 441 | TIMELINE_FUNCTION_GC_DURATION(thread, "IdleGC" ); |
| 442 | CollectOldSpaceGarbage(thread, kMarkSweep, kIdle); |
| 443 | } else if (old_space_.ShouldStartIdleMarkSweep(deadline) || |
| 444 | old_space_.ReachedSoftThreshold()) { |
| 445 | // If we have both work to do and enough time, start or finish GC. |
| 446 | // If we have crossed the soft threshold, ignore time; the next old-space |
| 447 | // allocation will trigger this work anyway, so we try to pay at least some |
| 448 | // of that cost with idle time. |
| 449 | // Blocks for O(roots). |
| 450 | PageSpace::Phase phase; |
| 451 | { |
| 452 | MonitorLocker ml(old_space_.tasks_lock()); |
| 453 | phase = old_space_.phase(); |
| 454 | } |
| 455 | if (phase == PageSpace::kAwaitingFinalization) { |
| 456 | TIMELINE_FUNCTION_GC_DURATION(thread, "IdleGC" ); |
| 457 | CollectOldSpaceGarbage(thread, Heap::kMarkSweep, Heap::kFinalize); |
| 458 | } else if (phase == PageSpace::kDone) { |
| 459 | TIMELINE_FUNCTION_GC_DURATION(thread, "IdleGC" ); |
| 460 | StartConcurrentMarking(thread); |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | void Heap::NotifyLowMemory() { |
| 466 | CollectMostGarbage(kLowMemory); |
| 467 | } |
| 468 | |
| 469 | void Heap::EvacuateNewSpace(Thread* thread, GCReason reason) { |
| 470 | ASSERT((reason != kOldSpace) && (reason != kPromotion)); |
| 471 | if (thread->isolate_group() == Dart::vm_isolate()->group()) { |
| 472 | // The vm isolate cannot safely collect garbage due to unvisited read-only |
| 473 | // handles and slots bootstrapped with RAW_NULL. Ignore GC requests to |
| 474 | // trigger a nice out-of-memory message instead of a crash in the middle of |
| 475 | // visiting pointers. |
| 476 | return; |
| 477 | } |
| 478 | if (BeginNewSpaceGC(thread)) { |
| 479 | RecordBeforeGC(kScavenge, reason); |
| 480 | VMTagScope tagScope(thread, reason == kIdle ? VMTag::kGCIdleTagId |
| 481 | : VMTag::kGCNewSpaceTagId); |
| 482 | TIMELINE_FUNCTION_GC_DURATION(thread, "EvacuateNewGeneration" ); |
| 483 | new_space_.Evacuate(); |
| 484 | RecordAfterGC(kScavenge); |
| 485 | PrintStats(); |
| 486 | NOT_IN_PRODUCT(PrintStatsToTimeline(&tbes, reason)); |
| 487 | EndNewSpaceGC(); |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | void Heap::CollectNewSpaceGarbage(Thread* thread, GCReason reason) { |
| 492 | NoActiveIsolateScope no_active_isolate_scope; |
| 493 | ASSERT((reason != kOldSpace) && (reason != kPromotion)); |
| 494 | if (thread->isolate_group() == Dart::vm_isolate()->group()) { |
| 495 | // The vm isolate cannot safely collect garbage due to unvisited read-only |
| 496 | // handles and slots bootstrapped with RAW_NULL. Ignore GC requests to |
| 497 | // trigger a nice out-of-memory message instead of a crash in the middle of |
| 498 | // visiting pointers. |
| 499 | return; |
| 500 | } |
| 501 | if (BeginNewSpaceGC(thread)) { |
| 502 | RecordBeforeGC(kScavenge, reason); |
| 503 | { |
| 504 | VMTagScope tagScope(thread, reason == kIdle ? VMTag::kGCIdleTagId |
| 505 | : VMTag::kGCNewSpaceTagId); |
| 506 | TIMELINE_FUNCTION_GC_DURATION_BASIC(thread, "CollectNewGeneration" ); |
| 507 | new_space_.Scavenge(); |
| 508 | RecordAfterGC(kScavenge); |
| 509 | PrintStats(); |
| 510 | NOT_IN_PRODUCT(PrintStatsToTimeline(&tbes, reason)); |
| 511 | EndNewSpaceGC(); |
| 512 | } |
| 513 | if (reason == kNewSpace) { |
| 514 | if (old_space_.ReachedHardThreshold()) { |
| 515 | CollectOldSpaceGarbage(thread, kMarkSweep, kPromotion); |
| 516 | } else { |
| 517 | CheckStartConcurrentMarking(thread, kPromotion); |
| 518 | } |
| 519 | } |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | void Heap::CollectOldSpaceGarbage(Thread* thread, |
| 524 | GCType type, |
| 525 | GCReason reason) { |
| 526 | NoActiveIsolateScope no_active_isolate_scope; |
| 527 | |
| 528 | ASSERT(reason != kNewSpace); |
| 529 | ASSERT(type != kScavenge); |
| 530 | if (FLAG_use_compactor) { |
| 531 | type = kMarkCompact; |
| 532 | } |
| 533 | if (thread->isolate_group() == Dart::vm_isolate()->group()) { |
| 534 | // The vm isolate cannot safely collect garbage due to unvisited read-only |
| 535 | // handles and slots bootstrapped with RAW_NULL. Ignore GC requests to |
| 536 | // trigger a nice out-of-memory message instead of a crash in the middle of |
| 537 | // visiting pointers. |
| 538 | return; |
| 539 | } |
| 540 | if (BeginOldSpaceGC(thread)) { |
| 541 | thread->isolate_group()->ForEachIsolate([&](Isolate* isolate) { |
| 542 | // Discard regexp backtracking stacks to further reduce memory usage. |
| 543 | isolate->CacheRegexpBacktrackStack(nullptr); |
| 544 | }); |
| 545 | |
| 546 | RecordBeforeGC(type, reason); |
| 547 | VMTagScope tagScope(thread, reason == kIdle ? VMTag::kGCIdleTagId |
| 548 | : VMTag::kGCOldSpaceTagId); |
| 549 | TIMELINE_FUNCTION_GC_DURATION_BASIC(thread, "CollectOldGeneration" ); |
| 550 | old_space_.CollectGarbage(type == kMarkCompact, true /* finish */); |
| 551 | RecordAfterGC(type); |
| 552 | PrintStats(); |
| 553 | NOT_IN_PRODUCT(PrintStatsToTimeline(&tbes, reason)); |
| 554 | |
| 555 | // Some Code objects may have been collected so invalidate handler cache. |
| 556 | thread->isolate_group()->ForEachIsolate([&](Isolate* isolate) { |
| 557 | isolate->handler_info_cache()->Clear(); |
| 558 | isolate->catch_entry_moves_cache()->Clear(); |
| 559 | }); |
| 560 | EndOldSpaceGC(); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | void Heap::CollectGarbage(GCType type, GCReason reason) { |
| 565 | Thread* thread = Thread::Current(); |
| 566 | switch (type) { |
| 567 | case kScavenge: |
| 568 | CollectNewSpaceGarbage(thread, reason); |
| 569 | break; |
| 570 | case kMarkSweep: |
| 571 | case kMarkCompact: |
| 572 | CollectOldSpaceGarbage(thread, type, reason); |
| 573 | break; |
| 574 | default: |
| 575 | UNREACHABLE(); |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | void Heap::CollectGarbage(Space space) { |
| 580 | Thread* thread = Thread::Current(); |
| 581 | if (space == kOld) { |
| 582 | CollectOldSpaceGarbage(thread, kMarkSweep, kOldSpace); |
| 583 | } else { |
| 584 | ASSERT(space == kNew); |
| 585 | CollectNewSpaceGarbage(thread, kNewSpace); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | void Heap::CollectMostGarbage(GCReason reason) { |
| 590 | Thread* thread = Thread::Current(); |
| 591 | CollectNewSpaceGarbage(thread, reason); |
| 592 | CollectOldSpaceGarbage( |
| 593 | thread, reason == kLowMemory ? kMarkCompact : kMarkSweep, reason); |
| 594 | } |
| 595 | |
| 596 | void Heap::CollectAllGarbage(GCReason reason) { |
| 597 | Thread* thread = Thread::Current(); |
| 598 | |
| 599 | // New space is evacuated so this GC will collect all dead objects |
| 600 | // kept alive by a cross-generational pointer. |
| 601 | EvacuateNewSpace(thread, reason); |
| 602 | if (thread->is_marking()) { |
| 603 | // If incremental marking is happening, we need to finish the GC cycle |
| 604 | // and perform a follow-up GC to purge any "floating garbage" that may be |
| 605 | // retained by the incremental barrier. |
| 606 | CollectOldSpaceGarbage(thread, kMarkSweep, reason); |
| 607 | } |
| 608 | CollectOldSpaceGarbage( |
| 609 | thread, reason == kLowMemory ? kMarkCompact : kMarkSweep, reason); |
| 610 | WaitForSweeperTasks(thread); |
| 611 | } |
| 612 | |
| 613 | void Heap::CheckStartConcurrentMarking(Thread* thread, GCReason reason) { |
| 614 | { |
| 615 | MonitorLocker ml(old_space_.tasks_lock()); |
| 616 | if (old_space_.phase() != PageSpace::kDone) { |
| 617 | return; // Busy. |
| 618 | } |
| 619 | } |
| 620 | |
| 621 | if (old_space_.ReachedSoftThreshold()) { |
| 622 | // New-space objects are roots during old-space GC. This means that even |
| 623 | // unreachable new-space objects prevent old-space objects they reference |
| 624 | // from being collected during an old-space GC. Normally this is not an |
| 625 | // issue because new-space GCs run much more frequently than old-space GCs. |
| 626 | // If new-space allocation is low and direct old-space allocation is high, |
| 627 | // which can happen in a program that allocates large objects and little |
| 628 | // else, old-space can fill up with unreachable objects until the next |
| 629 | // new-space GC. This check is the concurrent-marking equivalent to the |
| 630 | // new-space GC before synchronous-marking in CollectMostGarbage. |
| 631 | if (last_gc_was_old_space_) { |
| 632 | CollectNewSpaceGarbage(thread, kFull); |
| 633 | } |
| 634 | |
| 635 | StartConcurrentMarking(thread); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | void Heap::StartConcurrentMarking(Thread* thread) { |
| 640 | if (BeginOldSpaceGC(thread)) { |
| 641 | TIMELINE_FUNCTION_GC_DURATION_BASIC(thread, "StartConcurrentMarking" ); |
| 642 | old_space_.CollectGarbage(/*compact=*/false, /*finalize=*/false); |
| 643 | EndOldSpaceGC(); |
| 644 | } |
| 645 | } |
| 646 | |
| 647 | void Heap::CheckFinishConcurrentMarking(Thread* thread) { |
| 648 | bool ready; |
| 649 | { |
| 650 | MonitorLocker ml(old_space_.tasks_lock()); |
| 651 | ready = old_space_.phase() == PageSpace::kAwaitingFinalization; |
| 652 | } |
| 653 | if (ready) { |
| 654 | CollectOldSpaceGarbage(thread, Heap::kMarkSweep, Heap::kFinalize); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | void Heap::WaitForMarkerTasks(Thread* thread) { |
| 659 | MonitorLocker ml(old_space_.tasks_lock()); |
| 660 | while ((old_space_.phase() == PageSpace::kMarking) || |
| 661 | (old_space_.phase() == PageSpace::kAwaitingFinalization)) { |
| 662 | while (old_space_.phase() == PageSpace::kMarking) { |
| 663 | ml.WaitWithSafepointCheck(thread); |
| 664 | } |
| 665 | if (old_space_.phase() == PageSpace::kAwaitingFinalization) { |
| 666 | ml.Exit(); |
| 667 | CollectOldSpaceGarbage(thread, Heap::kMarkSweep, Heap::kFinalize); |
| 668 | ml.Enter(); |
| 669 | } |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | void Heap::WaitForSweeperTasks(Thread* thread) { |
| 674 | ASSERT(!thread->IsAtSafepoint()); |
| 675 | MonitorLocker ml(old_space_.tasks_lock()); |
| 676 | while (old_space_.tasks() > 0) { |
| 677 | ml.WaitWithSafepointCheck(thread); |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | void Heap::WaitForSweeperTasksAtSafepoint(Thread* thread) { |
| 682 | ASSERT(thread->IsAtSafepoint()); |
| 683 | MonitorLocker ml(old_space_.tasks_lock()); |
| 684 | while (old_space_.tasks() > 0) { |
| 685 | ml.Wait(); |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | void Heap::UpdateGlobalMaxUsed() { |
| 690 | ASSERT(isolate_group_ != NULL); |
| 691 | // We are accessing the used in words count for both new and old space |
| 692 | // without synchronizing. The value of this metric is approximate. |
| 693 | isolate_group_->GetHeapGlobalUsedMaxMetric()->SetValue( |
| 694 | (UsedInWords(Heap::kNew) * kWordSize) + |
| 695 | (UsedInWords(Heap::kOld) * kWordSize)); |
| 696 | } |
| 697 | |
| 698 | void Heap::InitGrowthControl() { |
| 699 | new_space_.InitGrowthControl(); |
| 700 | old_space_.InitGrowthControl(); |
| 701 | } |
| 702 | |
| 703 | void Heap::SetGrowthControlState(bool state) { |
| 704 | new_space_.SetGrowthControlState(state); |
| 705 | old_space_.SetGrowthControlState(state); |
| 706 | } |
| 707 | |
| 708 | bool Heap::GrowthControlState() { |
| 709 | ASSERT(new_space_.GrowthControlState() == old_space_.GrowthControlState()); |
| 710 | return old_space_.GrowthControlState(); |
| 711 | } |
| 712 | |
| 713 | void Heap::WriteProtect(bool read_only) { |
| 714 | read_only_ = read_only; |
| 715 | new_space_.WriteProtect(read_only); |
| 716 | old_space_.WriteProtect(read_only); |
| 717 | } |
| 718 | |
| 719 | void Heap::Init(IsolateGroup* isolate_group, |
| 720 | intptr_t max_new_gen_words, |
| 721 | intptr_t max_old_gen_words) { |
| 722 | ASSERT(isolate_group->heap() == nullptr); |
| 723 | std::unique_ptr<Heap> heap( |
| 724 | new Heap(isolate_group, max_new_gen_words, max_old_gen_words)); |
| 725 | isolate_group->set_heap(std::move(heap)); |
| 726 | } |
| 727 | |
| 728 | const char* Heap::RegionName(Space space) { |
| 729 | switch (space) { |
| 730 | case kNew: |
| 731 | return "dart-newspace" ; |
| 732 | case kOld: |
| 733 | return "dart-oldspace" ; |
| 734 | case kCode: |
| 735 | return "dart-codespace" ; |
| 736 | default: |
| 737 | UNREACHABLE(); |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | void Heap::AddRegionsToObjectSet(ObjectSet* set) const { |
| 742 | new_space_.AddRegionsToObjectSet(set); |
| 743 | old_space_.AddRegionsToObjectSet(set); |
| 744 | set->SortRegions(); |
| 745 | } |
| 746 | |
| 747 | void Heap::CollectOnNthAllocation(intptr_t num_allocations) { |
| 748 | // Prevent generated code from using the TLAB fast path on next allocation. |
| 749 | new_space_.AbandonRemainingTLABForDebugging(Thread::Current()); |
| 750 | gc_on_nth_allocation_ = num_allocations; |
| 751 | } |
| 752 | |
| 753 | void Heap::MergeFrom(Heap* donor) { |
| 754 | ASSERT(!donor->gc_new_space_in_progress_); |
| 755 | ASSERT(!donor->gc_old_space_in_progress_); |
| 756 | ASSERT(!donor->read_only_); |
| 757 | ASSERT(donor->old_space()->tasks() == 0); |
| 758 | |
| 759 | new_space_.MergeFrom(donor->new_space()); |
| 760 | old_space_.MergeFrom(donor->old_space()); |
| 761 | |
| 762 | for (intptr_t i = 0; i < kNumWeakSelectors; ++i) { |
| 763 | // The new space rehashing should not be necessary. |
| 764 | new_weak_tables_[i]->MergeFrom(donor->new_weak_tables_[i]); |
| 765 | old_weak_tables_[i]->MergeFrom(donor->old_weak_tables_[i]); |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | void Heap::CollectForDebugging() { |
| 770 | if (gc_on_nth_allocation_ == kNoForcedGarbageCollection) return; |
| 771 | if (Thread::Current()->IsAtSafepoint()) { |
| 772 | // CollectAllGarbage is not supported when we are at a safepoint. |
| 773 | // Allocating when at a safepoint is not a common case. |
| 774 | return; |
| 775 | } |
| 776 | gc_on_nth_allocation_--; |
| 777 | if (gc_on_nth_allocation_ == 0) { |
| 778 | CollectAllGarbage(kDebugging); |
| 779 | gc_on_nth_allocation_ = kNoForcedGarbageCollection; |
| 780 | } else { |
| 781 | // Prevent generated code from using the TLAB fast path on next allocation. |
| 782 | new_space_.AbandonRemainingTLABForDebugging(Thread::Current()); |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | ObjectSet* Heap::CreateAllocatedObjectSet(Zone* zone, |
| 787 | MarkExpectation mark_expectation) { |
| 788 | ObjectSet* allocated_set = new (zone) ObjectSet(zone); |
| 789 | |
| 790 | this->AddRegionsToObjectSet(allocated_set); |
| 791 | Isolate* vm_isolate = Dart::vm_isolate(); |
| 792 | vm_isolate->heap()->AddRegionsToObjectSet(allocated_set); |
| 793 | |
| 794 | { |
| 795 | VerifyObjectVisitor object_visitor(isolate_group(), allocated_set, |
| 796 | mark_expectation); |
| 797 | this->VisitObjectsNoImagePages(&object_visitor); |
| 798 | } |
| 799 | { |
| 800 | VerifyObjectVisitor object_visitor(isolate_group(), allocated_set, |
| 801 | kRequireMarked); |
| 802 | this->VisitObjectsImagePages(&object_visitor); |
| 803 | } |
| 804 | { |
| 805 | // VM isolate heap is premarked. |
| 806 | VerifyObjectVisitor vm_object_visitor(isolate_group(), allocated_set, |
| 807 | kRequireMarked); |
| 808 | vm_isolate->heap()->VisitObjects(&vm_object_visitor); |
| 809 | } |
| 810 | |
| 811 | return allocated_set; |
| 812 | } |
| 813 | |
| 814 | bool Heap::Verify(MarkExpectation mark_expectation) { |
| 815 | if (FLAG_disable_heap_verification) { |
| 816 | return true; |
| 817 | } |
| 818 | HeapIterationScope heap_iteration_scope(Thread::Current()); |
| 819 | return VerifyGC(mark_expectation); |
| 820 | } |
| 821 | |
| 822 | bool Heap::VerifyGC(MarkExpectation mark_expectation) { |
| 823 | auto thread = Thread::Current(); |
| 824 | StackZone stack_zone(thread); |
| 825 | |
| 826 | ObjectSet* allocated_set = |
| 827 | CreateAllocatedObjectSet(stack_zone.GetZone(), mark_expectation); |
| 828 | VerifyPointersVisitor visitor(isolate_group(), allocated_set); |
| 829 | VisitObjectPointers(&visitor); |
| 830 | |
| 831 | // Only returning a value so that Heap::Validate can be called from an ASSERT. |
| 832 | return true; |
| 833 | } |
| 834 | |
| 835 | void Heap::PrintSizes() const { |
| 836 | OS::PrintErr( |
| 837 | "New space (%" Pd64 "k of %" Pd64 |
| 838 | "k) " |
| 839 | "Old space (%" Pd64 "k of %" Pd64 "k)\n" , |
| 840 | (UsedInWords(kNew) / KBInWords), (CapacityInWords(kNew) / KBInWords), |
| 841 | (UsedInWords(kOld) / KBInWords), (CapacityInWords(kOld) / KBInWords)); |
| 842 | } |
| 843 | |
| 844 | int64_t Heap::UsedInWords(Space space) const { |
| 845 | return space == kNew ? new_space_.UsedInWords() : old_space_.UsedInWords(); |
| 846 | } |
| 847 | |
| 848 | int64_t Heap::CapacityInWords(Space space) const { |
| 849 | return space == kNew ? new_space_.CapacityInWords() |
| 850 | : old_space_.CapacityInWords(); |
| 851 | } |
| 852 | |
| 853 | int64_t Heap::ExternalInWords(Space space) const { |
| 854 | return space == kNew ? new_space_.ExternalInWords() |
| 855 | : old_space_.ExternalInWords(); |
| 856 | } |
| 857 | |
| 858 | int64_t Heap::TotalUsedInWords() const { |
| 859 | return UsedInWords(kNew) + UsedInWords(kOld); |
| 860 | } |
| 861 | |
| 862 | int64_t Heap::TotalCapacityInWords() const { |
| 863 | return CapacityInWords(kNew) + CapacityInWords(kOld); |
| 864 | } |
| 865 | |
| 866 | int64_t Heap::TotalExternalInWords() const { |
| 867 | return ExternalInWords(kNew) + ExternalInWords(kOld); |
| 868 | } |
| 869 | |
| 870 | int64_t Heap::GCTimeInMicros(Space space) const { |
| 871 | if (space == kNew) { |
| 872 | return new_space_.gc_time_micros(); |
| 873 | } |
| 874 | return old_space_.gc_time_micros(); |
| 875 | } |
| 876 | |
| 877 | intptr_t Heap::Collections(Space space) const { |
| 878 | if (space == kNew) { |
| 879 | return new_space_.collections(); |
| 880 | } |
| 881 | return old_space_.collections(); |
| 882 | } |
| 883 | |
| 884 | const char* Heap::GCTypeToString(GCType type) { |
| 885 | switch (type) { |
| 886 | case kScavenge: |
| 887 | return "Scavenge" ; |
| 888 | case kMarkSweep: |
| 889 | return "MarkSweep" ; |
| 890 | case kMarkCompact: |
| 891 | return "MarkCompact" ; |
| 892 | default: |
| 893 | UNREACHABLE(); |
| 894 | return "" ; |
| 895 | } |
| 896 | } |
| 897 | |
| 898 | const char* Heap::GCReasonToString(GCReason gc_reason) { |
| 899 | switch (gc_reason) { |
| 900 | case kNewSpace: |
| 901 | return "new space" ; |
| 902 | case kPromotion: |
| 903 | return "promotion" ; |
| 904 | case kOldSpace: |
| 905 | return "old space" ; |
| 906 | case kFinalize: |
| 907 | return "finalize" ; |
| 908 | case kFull: |
| 909 | return "full" ; |
| 910 | case kExternal: |
| 911 | return "external" ; |
| 912 | case kIdle: |
| 913 | return "idle" ; |
| 914 | case kLowMemory: |
| 915 | return "low memory" ; |
| 916 | case kDebugging: |
| 917 | return "debugging" ; |
| 918 | case kSendAndExit: |
| 919 | return "send_and_exit" ; |
| 920 | default: |
| 921 | UNREACHABLE(); |
| 922 | return "" ; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | int64_t Heap::PeerCount() const { |
| 927 | return new_weak_tables_[kPeers]->count() + old_weak_tables_[kPeers]->count(); |
| 928 | } |
| 929 | |
| 930 | void Heap::ResetCanonicalHashTable() { |
| 931 | new_weak_tables_[kCanonicalHashes]->Reset(); |
| 932 | old_weak_tables_[kCanonicalHashes]->Reset(); |
| 933 | } |
| 934 | |
| 935 | void Heap::ResetObjectIdTable() { |
| 936 | new_weak_tables_[kObjectIds]->Reset(); |
| 937 | old_weak_tables_[kObjectIds]->Reset(); |
| 938 | } |
| 939 | |
| 940 | intptr_t Heap::GetWeakEntry(ObjectPtr raw_obj, WeakSelector sel) const { |
| 941 | if (raw_obj->IsNewObject()) { |
| 942 | return new_weak_tables_[sel]->GetValue(raw_obj); |
| 943 | } |
| 944 | ASSERT(raw_obj->IsOldObject()); |
| 945 | return old_weak_tables_[sel]->GetValue(raw_obj); |
| 946 | } |
| 947 | |
| 948 | void Heap::SetWeakEntry(ObjectPtr raw_obj, WeakSelector sel, intptr_t val) { |
| 949 | if (raw_obj->IsNewObject()) { |
| 950 | new_weak_tables_[sel]->SetValue(raw_obj, val); |
| 951 | } else { |
| 952 | ASSERT(raw_obj->IsOldObject()); |
| 953 | old_weak_tables_[sel]->SetValue(raw_obj, val); |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | void Heap::ForwardWeakEntries(ObjectPtr before_object, ObjectPtr after_object) { |
| 958 | const auto before_space = |
| 959 | before_object->IsNewObject() ? Heap::kNew : Heap::kOld; |
| 960 | const auto after_space = |
| 961 | after_object->IsNewObject() ? Heap::kNew : Heap::kOld; |
| 962 | |
| 963 | for (int sel = 0; sel < Heap::kNumWeakSelectors; sel++) { |
| 964 | const auto selector = static_cast<Heap::WeakSelector>(sel); |
| 965 | auto before_table = GetWeakTable(before_space, selector); |
| 966 | intptr_t entry = before_table->RemoveValueExclusive(before_object); |
| 967 | if (entry != 0) { |
| 968 | auto after_table = GetWeakTable(after_space, selector); |
| 969 | after_table->SetValueExclusive(after_object, entry); |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | // We only come here during hot reload, in which case we assume that none of |
| 974 | // the isolates is in the middle of sending messages. |
| 975 | isolate_group()->ForEachIsolate( |
| 976 | [&](Isolate* isolate) { |
| 977 | RELEASE_ASSERT(isolate->forward_table_new() == nullptr); |
| 978 | RELEASE_ASSERT(isolate->forward_table_old() == nullptr); |
| 979 | }, |
| 980 | /*at_safepoint=*/true); |
| 981 | } |
| 982 | |
| 983 | void Heap::ForwardWeakTables(ObjectPointerVisitor* visitor) { |
| 984 | // NOTE: This method is only used by the compactor, so there is no need to |
| 985 | // process the `Heap::kNew` tables. |
| 986 | for (int sel = 0; sel < Heap::kNumWeakSelectors; sel++) { |
| 987 | WeakSelector selector = static_cast<Heap::WeakSelector>(sel); |
| 988 | GetWeakTable(Heap::kOld, selector)->Forward(visitor); |
| 989 | } |
| 990 | |
| 991 | // Isolates might have forwarding tables (used for during snapshoting in |
| 992 | // isolate communication). |
| 993 | isolate_group()->ForEachIsolate( |
| 994 | [&](Isolate* isolate) { |
| 995 | auto table_old = isolate->forward_table_old(); |
| 996 | if (table_old != nullptr) table_old->Forward(visitor); |
| 997 | }, |
| 998 | /*at_safepoint=*/true); |
| 999 | } |
| 1000 | |
| 1001 | #ifndef PRODUCT |
| 1002 | void Heap::PrintToJSONObject(Space space, JSONObject* object) const { |
| 1003 | if (space == kNew) { |
| 1004 | new_space_.PrintToJSONObject(object); |
| 1005 | } else { |
| 1006 | old_space_.PrintToJSONObject(object); |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | void Heap::PrintMemoryUsageJSON(JSONStream* stream) const { |
| 1011 | JSONObject obj(stream); |
| 1012 | PrintMemoryUsageJSON(&obj); |
| 1013 | } |
| 1014 | |
| 1015 | void Heap::PrintMemoryUsageJSON(JSONObject* jsobj) const { |
| 1016 | jsobj->AddProperty("type" , "MemoryUsage" ); |
| 1017 | jsobj->AddProperty64("heapUsage" , TotalUsedInWords() * kWordSize); |
| 1018 | jsobj->AddProperty64("heapCapacity" , TotalCapacityInWords() * kWordSize); |
| 1019 | jsobj->AddProperty64("externalUsage" , TotalExternalInWords() * kWordSize); |
| 1020 | } |
| 1021 | #endif // PRODUCT |
| 1022 | |
| 1023 | void Heap::RecordBeforeGC(GCType type, GCReason reason) { |
| 1024 | ASSERT((type == kScavenge && gc_new_space_in_progress_) || |
| 1025 | (type == kMarkSweep && gc_old_space_in_progress_) || |
| 1026 | (type == kMarkCompact && gc_old_space_in_progress_)); |
| 1027 | stats_.num_++; |
| 1028 | stats_.type_ = type; |
| 1029 | stats_.reason_ = reason; |
| 1030 | stats_.before_.micros_ = OS::GetCurrentMonotonicMicros(); |
| 1031 | stats_.before_.new_ = new_space_.GetCurrentUsage(); |
| 1032 | stats_.before_.old_ = old_space_.GetCurrentUsage(); |
| 1033 | for (int i = 0; i < GCStats::kTimeEntries; i++) |
| 1034 | stats_.times_[i] = 0; |
| 1035 | for (int i = 0; i < GCStats::kDataEntries; i++) |
| 1036 | stats_.data_[i] = 0; |
| 1037 | } |
| 1038 | |
| 1039 | void Heap::RecordAfterGC(GCType type) { |
| 1040 | stats_.after_.micros_ = OS::GetCurrentMonotonicMicros(); |
| 1041 | int64_t delta = stats_.after_.micros_ - stats_.before_.micros_; |
| 1042 | if (stats_.type_ == kScavenge) { |
| 1043 | new_space_.AddGCTime(delta); |
| 1044 | new_space_.IncrementCollections(); |
| 1045 | } else { |
| 1046 | old_space_.AddGCTime(delta); |
| 1047 | old_space_.IncrementCollections(); |
| 1048 | } |
| 1049 | stats_.after_.new_ = new_space_.GetCurrentUsage(); |
| 1050 | stats_.after_.old_ = old_space_.GetCurrentUsage(); |
| 1051 | ASSERT((type == kScavenge && gc_new_space_in_progress_) || |
| 1052 | (type == kMarkSweep && gc_old_space_in_progress_) || |
| 1053 | (type == kMarkCompact && gc_old_space_in_progress_)); |
| 1054 | #ifndef PRODUCT |
| 1055 | // For now we'll emit the same GC events on all isolates. |
| 1056 | if (Service::gc_stream.enabled()) { |
| 1057 | isolate_group_->ForEachIsolate([&](Isolate* isolate) { |
| 1058 | if (!Isolate::IsVMInternalIsolate(isolate)) { |
| 1059 | ServiceEvent event(isolate, ServiceEvent::kGC); |
| 1060 | event.set_gc_stats(&stats_); |
| 1061 | Service::HandleEvent(&event); |
| 1062 | } |
| 1063 | }); |
| 1064 | } |
| 1065 | #endif // !PRODUCT |
| 1066 | } |
| 1067 | |
| 1068 | void Heap::PrintStats() { |
| 1069 | #if !defined(PRODUCT) |
| 1070 | if (!FLAG_verbose_gc) return; |
| 1071 | |
| 1072 | if ((FLAG_verbose_gc_hdr != 0) && |
| 1073 | (((stats_.num_ - 1) % FLAG_verbose_gc_hdr) == 0)) { |
| 1074 | OS::PrintErr( |
| 1075 | "[ | | | | " |
| 1076 | "| new gen | new gen | new gen " |
| 1077 | "| old gen | old gen | old gen " |
| 1078 | "| sweep | safe- | roots/| stbuf/| tospc/| weaks/| ]\n" |
| 1079 | "[ GC isolate | space (reason) | GC# | start | time " |
| 1080 | "| used (kB) | capacity kB | external" |
| 1081 | "| used (kB) | capacity (kB) | external kB " |
| 1082 | "| thread| point |marking| reset | sweep |swplrge| data ]\n" |
| 1083 | "[ | | | (s) | (ms) " |
| 1084 | "|before| after|before| after| b4 |aftr" |
| 1085 | "| before| after | before| after |before| after" |
| 1086 | "| (ms) | (ms) | (ms) | (ms) | (ms) | (ms) | ]\n" ); |
| 1087 | } |
| 1088 | |
| 1089 | // clang-format off |
| 1090 | OS::PrintErr( |
| 1091 | "[ %-13.13s, %10s(%9s), " // GC(isolate-group), type(reason) |
| 1092 | "%4" Pd ", " // count |
| 1093 | "%6.2f, " // start time |
| 1094 | "%5.1f, " // total time |
| 1095 | "%5" Pd ", %5" Pd ", " // new gen: in use before/after |
| 1096 | "%5" Pd ", %5" Pd ", " // new gen: capacity before/after |
| 1097 | "%3" Pd ", %3" Pd ", " // new gen: external before/after |
| 1098 | "%6" Pd ", %6" Pd ", " // old gen: in use before/after |
| 1099 | "%6" Pd ", %6" Pd ", " // old gen: capacity before/after |
| 1100 | "%5" Pd ", %5" Pd ", " // old gen: external before/after |
| 1101 | "%6.2f, %6.2f, %6.2f, %6.2f, %6.2f, %6.2f, " // times |
| 1102 | "%" Pd ", %" Pd ", %" Pd ", %" Pd ", " // data |
| 1103 | "]\n" , // End with a comma to make it easier to import in spreadsheets. |
| 1104 | isolate_group()->source()->name, |
| 1105 | GCTypeToString(stats_.type_), |
| 1106 | GCReasonToString(stats_.reason_), |
| 1107 | stats_.num_, |
| 1108 | MicrosecondsToSeconds(isolate_group_->UptimeMicros()), |
| 1109 | MicrosecondsToMilliseconds(stats_.after_.micros_ - |
| 1110 | stats_.before_.micros_), |
| 1111 | RoundWordsToKB(stats_.before_.new_.used_in_words), |
| 1112 | RoundWordsToKB(stats_.after_.new_.used_in_words), |
| 1113 | RoundWordsToKB(stats_.before_.new_.capacity_in_words), |
| 1114 | RoundWordsToKB(stats_.after_.new_.capacity_in_words), |
| 1115 | RoundWordsToKB(stats_.before_.new_.external_in_words), |
| 1116 | RoundWordsToKB(stats_.after_.new_.external_in_words), |
| 1117 | RoundWordsToKB(stats_.before_.old_.used_in_words), |
| 1118 | RoundWordsToKB(stats_.after_.old_.used_in_words), |
| 1119 | RoundWordsToKB(stats_.before_.old_.capacity_in_words), |
| 1120 | RoundWordsToKB(stats_.after_.old_.capacity_in_words), |
| 1121 | RoundWordsToKB(stats_.before_.old_.external_in_words), |
| 1122 | RoundWordsToKB(stats_.after_.old_.external_in_words), |
| 1123 | MicrosecondsToMilliseconds(stats_.times_[0]), |
| 1124 | MicrosecondsToMilliseconds(stats_.times_[1]), |
| 1125 | MicrosecondsToMilliseconds(stats_.times_[2]), |
| 1126 | MicrosecondsToMilliseconds(stats_.times_[3]), |
| 1127 | MicrosecondsToMilliseconds(stats_.times_[4]), |
| 1128 | MicrosecondsToMilliseconds(stats_.times_[5]), |
| 1129 | stats_.data_[0], |
| 1130 | stats_.data_[1], |
| 1131 | stats_.data_[2], |
| 1132 | stats_.data_[3]); |
| 1133 | // clang-format on |
| 1134 | #endif // !defined(PRODUCT) |
| 1135 | } |
| 1136 | |
| 1137 | void Heap::PrintStatsToTimeline(TimelineEventScope* event, GCReason reason) { |
| 1138 | #if !defined(PRODUCT) |
| 1139 | if ((event == NULL) || !event->enabled()) { |
| 1140 | return; |
| 1141 | } |
| 1142 | intptr_t arguments = event->GetNumArguments(); |
| 1143 | event->SetNumArguments(arguments + 13); |
| 1144 | event->CopyArgument(arguments + 0, "Reason" , GCReasonToString(reason)); |
| 1145 | event->FormatArgument(arguments + 1, "Before.New.Used (kB)" , "%" Pd "" , |
| 1146 | RoundWordsToKB(stats_.before_.new_.used_in_words)); |
| 1147 | event->FormatArgument(arguments + 2, "After.New.Used (kB)" , "%" Pd "" , |
| 1148 | RoundWordsToKB(stats_.after_.new_.used_in_words)); |
| 1149 | event->FormatArgument(arguments + 3, "Before.Old.Used (kB)" , "%" Pd "" , |
| 1150 | RoundWordsToKB(stats_.before_.old_.used_in_words)); |
| 1151 | event->FormatArgument(arguments + 4, "After.Old.Used (kB)" , "%" Pd "" , |
| 1152 | RoundWordsToKB(stats_.after_.old_.used_in_words)); |
| 1153 | |
| 1154 | event->FormatArgument(arguments + 5, "Before.New.Capacity (kB)" , "%" Pd "" , |
| 1155 | RoundWordsToKB(stats_.before_.new_.capacity_in_words)); |
| 1156 | event->FormatArgument(arguments + 6, "After.New.Capacity (kB)" , "%" Pd "" , |
| 1157 | RoundWordsToKB(stats_.after_.new_.capacity_in_words)); |
| 1158 | event->FormatArgument(arguments + 7, "Before.Old.Capacity (kB)" , "%" Pd "" , |
| 1159 | RoundWordsToKB(stats_.before_.old_.capacity_in_words)); |
| 1160 | event->FormatArgument(arguments + 8, "After.Old.Capacity (kB)" , "%" Pd "" , |
| 1161 | RoundWordsToKB(stats_.after_.old_.capacity_in_words)); |
| 1162 | |
| 1163 | event->FormatArgument(arguments + 9, "Before.New.External (kB)" , "%" Pd "" , |
| 1164 | RoundWordsToKB(stats_.before_.new_.external_in_words)); |
| 1165 | event->FormatArgument(arguments + 10, "After.New.External (kB)" , "%" Pd "" , |
| 1166 | RoundWordsToKB(stats_.after_.new_.external_in_words)); |
| 1167 | event->FormatArgument(arguments + 11, "Before.Old.External (kB)" , "%" Pd "" , |
| 1168 | RoundWordsToKB(stats_.before_.old_.external_in_words)); |
| 1169 | event->FormatArgument(arguments + 12, "After.Old.External (kB)" , "%" Pd "" , |
| 1170 | RoundWordsToKB(stats_.after_.old_.external_in_words)); |
| 1171 | #endif // !defined(PRODUCT) |
| 1172 | } |
| 1173 | |
| 1174 | Heap::Space Heap::SpaceForExternal(intptr_t size) const { |
| 1175 | // If 'size' would be a significant fraction of new space, then use old. |
| 1176 | static const int kExtNewRatio = 16; |
| 1177 | if (size > (CapacityInWords(Heap::kNew) * kWordSize) / kExtNewRatio) { |
| 1178 | return Heap::kOld; |
| 1179 | } else { |
| 1180 | return Heap::kNew; |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | NoHeapGrowthControlScope::NoHeapGrowthControlScope() |
| 1185 | : ThreadStackResource(Thread::Current()) { |
| 1186 | Heap* heap = isolate()->heap(); |
| 1187 | current_growth_controller_state_ = heap->GrowthControlState(); |
| 1188 | heap->DisableGrowthControl(); |
| 1189 | } |
| 1190 | |
| 1191 | NoHeapGrowthControlScope::~NoHeapGrowthControlScope() { |
| 1192 | Heap* heap = isolate()->heap(); |
| 1193 | heap->SetGrowthControlState(current_growth_controller_state_); |
| 1194 | } |
| 1195 | |
| 1196 | WritableVMIsolateScope::WritableVMIsolateScope(Thread* thread) |
| 1197 | : ThreadStackResource(thread) { |
| 1198 | if (FLAG_write_protect_code && FLAG_write_protect_vm_isolate) { |
| 1199 | Dart::vm_isolate()->heap()->WriteProtect(false); |
| 1200 | } |
| 1201 | } |
| 1202 | |
| 1203 | WritableVMIsolateScope::~WritableVMIsolateScope() { |
| 1204 | ASSERT(Dart::vm_isolate()->heap()->UsedInWords(Heap::kNew) == 0); |
| 1205 | if (FLAG_write_protect_code && FLAG_write_protect_vm_isolate) { |
| 1206 | Dart::vm_isolate()->heap()->WriteProtect(true); |
| 1207 | } |
| 1208 | } |
| 1209 | |
| 1210 | WritableCodePages::WritableCodePages(Thread* thread, Isolate* isolate) |
| 1211 | : StackResource(thread), isolate_(isolate) { |
| 1212 | isolate_->heap()->WriteProtectCode(false); |
| 1213 | } |
| 1214 | |
| 1215 | WritableCodePages::~WritableCodePages() { |
| 1216 | isolate_->heap()->WriteProtectCode(true); |
| 1217 | } |
| 1218 | |
| 1219 | } // namespace dart |
| 1220 | |