| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/heap/pages.h" |
| 6 | |
| 7 | #include "platform/assert.h" |
| 8 | #include "platform/leak_sanitizer.h" |
| 9 | #include "vm/dart.h" |
| 10 | #include "vm/heap/become.h" |
| 11 | #include "vm/heap/compactor.h" |
| 12 | #include "vm/heap/marker.h" |
| 13 | #include "vm/heap/safepoint.h" |
| 14 | #include "vm/heap/sweeper.h" |
| 15 | #include "vm/lockers.h" |
| 16 | #include "vm/log.h" |
| 17 | #include "vm/object.h" |
| 18 | #include "vm/object_set.h" |
| 19 | #include "vm/os_thread.h" |
| 20 | #include "vm/virtual_memory.h" |
| 21 | |
| 22 | namespace dart { |
| 23 | |
| 24 | DEFINE_FLAG(int, |
| 25 | old_gen_growth_space_ratio, |
| 26 | 20, |
| 27 | "The desired maximum percentage of free space after old gen GC" ); |
| 28 | DEFINE_FLAG(int, |
| 29 | old_gen_growth_time_ratio, |
| 30 | 3, |
| 31 | "The desired maximum percentage of time spent in old gen GC" ); |
| 32 | DEFINE_FLAG(int, |
| 33 | old_gen_growth_rate, |
| 34 | 280, |
| 35 | "The max number of pages the old generation can grow at a time" ); |
| 36 | DEFINE_FLAG(bool, |
| 37 | print_free_list_before_gc, |
| 38 | false, |
| 39 | "Print free list statistics before a GC" ); |
| 40 | DEFINE_FLAG(bool, |
| 41 | print_free_list_after_gc, |
| 42 | false, |
| 43 | "Print free list statistics after a GC" ); |
| 44 | DEFINE_FLAG(bool, log_growth, false, "Log PageSpace growth policy decisions." ); |
| 45 | |
| 46 | OldPage* OldPage::Allocate(intptr_t size_in_words, |
| 47 | PageType type, |
| 48 | const char* name) { |
| 49 | const bool executable = type == kExecutable; |
| 50 | |
| 51 | VirtualMemory* memory = VirtualMemory::AllocateAligned( |
| 52 | size_in_words << kWordSizeLog2, kOldPageSize, executable, name); |
| 53 | if (memory == NULL) { |
| 54 | return NULL; |
| 55 | } |
| 56 | |
| 57 | OldPage* result = reinterpret_cast<OldPage*>(memory->address()); |
| 58 | ASSERT(result != NULL); |
| 59 | result->memory_ = memory; |
| 60 | result->next_ = NULL; |
| 61 | result->used_in_bytes_ = 0; |
| 62 | result->forwarding_page_ = NULL; |
| 63 | result->card_table_ = NULL; |
| 64 | result->type_ = type; |
| 65 | |
| 66 | LSAN_REGISTER_ROOT_REGION(result, sizeof(*result)); |
| 67 | |
| 68 | return result; |
| 69 | } |
| 70 | |
| 71 | void OldPage::Deallocate() { |
| 72 | if (card_table_ != NULL) { |
| 73 | free(card_table_); |
| 74 | card_table_ = NULL; |
| 75 | } |
| 76 | |
| 77 | bool image_page = is_image_page(); |
| 78 | |
| 79 | if (!image_page) { |
| 80 | LSAN_UNREGISTER_ROOT_REGION(this, sizeof(*this)); |
| 81 | } |
| 82 | |
| 83 | // For a regular heap pages, the memory for this object will become |
| 84 | // unavailable after the delete below. |
| 85 | delete memory_; |
| 86 | |
| 87 | // For a heap page from a snapshot, the OldPage object lives in the malloc |
| 88 | // heap rather than the page itself. |
| 89 | if (image_page) { |
| 90 | free(this); |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | void OldPage::VisitObjects(ObjectVisitor* visitor) const { |
| 95 | ASSERT(Thread::Current()->IsAtSafepoint()); |
| 96 | NoSafepointScope no_safepoint; |
| 97 | uword obj_addr = object_start(); |
| 98 | uword end_addr = object_end(); |
| 99 | while (obj_addr < end_addr) { |
| 100 | ObjectPtr raw_obj = ObjectLayout::FromAddr(obj_addr); |
| 101 | visitor->VisitObject(raw_obj); |
| 102 | obj_addr += raw_obj->ptr()->HeapSize(); |
| 103 | } |
| 104 | ASSERT(obj_addr == end_addr); |
| 105 | } |
| 106 | |
| 107 | void OldPage::VisitObjectPointers(ObjectPointerVisitor* visitor) const { |
| 108 | ASSERT(Thread::Current()->IsAtSafepoint() || |
| 109 | (Thread::Current()->task_kind() == Thread::kCompactorTask)); |
| 110 | NoSafepointScope no_safepoint; |
| 111 | uword obj_addr = object_start(); |
| 112 | uword end_addr = object_end(); |
| 113 | while (obj_addr < end_addr) { |
| 114 | ObjectPtr raw_obj = ObjectLayout::FromAddr(obj_addr); |
| 115 | obj_addr += raw_obj->ptr()->VisitPointers(visitor); |
| 116 | } |
| 117 | ASSERT(obj_addr == end_addr); |
| 118 | } |
| 119 | |
| 120 | void OldPage::VisitRememberedCards(ObjectPointerVisitor* visitor) { |
| 121 | ASSERT(Thread::Current()->IsAtSafepoint() || |
| 122 | (Thread::Current()->task_kind() == Thread::kScavengerTask)); |
| 123 | NoSafepointScope no_safepoint; |
| 124 | |
| 125 | if (card_table_ == NULL) { |
| 126 | return; |
| 127 | } |
| 128 | |
| 129 | bool table_is_empty = false; |
| 130 | |
| 131 | ArrayPtr obj = static_cast<ArrayPtr>(ObjectLayout::FromAddr(object_start())); |
| 132 | ASSERT(obj->IsArray()); |
| 133 | ASSERT(obj->ptr()->IsCardRemembered()); |
| 134 | ObjectPtr* obj_from = obj->ptr()->from(); |
| 135 | ObjectPtr* obj_to = obj->ptr()->to(Smi::Value(obj->ptr()->length_)); |
| 136 | |
| 137 | const intptr_t size = card_table_size(); |
| 138 | for (intptr_t i = 0; i < size; i++) { |
| 139 | if (card_table_[i] != 0) { |
| 140 | ObjectPtr* card_from = |
| 141 | reinterpret_cast<ObjectPtr*>(this) + (i << kSlotsPerCardLog2); |
| 142 | ObjectPtr* card_to = reinterpret_cast<ObjectPtr*>(card_from) + |
| 143 | (1 << kSlotsPerCardLog2) - 1; |
| 144 | // Minus 1 because to is inclusive. |
| 145 | |
| 146 | if (card_from < obj_from) { |
| 147 | // First card overlaps with header. |
| 148 | card_from = obj_from; |
| 149 | } |
| 150 | if (card_to > obj_to) { |
| 151 | // Last card(s) may extend past the object. Array truncation can make |
| 152 | // this happen for more than one card. |
| 153 | card_to = obj_to; |
| 154 | } |
| 155 | |
| 156 | visitor->VisitPointers(card_from, card_to); |
| 157 | |
| 158 | bool has_new_target = false; |
| 159 | for (ObjectPtr* slot = card_from; slot <= card_to; slot++) { |
| 160 | if ((*slot)->IsNewObjectMayBeSmi()) { |
| 161 | has_new_target = true; |
| 162 | break; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | if (has_new_target) { |
| 167 | // Card remains remembered. |
| 168 | table_is_empty = false; |
| 169 | } else { |
| 170 | card_table_[i] = 0; |
| 171 | } |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | if (table_is_empty) { |
| 176 | free(card_table_); |
| 177 | card_table_ = NULL; |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | ObjectPtr OldPage::FindObject(FindObjectVisitor* visitor) const { |
| 182 | uword obj_addr = object_start(); |
| 183 | uword end_addr = object_end(); |
| 184 | if (visitor->VisitRange(obj_addr, end_addr)) { |
| 185 | while (obj_addr < end_addr) { |
| 186 | ObjectPtr raw_obj = ObjectLayout::FromAddr(obj_addr); |
| 187 | uword next_obj_addr = obj_addr + raw_obj->ptr()->HeapSize(); |
| 188 | if (visitor->VisitRange(obj_addr, next_obj_addr) && |
| 189 | raw_obj->ptr()->FindObject(visitor)) { |
| 190 | return raw_obj; // Found object, return it. |
| 191 | } |
| 192 | obj_addr = next_obj_addr; |
| 193 | } |
| 194 | ASSERT(obj_addr == end_addr); |
| 195 | } |
| 196 | return Object::null(); |
| 197 | } |
| 198 | |
| 199 | void OldPage::WriteProtect(bool read_only) { |
| 200 | ASSERT(!is_image_page()); |
| 201 | |
| 202 | VirtualMemory::Protection prot; |
| 203 | if (read_only) { |
| 204 | if ((type_ == kExecutable) && (memory_->AliasOffset() == 0)) { |
| 205 | prot = VirtualMemory::kReadExecute; |
| 206 | } else { |
| 207 | prot = VirtualMemory::kReadOnly; |
| 208 | } |
| 209 | } else { |
| 210 | prot = VirtualMemory::kReadWrite; |
| 211 | } |
| 212 | memory_->Protect(prot); |
| 213 | } |
| 214 | |
| 215 | // The initial estimate of how many words we can mark per microsecond (usage |
| 216 | // before / mark-sweep time). This is a conservative value observed running |
| 217 | // Flutter on a Nexus 4. After the first mark-sweep, we instead use a value |
| 218 | // based on the device's actual speed. |
| 219 | static const intptr_t kConservativeInitialMarkSpeed = 20; |
| 220 | |
| 221 | PageSpace::PageSpace(Heap* heap, intptr_t max_capacity_in_words) |
| 222 | : heap_(heap), |
| 223 | num_freelists_(Utils::Maximum(FLAG_scavenger_tasks, 1) + 1), |
| 224 | freelists_(new FreeList[num_freelists_]), |
| 225 | pages_lock_(), |
| 226 | max_capacity_in_words_(max_capacity_in_words), |
| 227 | usage_(), |
| 228 | allocated_black_in_words_(0), |
| 229 | tasks_lock_(), |
| 230 | tasks_(0), |
| 231 | concurrent_marker_tasks_(0), |
| 232 | phase_(kDone), |
| 233 | #if defined(DEBUG) |
| 234 | iterating_thread_(NULL), |
| 235 | #endif |
| 236 | page_space_controller_(heap, |
| 237 | FLAG_old_gen_growth_space_ratio, |
| 238 | FLAG_old_gen_growth_rate, |
| 239 | FLAG_old_gen_growth_time_ratio), |
| 240 | marker_(NULL), |
| 241 | gc_time_micros_(0), |
| 242 | collections_(0), |
| 243 | mark_words_per_micro_(kConservativeInitialMarkSpeed), |
| 244 | enable_concurrent_mark_(FLAG_concurrent_mark) { |
| 245 | // We aren't holding the lock but no one can reference us yet. |
| 246 | UpdateMaxCapacityLocked(); |
| 247 | UpdateMaxUsed(); |
| 248 | |
| 249 | for (intptr_t i = 0; i < num_freelists_; i++) { |
| 250 | freelists_[i].Reset(); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | PageSpace::~PageSpace() { |
| 255 | { |
| 256 | MonitorLocker ml(tasks_lock()); |
| 257 | while (tasks() > 0) { |
| 258 | ml.Wait(); |
| 259 | } |
| 260 | } |
| 261 | FreePages(pages_); |
| 262 | FreePages(exec_pages_); |
| 263 | FreePages(large_pages_); |
| 264 | FreePages(image_pages_); |
| 265 | ASSERT(marker_ == NULL); |
| 266 | delete[] freelists_; |
| 267 | } |
| 268 | |
| 269 | intptr_t PageSpace::LargePageSizeInWordsFor(intptr_t size) { |
| 270 | intptr_t page_size = Utils::RoundUp(size + OldPage::ObjectStartOffset(), |
| 271 | VirtualMemory::PageSize()); |
| 272 | return page_size >> kWordSizeLog2; |
| 273 | } |
| 274 | |
| 275 | void PageSpace::AddPageLocked(OldPage* page) { |
| 276 | if (pages_ == nullptr) { |
| 277 | pages_ = page; |
| 278 | } else { |
| 279 | pages_tail_->set_next(page); |
| 280 | } |
| 281 | pages_tail_ = page; |
| 282 | } |
| 283 | |
| 284 | void PageSpace::AddLargePageLocked(OldPage* page) { |
| 285 | if (large_pages_ == nullptr) { |
| 286 | large_pages_ = page; |
| 287 | } else { |
| 288 | large_pages_tail_->set_next(page); |
| 289 | } |
| 290 | large_pages_tail_ = page; |
| 291 | } |
| 292 | |
| 293 | void PageSpace::AddExecPageLocked(OldPage* page) { |
| 294 | if (exec_pages_ == nullptr) { |
| 295 | exec_pages_ = page; |
| 296 | } else { |
| 297 | if (FLAG_write_protect_code) { |
| 298 | exec_pages_tail_->WriteProtect(false); |
| 299 | } |
| 300 | exec_pages_tail_->set_next(page); |
| 301 | if (FLAG_write_protect_code) { |
| 302 | exec_pages_tail_->WriteProtect(true); |
| 303 | } |
| 304 | } |
| 305 | exec_pages_tail_ = page; |
| 306 | } |
| 307 | |
| 308 | void PageSpace::RemovePageLocked(OldPage* page, OldPage* previous_page) { |
| 309 | if (previous_page != NULL) { |
| 310 | previous_page->set_next(page->next()); |
| 311 | } else { |
| 312 | pages_ = page->next(); |
| 313 | } |
| 314 | if (page == pages_tail_) { |
| 315 | pages_tail_ = previous_page; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | void PageSpace::RemoveLargePageLocked(OldPage* page, OldPage* previous_page) { |
| 320 | if (previous_page != NULL) { |
| 321 | previous_page->set_next(page->next()); |
| 322 | } else { |
| 323 | large_pages_ = page->next(); |
| 324 | } |
| 325 | if (page == large_pages_tail_) { |
| 326 | large_pages_tail_ = previous_page; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | void PageSpace::RemoveExecPageLocked(OldPage* page, OldPage* previous_page) { |
| 331 | if (previous_page != NULL) { |
| 332 | previous_page->set_next(page->next()); |
| 333 | } else { |
| 334 | exec_pages_ = page->next(); |
| 335 | } |
| 336 | if (page == exec_pages_tail_) { |
| 337 | exec_pages_tail_ = previous_page; |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | OldPage* PageSpace::AllocatePage(OldPage::PageType type, bool link) { |
| 342 | { |
| 343 | MutexLocker ml(&pages_lock_); |
| 344 | if (!CanIncreaseCapacityInWordsLocked(kOldPageSizeInWords)) { |
| 345 | return nullptr; |
| 346 | } |
| 347 | IncreaseCapacityInWordsLocked(kOldPageSizeInWords); |
| 348 | } |
| 349 | const bool is_exec = (type == OldPage::kExecutable); |
| 350 | const char* name = Heap::RegionName(is_exec ? Heap::kCode : Heap::kOld); |
| 351 | OldPage* page = OldPage::Allocate(kOldPageSizeInWords, type, name); |
| 352 | if (page == nullptr) { |
| 353 | RELEASE_ASSERT(!FLAG_abort_on_oom); |
| 354 | IncreaseCapacityInWords(-kOldPageSizeInWords); |
| 355 | return nullptr; |
| 356 | } |
| 357 | |
| 358 | MutexLocker ml(&pages_lock_); |
| 359 | if (link) { |
| 360 | if (is_exec) { |
| 361 | AddExecPageLocked(page); |
| 362 | } else { |
| 363 | AddPageLocked(page); |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | page->set_object_end(page->memory_->end()); |
| 368 | if ((type != OldPage::kExecutable) && (heap_ != nullptr) && |
| 369 | (heap_->isolate_group() != Dart::vm_isolate()->group())) { |
| 370 | page->AllocateForwardingPage(); |
| 371 | } |
| 372 | return page; |
| 373 | } |
| 374 | |
| 375 | OldPage* PageSpace::AllocateLargePage(intptr_t size, OldPage::PageType type) { |
| 376 | const intptr_t page_size_in_words = LargePageSizeInWordsFor(size); |
| 377 | { |
| 378 | MutexLocker ml(&pages_lock_); |
| 379 | if (!CanIncreaseCapacityInWordsLocked(page_size_in_words)) { |
| 380 | return nullptr; |
| 381 | } |
| 382 | IncreaseCapacityInWordsLocked(page_size_in_words); |
| 383 | } |
| 384 | const bool is_exec = (type == OldPage::kExecutable); |
| 385 | const char* name = Heap::RegionName(is_exec ? Heap::kCode : Heap::kOld); |
| 386 | OldPage* page = OldPage::Allocate(page_size_in_words, type, name); |
| 387 | |
| 388 | MutexLocker ml(&pages_lock_); |
| 389 | if (page == nullptr) { |
| 390 | IncreaseCapacityInWordsLocked(-page_size_in_words); |
| 391 | return nullptr; |
| 392 | } |
| 393 | if (is_exec) { |
| 394 | AddExecPageLocked(page); |
| 395 | } else { |
| 396 | AddLargePageLocked(page); |
| 397 | } |
| 398 | |
| 399 | // Only one object in this page (at least until Array::MakeFixedLength |
| 400 | // is called). |
| 401 | page->set_object_end(page->object_start() + size); |
| 402 | return page; |
| 403 | } |
| 404 | |
| 405 | void PageSpace::TruncateLargePage(OldPage* page, |
| 406 | intptr_t new_object_size_in_bytes) { |
| 407 | const intptr_t old_object_size_in_bytes = |
| 408 | page->object_end() - page->object_start(); |
| 409 | ASSERT(new_object_size_in_bytes <= old_object_size_in_bytes); |
| 410 | const intptr_t new_page_size_in_words = |
| 411 | LargePageSizeInWordsFor(new_object_size_in_bytes); |
| 412 | VirtualMemory* memory = page->memory_; |
| 413 | const intptr_t old_page_size_in_words = (memory->size() >> kWordSizeLog2); |
| 414 | if (new_page_size_in_words < old_page_size_in_words) { |
| 415 | memory->Truncate(new_page_size_in_words << kWordSizeLog2); |
| 416 | IncreaseCapacityInWords(new_page_size_in_words - old_page_size_in_words); |
| 417 | page->set_object_end(page->object_start() + new_object_size_in_bytes); |
| 418 | } |
| 419 | } |
| 420 | |
| 421 | void PageSpace::FreePage(OldPage* page, OldPage* previous_page) { |
| 422 | bool is_exec = (page->type() == OldPage::kExecutable); |
| 423 | { |
| 424 | MutexLocker ml(&pages_lock_); |
| 425 | IncreaseCapacityInWordsLocked(-(page->memory_->size() >> kWordSizeLog2)); |
| 426 | if (is_exec) { |
| 427 | RemoveExecPageLocked(page, previous_page); |
| 428 | } else { |
| 429 | RemovePageLocked(page, previous_page); |
| 430 | } |
| 431 | } |
| 432 | // TODO(iposva): Consider adding to a pool of empty pages. |
| 433 | page->Deallocate(); |
| 434 | } |
| 435 | |
| 436 | void PageSpace::FreeLargePage(OldPage* page, OldPage* previous_page) { |
| 437 | ASSERT(page->type() != OldPage::kExecutable); |
| 438 | MutexLocker ml(&pages_lock_); |
| 439 | IncreaseCapacityInWordsLocked(-(page->memory_->size() >> kWordSizeLog2)); |
| 440 | RemoveLargePageLocked(page, previous_page); |
| 441 | page->Deallocate(); |
| 442 | } |
| 443 | |
| 444 | void PageSpace::FreePages(OldPage* pages) { |
| 445 | OldPage* page = pages; |
| 446 | while (page != NULL) { |
| 447 | OldPage* next = page->next(); |
| 448 | page->Deallocate(); |
| 449 | page = next; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | void PageSpace::EvaluateConcurrentMarking(GrowthPolicy growth_policy) { |
| 454 | if (growth_policy != kForceGrowth) { |
| 455 | if (heap_ != NULL) { // Some unit tests. |
| 456 | Thread* thread = Thread::Current(); |
| 457 | if (thread->CanCollectGarbage()) { |
| 458 | heap_->CheckFinishConcurrentMarking(thread); |
| 459 | heap_->CheckStartConcurrentMarking(thread, Heap::kOldSpace); |
| 460 | } |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | uword PageSpace::TryAllocateInFreshPage(intptr_t size, |
| 466 | FreeList* freelist, |
| 467 | OldPage::PageType type, |
| 468 | GrowthPolicy growth_policy, |
| 469 | bool is_locked) { |
| 470 | ASSERT(Heap::IsAllocatableViaFreeLists(size)); |
| 471 | |
| 472 | EvaluateConcurrentMarking(growth_policy); |
| 473 | |
| 474 | uword result = 0; |
| 475 | SpaceUsage after_allocation = GetCurrentUsage(); |
| 476 | after_allocation.used_in_words += size >> kWordSizeLog2; |
| 477 | // Can we grow by one page? |
| 478 | after_allocation.capacity_in_words += kOldPageSizeInWords; |
| 479 | if (growth_policy == kForceGrowth || |
| 480 | !page_space_controller_.ReachedHardThreshold(after_allocation)) { |
| 481 | OldPage* page = AllocatePage(type); |
| 482 | if (page == NULL) { |
| 483 | return 0; |
| 484 | } |
| 485 | // Start of the newly allocated page is the allocated object. |
| 486 | result = page->object_start(); |
| 487 | // Note: usage_.capacity_in_words is increased by AllocatePage. |
| 488 | usage_.used_in_words += (size >> kWordSizeLog2); |
| 489 | // Enqueue the remainder in the free list. |
| 490 | uword free_start = result + size; |
| 491 | intptr_t free_size = page->object_end() - free_start; |
| 492 | if (free_size > 0) { |
| 493 | if (is_locked) { |
| 494 | freelist->FreeLocked(free_start, free_size); |
| 495 | } else { |
| 496 | freelist->Free(free_start, free_size); |
| 497 | } |
| 498 | } |
| 499 | } |
| 500 | return result; |
| 501 | } |
| 502 | |
| 503 | uword PageSpace::TryAllocateInFreshLargePage(intptr_t size, |
| 504 | OldPage::PageType type, |
| 505 | GrowthPolicy growth_policy) { |
| 506 | ASSERT(!Heap::IsAllocatableViaFreeLists(size)); |
| 507 | |
| 508 | EvaluateConcurrentMarking(growth_policy); |
| 509 | |
| 510 | intptr_t page_size_in_words = LargePageSizeInWordsFor(size); |
| 511 | if ((page_size_in_words << kWordSizeLog2) < size) { |
| 512 | // On overflow we fail to allocate. |
| 513 | return 0; |
| 514 | } |
| 515 | |
| 516 | uword result = 0; |
| 517 | SpaceUsage after_allocation = GetCurrentUsage(); |
| 518 | after_allocation.used_in_words += size >> kWordSizeLog2; |
| 519 | after_allocation.capacity_in_words += page_size_in_words; |
| 520 | if (growth_policy == kForceGrowth || |
| 521 | !page_space_controller_.ReachedHardThreshold(after_allocation)) { |
| 522 | OldPage* page = AllocateLargePage(size, type); |
| 523 | if (page != NULL) { |
| 524 | result = page->object_start(); |
| 525 | // Note: usage_.capacity_in_words is increased by AllocateLargePage. |
| 526 | usage_.used_in_words += (size >> kWordSizeLog2); |
| 527 | } |
| 528 | } |
| 529 | return result; |
| 530 | } |
| 531 | |
| 532 | uword PageSpace::TryAllocateInternal(intptr_t size, |
| 533 | FreeList* freelist, |
| 534 | OldPage::PageType type, |
| 535 | GrowthPolicy growth_policy, |
| 536 | bool is_protected, |
| 537 | bool is_locked) { |
| 538 | ASSERT(size >= kObjectAlignment); |
| 539 | ASSERT(Utils::IsAligned(size, kObjectAlignment)); |
| 540 | uword result = 0; |
| 541 | if (Heap::IsAllocatableViaFreeLists(size)) { |
| 542 | if (is_locked) { |
| 543 | result = freelist->TryAllocateLocked(size, is_protected); |
| 544 | } else { |
| 545 | result = freelist->TryAllocate(size, is_protected); |
| 546 | } |
| 547 | if (result == 0) { |
| 548 | result = TryAllocateInFreshPage(size, freelist, type, growth_policy, |
| 549 | is_locked); |
| 550 | // usage_ is updated by the call above. |
| 551 | } else { |
| 552 | usage_.used_in_words += (size >> kWordSizeLog2); |
| 553 | } |
| 554 | } else { |
| 555 | result = TryAllocateInFreshLargePage(size, type, growth_policy); |
| 556 | // usage_ is updated by the call above. |
| 557 | } |
| 558 | ASSERT((result & kObjectAlignmentMask) == kOldObjectAlignmentOffset); |
| 559 | return result; |
| 560 | } |
| 561 | |
| 562 | void PageSpace::AcquireLock(FreeList* freelist) { |
| 563 | freelist->mutex()->Lock(); |
| 564 | } |
| 565 | |
| 566 | void PageSpace::ReleaseLock(FreeList* freelist) { |
| 567 | intptr_t size = freelist->TakeUnaccountedSizeLocked(); |
| 568 | usage_.used_in_words += (size >> kWordSizeLog2); |
| 569 | freelist->mutex()->Unlock(); |
| 570 | } |
| 571 | |
| 572 | class BasePageIterator : ValueObject { |
| 573 | public: |
| 574 | explicit BasePageIterator(const PageSpace* space) : space_(space) {} |
| 575 | |
| 576 | OldPage* page() const { return page_; } |
| 577 | |
| 578 | bool Done() const { return page_ == NULL; } |
| 579 | |
| 580 | void Advance() { |
| 581 | ASSERT(!Done()); |
| 582 | page_ = page_->next(); |
| 583 | if ((page_ == NULL) && (list_ == kRegular)) { |
| 584 | list_ = kExecutable; |
| 585 | page_ = space_->exec_pages_; |
| 586 | } |
| 587 | if ((page_ == NULL) && (list_ == kExecutable)) { |
| 588 | list_ = kLarge; |
| 589 | page_ = space_->large_pages_; |
| 590 | } |
| 591 | if ((page_ == NULL) && (list_ == kLarge)) { |
| 592 | list_ = kImage; |
| 593 | page_ = space_->image_pages_; |
| 594 | } |
| 595 | ASSERT((page_ != NULL) || (list_ == kImage)); |
| 596 | } |
| 597 | |
| 598 | protected: |
| 599 | enum List { kRegular, kExecutable, kLarge, kImage }; |
| 600 | |
| 601 | void Initialize() { |
| 602 | list_ = kRegular; |
| 603 | page_ = space_->pages_; |
| 604 | if (page_ == NULL) { |
| 605 | list_ = kExecutable; |
| 606 | page_ = space_->exec_pages_; |
| 607 | if (page_ == NULL) { |
| 608 | list_ = kLarge; |
| 609 | page_ = space_->large_pages_; |
| 610 | if (page_ == NULL) { |
| 611 | list_ = kImage; |
| 612 | page_ = space_->image_pages_; |
| 613 | } |
| 614 | } |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | const PageSpace* space_ = nullptr; |
| 619 | List list_; |
| 620 | OldPage* page_ = nullptr; |
| 621 | }; |
| 622 | |
| 623 | // Provides unsafe access to all pages. Assumes pages are walkable. |
| 624 | class UnsafeExclusivePageIterator : public BasePageIterator { |
| 625 | public: |
| 626 | explicit UnsafeExclusivePageIterator(const PageSpace* space) |
| 627 | : BasePageIterator(space) { |
| 628 | Initialize(); |
| 629 | } |
| 630 | }; |
| 631 | |
| 632 | // Provides exclusive access to all pages, and ensures they are walkable. |
| 633 | class ExclusivePageIterator : public BasePageIterator { |
| 634 | public: |
| 635 | explicit ExclusivePageIterator(const PageSpace* space) |
| 636 | : BasePageIterator(space), ml_(&space->pages_lock_) { |
| 637 | space_->MakeIterable(); |
| 638 | Initialize(); |
| 639 | } |
| 640 | |
| 641 | private: |
| 642 | MutexLocker ml_; |
| 643 | NoSafepointScope no_safepoint; |
| 644 | }; |
| 645 | |
| 646 | // Provides exclusive access to code pages, and ensures they are walkable. |
| 647 | // NOTE: This does not iterate over large pages which can contain code. |
| 648 | class ExclusiveCodePageIterator : ValueObject { |
| 649 | public: |
| 650 | explicit ExclusiveCodePageIterator(const PageSpace* space) |
| 651 | : space_(space), ml_(&space->pages_lock_) { |
| 652 | space_->MakeIterable(); |
| 653 | page_ = space_->exec_pages_; |
| 654 | } |
| 655 | OldPage* page() const { return page_; } |
| 656 | bool Done() const { return page_ == NULL; } |
| 657 | void Advance() { |
| 658 | ASSERT(!Done()); |
| 659 | page_ = page_->next(); |
| 660 | } |
| 661 | |
| 662 | private: |
| 663 | const PageSpace* space_; |
| 664 | MutexLocker ml_; |
| 665 | NoSafepointScope no_safepoint; |
| 666 | OldPage* page_; |
| 667 | }; |
| 668 | |
| 669 | void PageSpace::MakeIterable() const { |
| 670 | // Assert not called from concurrent sweeper task. |
| 671 | // TODO(koda): Use thread/task identity when implemented. |
| 672 | ASSERT(IsolateGroup::Current()->heap() != NULL); |
| 673 | for (intptr_t i = 0; i < num_freelists_; i++) { |
| 674 | freelists_[i].MakeIterable(); |
| 675 | } |
| 676 | } |
| 677 | |
| 678 | void PageSpace::AbandonBumpAllocation() { |
| 679 | for (intptr_t i = 0; i < num_freelists_; i++) { |
| 680 | freelists_[i].AbandonBumpAllocation(); |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | void PageSpace::AbandonMarkingForShutdown() { |
| 685 | delete marker_; |
| 686 | marker_ = NULL; |
| 687 | } |
| 688 | |
| 689 | void PageSpace::UpdateMaxCapacityLocked() { |
| 690 | if (heap_ == NULL) { |
| 691 | // Some unit tests. |
| 692 | return; |
| 693 | } |
| 694 | ASSERT(heap_ != NULL); |
| 695 | ASSERT(heap_->isolate_group() != NULL); |
| 696 | auto isolate_group = heap_->isolate_group(); |
| 697 | isolate_group->GetHeapOldCapacityMaxMetric()->SetValue( |
| 698 | static_cast<int64_t>(usage_.capacity_in_words) * kWordSize); |
| 699 | } |
| 700 | |
| 701 | void PageSpace::UpdateMaxUsed() { |
| 702 | if (heap_ == NULL) { |
| 703 | // Some unit tests. |
| 704 | return; |
| 705 | } |
| 706 | ASSERT(heap_ != NULL); |
| 707 | ASSERT(heap_->isolate_group() != NULL); |
| 708 | auto isolate_group = heap_->isolate_group(); |
| 709 | isolate_group->GetHeapOldUsedMaxMetric()->SetValue(UsedInWords() * kWordSize); |
| 710 | } |
| 711 | |
| 712 | bool PageSpace::Contains(uword addr) const { |
| 713 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 714 | if (it.page()->Contains(addr)) { |
| 715 | return true; |
| 716 | } |
| 717 | } |
| 718 | return false; |
| 719 | } |
| 720 | |
| 721 | bool PageSpace::ContainsUnsafe(uword addr) const { |
| 722 | for (UnsafeExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 723 | if (it.page()->Contains(addr)) { |
| 724 | return true; |
| 725 | } |
| 726 | } |
| 727 | return false; |
| 728 | } |
| 729 | |
| 730 | bool PageSpace::Contains(uword addr, OldPage::PageType type) const { |
| 731 | if (type == OldPage::kExecutable) { |
| 732 | // Fast path executable pages. |
| 733 | for (ExclusiveCodePageIterator it(this); !it.Done(); it.Advance()) { |
| 734 | if (it.page()->Contains(addr)) { |
| 735 | return true; |
| 736 | } |
| 737 | } |
| 738 | return false; |
| 739 | } |
| 740 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 741 | if ((it.page()->type() == type) && it.page()->Contains(addr)) { |
| 742 | return true; |
| 743 | } |
| 744 | } |
| 745 | return false; |
| 746 | } |
| 747 | |
| 748 | bool PageSpace::DataContains(uword addr) const { |
| 749 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 750 | if ((it.page()->type() != OldPage::kExecutable) && |
| 751 | it.page()->Contains(addr)) { |
| 752 | return true; |
| 753 | } |
| 754 | } |
| 755 | return false; |
| 756 | } |
| 757 | |
| 758 | void PageSpace::AddRegionsToObjectSet(ObjectSet* set) const { |
| 759 | ASSERT((pages_ != NULL) || (exec_pages_ != NULL) || (large_pages_ != NULL)); |
| 760 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 761 | set->AddRegion(it.page()->object_start(), it.page()->object_end()); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | void PageSpace::VisitObjects(ObjectVisitor* visitor) const { |
| 766 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 767 | it.page()->VisitObjects(visitor); |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | void PageSpace::VisitObjectsNoImagePages(ObjectVisitor* visitor) const { |
| 772 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 773 | if (!it.page()->is_image_page()) { |
| 774 | it.page()->VisitObjects(visitor); |
| 775 | } |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | void PageSpace::VisitObjectsImagePages(ObjectVisitor* visitor) const { |
| 780 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 781 | if (it.page()->is_image_page()) { |
| 782 | it.page()->VisitObjects(visitor); |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | void PageSpace::VisitObjectPointers(ObjectPointerVisitor* visitor) const { |
| 788 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 789 | it.page()->VisitObjectPointers(visitor); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | void PageSpace::VisitRememberedCards(ObjectPointerVisitor* visitor) const { |
| 794 | ASSERT(Thread::Current()->IsAtSafepoint() || |
| 795 | (Thread::Current()->task_kind() == Thread::kScavengerTask)); |
| 796 | |
| 797 | // Wait for the sweeper to finish mutating the large page list. |
| 798 | MonitorLocker ml(tasks_lock()); |
| 799 | while (phase() == kSweepingLarge) { |
| 800 | ml.Wait(); // No safepoint check. |
| 801 | } |
| 802 | |
| 803 | // Large pages may be added concurrently due to promotion in another scavenge |
| 804 | // worker, so terminate the traversal when we hit the tail we saw while |
| 805 | // holding the pages lock, instead of at NULL, otherwise we are racing when we |
| 806 | // read OldPage::next_ and OldPage::remembered_cards_. |
| 807 | OldPage* page; |
| 808 | OldPage* tail; |
| 809 | { |
| 810 | MutexLocker ml(&pages_lock_); |
| 811 | page = large_pages_; |
| 812 | tail = large_pages_tail_; |
| 813 | } |
| 814 | while (page != nullptr) { |
| 815 | page->VisitRememberedCards(visitor); |
| 816 | if (page == tail) break; |
| 817 | page = page->next(); |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | ObjectPtr PageSpace::FindObject(FindObjectVisitor* visitor, |
| 822 | OldPage::PageType type) const { |
| 823 | if (type == OldPage::kExecutable) { |
| 824 | // Fast path executable pages. |
| 825 | for (ExclusiveCodePageIterator it(this); !it.Done(); it.Advance()) { |
| 826 | ObjectPtr obj = it.page()->FindObject(visitor); |
| 827 | if (obj != Object::null()) { |
| 828 | return obj; |
| 829 | } |
| 830 | } |
| 831 | return Object::null(); |
| 832 | } |
| 833 | |
| 834 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 835 | if (it.page()->type() == type) { |
| 836 | ObjectPtr obj = it.page()->FindObject(visitor); |
| 837 | if (obj != Object::null()) { |
| 838 | return obj; |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | return Object::null(); |
| 843 | } |
| 844 | |
| 845 | void PageSpace::WriteProtect(bool read_only) { |
| 846 | if (read_only) { |
| 847 | // Avoid MakeIterable trying to write to the heap. |
| 848 | AbandonBumpAllocation(); |
| 849 | } |
| 850 | for (ExclusivePageIterator it(this); !it.Done(); it.Advance()) { |
| 851 | if (!it.page()->is_image_page()) { |
| 852 | it.page()->WriteProtect(read_only); |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | #ifndef PRODUCT |
| 858 | void PageSpace::PrintToJSONObject(JSONObject* object) const { |
| 859 | auto isolate_group = IsolateGroup::Current(); |
| 860 | ASSERT(isolate_group != nullptr); |
| 861 | JSONObject space(object, "old" ); |
| 862 | space.AddProperty("type" , "HeapSpace" ); |
| 863 | space.AddProperty("name" , "old" ); |
| 864 | space.AddProperty("vmName" , "PageSpace" ); |
| 865 | space.AddProperty("collections" , collections()); |
| 866 | space.AddProperty64("used" , UsedInWords() * kWordSize); |
| 867 | space.AddProperty64("capacity" , CapacityInWords() * kWordSize); |
| 868 | space.AddProperty64("external" , ExternalInWords() * kWordSize); |
| 869 | space.AddProperty("time" , MicrosecondsToSeconds(gc_time_micros())); |
| 870 | if (collections() > 0) { |
| 871 | int64_t run_time = isolate_group->UptimeMicros(); |
| 872 | run_time = Utils::Maximum(run_time, static_cast<int64_t>(0)); |
| 873 | double run_time_millis = MicrosecondsToMilliseconds(run_time); |
| 874 | double avg_time_between_collections = |
| 875 | run_time_millis / static_cast<double>(collections()); |
| 876 | space.AddProperty("avgCollectionPeriodMillis" , |
| 877 | avg_time_between_collections); |
| 878 | } else { |
| 879 | space.AddProperty("avgCollectionPeriodMillis" , 0.0); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | class HeapMapAsJSONVisitor : public ObjectVisitor { |
| 884 | public: |
| 885 | explicit HeapMapAsJSONVisitor(JSONArray* array) : array_(array) {} |
| 886 | virtual void VisitObject(ObjectPtr obj) { |
| 887 | array_->AddValue(obj->ptr()->HeapSize() / kObjectAlignment); |
| 888 | array_->AddValue(obj->GetClassId()); |
| 889 | } |
| 890 | |
| 891 | private: |
| 892 | JSONArray* array_; |
| 893 | }; |
| 894 | |
| 895 | void PageSpace::PrintHeapMapToJSONStream(Isolate* isolate, |
| 896 | JSONStream* stream) const { |
| 897 | JSONObject heap_map(stream); |
| 898 | heap_map.AddProperty("type" , "HeapMap" ); |
| 899 | heap_map.AddProperty("freeClassId" , static_cast<intptr_t>(kFreeListElement)); |
| 900 | heap_map.AddProperty("unitSizeBytes" , |
| 901 | static_cast<intptr_t>(kObjectAlignment)); |
| 902 | heap_map.AddProperty("pageSizeBytes" , kOldPageSizeInWords * kWordSize); |
| 903 | { |
| 904 | JSONObject class_list(&heap_map, "classList" ); |
| 905 | isolate->class_table()->PrintToJSONObject(&class_list); |
| 906 | } |
| 907 | { |
| 908 | // "pages" is an array [page0, page1, ..., pageN], each page of the form |
| 909 | // {"object_start": "0x...", "objects": [size, class id, size, ...]} |
| 910 | // TODO(19445): Use ExclusivePageIterator once HeapMap supports large pages. |
| 911 | HeapIterationScope iteration(Thread::Current()); |
| 912 | MutexLocker ml(&pages_lock_); |
| 913 | MakeIterable(); |
| 914 | JSONArray all_pages(&heap_map, "pages" ); |
| 915 | for (OldPage* page = pages_; page != NULL; page = page->next()) { |
| 916 | JSONObject page_container(&all_pages); |
| 917 | page_container.AddPropertyF("objectStart" , "0x%" Px "" , |
| 918 | page->object_start()); |
| 919 | JSONArray page_map(&page_container, "objects" ); |
| 920 | HeapMapAsJSONVisitor printer(&page_map); |
| 921 | page->VisitObjects(&printer); |
| 922 | } |
| 923 | for (OldPage* page = exec_pages_; page != NULL; page = page->next()) { |
| 924 | JSONObject page_container(&all_pages); |
| 925 | page_container.AddPropertyF("objectStart" , "0x%" Px "" , |
| 926 | page->object_start()); |
| 927 | JSONArray page_map(&page_container, "objects" ); |
| 928 | HeapMapAsJSONVisitor printer(&page_map); |
| 929 | page->VisitObjects(&printer); |
| 930 | } |
| 931 | } |
| 932 | } |
| 933 | #endif // PRODUCT |
| 934 | |
| 935 | void PageSpace::WriteProtectCode(bool read_only) { |
| 936 | if (FLAG_write_protect_code) { |
| 937 | MutexLocker ml(&pages_lock_); |
| 938 | NoSafepointScope no_safepoint; |
| 939 | // No need to go through all of the data pages first. |
| 940 | OldPage* page = exec_pages_; |
| 941 | while (page != NULL) { |
| 942 | ASSERT(page->type() == OldPage::kExecutable); |
| 943 | page->WriteProtect(read_only); |
| 944 | page = page->next(); |
| 945 | } |
| 946 | page = large_pages_; |
| 947 | while (page != NULL) { |
| 948 | if (page->type() == OldPage::kExecutable) { |
| 949 | page->WriteProtect(read_only); |
| 950 | } |
| 951 | page = page->next(); |
| 952 | } |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | bool PageSpace::ShouldStartIdleMarkSweep(int64_t deadline) { |
| 957 | // To make a consistent decision, we should not yield for a safepoint in the |
| 958 | // middle of deciding whether to perform an idle GC. |
| 959 | NoSafepointScope no_safepoint; |
| 960 | |
| 961 | if (!page_space_controller_.ReachedIdleThreshold(usage_)) { |
| 962 | return false; |
| 963 | } |
| 964 | |
| 965 | { |
| 966 | MonitorLocker locker(tasks_lock()); |
| 967 | if (tasks() > 0) { |
| 968 | // A concurrent sweeper is running. If we start a mark sweep now |
| 969 | // we'll have to wait for it, and this wait time is not included in |
| 970 | // mark_words_per_micro_. |
| 971 | return false; |
| 972 | } |
| 973 | } |
| 974 | |
| 975 | // This uses the size of new-space because the pause time to start concurrent |
| 976 | // marking is related to the size of the root set, which is mostly new-space. |
| 977 | int64_t estimated_mark_completion = |
| 978 | OS::GetCurrentMonotonicMicros() + |
| 979 | heap_->new_space()->UsedInWords() / mark_words_per_micro_; |
| 980 | return estimated_mark_completion <= deadline; |
| 981 | } |
| 982 | |
| 983 | bool PageSpace::ShouldPerformIdleMarkCompact(int64_t deadline) { |
| 984 | // To make a consistent decision, we should not yield for a safepoint in the |
| 985 | // middle of deciding whether to perform an idle GC. |
| 986 | NoSafepointScope no_safepoint; |
| 987 | |
| 988 | // Discount two pages to account for the newest data and code pages, whose |
| 989 | // partial use doesn't indicate fragmentation. |
| 990 | const intptr_t excess_in_words = |
| 991 | usage_.capacity_in_words - usage_.used_in_words - 2 * kOldPageSizeInWords; |
| 992 | const double excess_ratio = static_cast<double>(excess_in_words) / |
| 993 | static_cast<double>(usage_.capacity_in_words); |
| 994 | const bool fragmented = excess_ratio > 0.05; |
| 995 | |
| 996 | if (!fragmented && !page_space_controller_.ReachedIdleThreshold(usage_)) { |
| 997 | return false; |
| 998 | } |
| 999 | |
| 1000 | { |
| 1001 | MonitorLocker locker(tasks_lock()); |
| 1002 | if (tasks() > 0) { |
| 1003 | // A concurrent sweeper is running. If we start a mark sweep now |
| 1004 | // we'll have to wait for it, and this wait time is not included in |
| 1005 | // mark_words_per_micro_. |
| 1006 | return false; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | // Assuming compaction takes as long as marking. |
| 1011 | intptr_t mark_compact_words_per_micro = mark_words_per_micro_ / 2; |
| 1012 | if (mark_compact_words_per_micro == 0) { |
| 1013 | mark_compact_words_per_micro = 1; // Prevent division by zero. |
| 1014 | } |
| 1015 | |
| 1016 | int64_t estimated_mark_compact_completion = |
| 1017 | OS::GetCurrentMonotonicMicros() + |
| 1018 | UsedInWords() / mark_compact_words_per_micro; |
| 1019 | return estimated_mark_compact_completion <= deadline; |
| 1020 | } |
| 1021 | |
| 1022 | void PageSpace::CollectGarbage(bool compact, bool finalize) { |
| 1023 | if (!finalize) { |
| 1024 | #if defined(TARGET_ARCH_IA32) |
| 1025 | return; // Barrier not implemented. |
| 1026 | #else |
| 1027 | if (!enable_concurrent_mark()) return; // Disabled. |
| 1028 | if (FLAG_marker_tasks == 0) return; // Disabled. |
| 1029 | #endif |
| 1030 | } |
| 1031 | |
| 1032 | Thread* thread = Thread::Current(); |
| 1033 | |
| 1034 | const int64_t pre_wait_for_sweepers = OS::GetCurrentMonotonicMicros(); |
| 1035 | |
| 1036 | // Wait for pending tasks to complete and then account for the driver task. |
| 1037 | Phase waited_for; |
| 1038 | { |
| 1039 | MonitorLocker locker(tasks_lock()); |
| 1040 | waited_for = phase(); |
| 1041 | if (!finalize && |
| 1042 | (phase() == kMarking || phase() == kAwaitingFinalization)) { |
| 1043 | // Concurrent mark is already running. |
| 1044 | return; |
| 1045 | } |
| 1046 | |
| 1047 | while (tasks() > 0) { |
| 1048 | locker.WaitWithSafepointCheck(thread); |
| 1049 | } |
| 1050 | ASSERT(phase() == kAwaitingFinalization || phase() == kDone); |
| 1051 | set_tasks(1); |
| 1052 | } |
| 1053 | |
| 1054 | const int64_t pre_safe_point = OS::GetCurrentMonotonicMicros(); |
| 1055 | if (FLAG_verbose_gc) { |
| 1056 | const int64_t wait = pre_safe_point - pre_wait_for_sweepers; |
| 1057 | if (waited_for == kMarking) { |
| 1058 | THR_Print("Waited %" Pd64 " us for concurrent marking to finish.\n" , |
| 1059 | wait); |
| 1060 | } else if (waited_for == kSweepingRegular || waited_for == kSweepingLarge) { |
| 1061 | THR_Print("Waited %" Pd64 " us for concurrent sweeping to finish.\n" , |
| 1062 | wait); |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | // Ensure that all threads for this isolate are at a safepoint (either |
| 1067 | // stopped or in native code). We have guards around Newgen GC and oldgen GC |
| 1068 | // to ensure that if two threads are racing to collect at the same time the |
| 1069 | // loser skips collection and goes straight to allocation. |
| 1070 | { |
| 1071 | SafepointOperationScope safepoint_scope(thread); |
| 1072 | CollectGarbageAtSafepoint(compact, finalize, pre_wait_for_sweepers, |
| 1073 | pre_safe_point); |
| 1074 | } |
| 1075 | |
| 1076 | // Done, reset the task count. |
| 1077 | { |
| 1078 | MonitorLocker ml(tasks_lock()); |
| 1079 | set_tasks(tasks() - 1); |
| 1080 | ml.NotifyAll(); |
| 1081 | } |
| 1082 | } |
| 1083 | |
| 1084 | void PageSpace::CollectGarbageAtSafepoint(bool compact, |
| 1085 | bool finalize, |
| 1086 | int64_t pre_wait_for_sweepers, |
| 1087 | int64_t pre_safe_point) { |
| 1088 | Thread* thread = Thread::Current(); |
| 1089 | ASSERT(thread->IsAtSafepoint()); |
| 1090 | auto isolate_group = heap_->isolate_group(); |
| 1091 | ASSERT(isolate_group == IsolateGroup::Current()); |
| 1092 | |
| 1093 | const int64_t start = OS::GetCurrentMonotonicMicros(); |
| 1094 | |
| 1095 | // Perform various cleanup that relies on no tasks interfering. |
| 1096 | isolate_group->shared_class_table()->FreeOldTables(); |
| 1097 | isolate_group->ForEachIsolate( |
| 1098 | [&](Isolate* isolate) { isolate->field_table()->FreeOldTables(); }, |
| 1099 | /*at_safepoint=*/true); |
| 1100 | |
| 1101 | NoSafepointScope no_safepoints; |
| 1102 | |
| 1103 | if (FLAG_print_free_list_before_gc) { |
| 1104 | for (intptr_t i = 0; i < num_freelists_; i++) { |
| 1105 | OS::PrintErr("Before GC: Freelist %" Pd "\n" , i); |
| 1106 | freelists_[i].Print(); |
| 1107 | } |
| 1108 | } |
| 1109 | |
| 1110 | if (FLAG_verify_before_gc) { |
| 1111 | OS::PrintErr("Verifying before marking..." ); |
| 1112 | heap_->VerifyGC(phase() == kDone ? kForbidMarked : kAllowMarked); |
| 1113 | OS::PrintErr(" done.\n" ); |
| 1114 | } |
| 1115 | |
| 1116 | // Make code pages writable. |
| 1117 | if (finalize) WriteProtectCode(false); |
| 1118 | |
| 1119 | // Save old value before GCMarker visits the weak persistent handles. |
| 1120 | SpaceUsage usage_before = GetCurrentUsage(); |
| 1121 | |
| 1122 | // Mark all reachable old-gen objects. |
| 1123 | if (marker_ == NULL) { |
| 1124 | ASSERT(phase() == kDone); |
| 1125 | marker_ = new GCMarker(isolate_group, heap_); |
| 1126 | } else { |
| 1127 | ASSERT(phase() == kAwaitingFinalization); |
| 1128 | } |
| 1129 | |
| 1130 | if (!finalize) { |
| 1131 | ASSERT(phase() == kDone); |
| 1132 | marker_->StartConcurrentMark(this); |
| 1133 | return; |
| 1134 | } |
| 1135 | |
| 1136 | marker_->MarkObjects(this); |
| 1137 | usage_.used_in_words = marker_->marked_words() + allocated_black_in_words_; |
| 1138 | allocated_black_in_words_ = 0; |
| 1139 | mark_words_per_micro_ = marker_->MarkedWordsPerMicro(); |
| 1140 | delete marker_; |
| 1141 | marker_ = NULL; |
| 1142 | |
| 1143 | int64_t mid1 = OS::GetCurrentMonotonicMicros(); |
| 1144 | |
| 1145 | // Abandon the remainder of the bump allocation block. |
| 1146 | AbandonBumpAllocation(); |
| 1147 | // Reset the freelists and setup sweeping. |
| 1148 | for (intptr_t i = 0; i < num_freelists_; i++) { |
| 1149 | freelists_[i].Reset(); |
| 1150 | } |
| 1151 | |
| 1152 | int64_t mid2 = OS::GetCurrentMonotonicMicros(); |
| 1153 | int64_t mid3 = 0; |
| 1154 | |
| 1155 | { |
| 1156 | if (FLAG_verify_before_gc) { |
| 1157 | OS::PrintErr("Verifying before sweeping..." ); |
| 1158 | heap_->VerifyGC(kAllowMarked); |
| 1159 | OS::PrintErr(" done.\n" ); |
| 1160 | } |
| 1161 | |
| 1162 | // Executable pages are always swept immediately to simplify |
| 1163 | // code protection. |
| 1164 | |
| 1165 | TIMELINE_FUNCTION_GC_DURATION(thread, "SweepExecutable" ); |
| 1166 | GCSweeper sweeper; |
| 1167 | OldPage* prev_page = NULL; |
| 1168 | OldPage* page = exec_pages_; |
| 1169 | FreeList* freelist = &freelists_[OldPage::kExecutable]; |
| 1170 | MutexLocker ml(freelist->mutex()); |
| 1171 | while (page != NULL) { |
| 1172 | OldPage* next_page = page->next(); |
| 1173 | bool page_in_use = sweeper.SweepPage(page, freelist, true /*is_locked*/); |
| 1174 | if (page_in_use) { |
| 1175 | prev_page = page; |
| 1176 | } else { |
| 1177 | FreePage(page, prev_page); |
| 1178 | } |
| 1179 | // Advance to the next page. |
| 1180 | page = next_page; |
| 1181 | } |
| 1182 | |
| 1183 | mid3 = OS::GetCurrentMonotonicMicros(); |
| 1184 | } |
| 1185 | |
| 1186 | if (compact) { |
| 1187 | SweepLarge(); |
| 1188 | Compact(thread); |
| 1189 | set_phase(kDone); |
| 1190 | } else if (FLAG_concurrent_sweep) { |
| 1191 | ConcurrentSweep(isolate_group); |
| 1192 | } else { |
| 1193 | SweepLarge(); |
| 1194 | Sweep(); |
| 1195 | set_phase(kDone); |
| 1196 | } |
| 1197 | |
| 1198 | // Make code pages read-only. |
| 1199 | if (finalize) WriteProtectCode(true); |
| 1200 | |
| 1201 | int64_t end = OS::GetCurrentMonotonicMicros(); |
| 1202 | |
| 1203 | // Record signals for growth control. Include size of external allocations. |
| 1204 | page_space_controller_.EvaluateGarbageCollection( |
| 1205 | usage_before, GetCurrentUsage(), start, end); |
| 1206 | |
| 1207 | heap_->RecordTime(kConcurrentSweep, pre_safe_point - pre_wait_for_sweepers); |
| 1208 | heap_->RecordTime(kSafePoint, start - pre_safe_point); |
| 1209 | heap_->RecordTime(kMarkObjects, mid1 - start); |
| 1210 | heap_->RecordTime(kResetFreeLists, mid2 - mid1); |
| 1211 | heap_->RecordTime(kSweepPages, mid3 - mid2); |
| 1212 | heap_->RecordTime(kSweepLargePages, end - mid3); |
| 1213 | |
| 1214 | if (FLAG_print_free_list_after_gc) { |
| 1215 | for (intptr_t i = 0; i < num_freelists_; i++) { |
| 1216 | OS::PrintErr("After GC: Freelist %" Pd "\n" , i); |
| 1217 | freelists_[i].Print(); |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | UpdateMaxUsed(); |
| 1222 | if (heap_ != NULL) { |
| 1223 | heap_->UpdateGlobalMaxUsed(); |
| 1224 | } |
| 1225 | } |
| 1226 | |
| 1227 | void PageSpace::SweepLarge() { |
| 1228 | TIMELINE_FUNCTION_GC_DURATION(Thread::Current(), "SweepLarge" ); |
| 1229 | |
| 1230 | GCSweeper sweeper; |
| 1231 | OldPage* prev_page = nullptr; |
| 1232 | OldPage* page = large_pages_; |
| 1233 | while (page != nullptr) { |
| 1234 | OldPage* next_page = page->next(); |
| 1235 | const intptr_t words_to_end = sweeper.SweepLargePage(page); |
| 1236 | if (words_to_end == 0) { |
| 1237 | FreeLargePage(page, prev_page); |
| 1238 | } else { |
| 1239 | TruncateLargePage(page, words_to_end << kWordSizeLog2); |
| 1240 | prev_page = page; |
| 1241 | } |
| 1242 | // Advance to the next page. |
| 1243 | page = next_page; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | void PageSpace::Sweep() { |
| 1248 | TIMELINE_FUNCTION_GC_DURATION(Thread::Current(), "Sweep" ); |
| 1249 | |
| 1250 | GCSweeper sweeper; |
| 1251 | |
| 1252 | intptr_t shard = 0; |
| 1253 | const intptr_t num_shards = Utils::Maximum(FLAG_scavenger_tasks, 1); |
| 1254 | for (intptr_t i = 0; i < num_shards; i++) { |
| 1255 | DataFreeList(i)->mutex()->Lock(); |
| 1256 | } |
| 1257 | |
| 1258 | OldPage* prev_page = nullptr; |
| 1259 | OldPage* page = pages_; |
| 1260 | while (page != nullptr) { |
| 1261 | OldPage* next_page = page->next(); |
| 1262 | ASSERT(page->type() == OldPage::kData); |
| 1263 | shard = (shard + 1) % num_shards; |
| 1264 | bool page_in_use = |
| 1265 | sweeper.SweepPage(page, DataFreeList(shard), true /*is_locked*/); |
| 1266 | if (page_in_use) { |
| 1267 | prev_page = page; |
| 1268 | } else { |
| 1269 | FreePage(page, prev_page); |
| 1270 | } |
| 1271 | // Advance to the next page. |
| 1272 | page = next_page; |
| 1273 | } |
| 1274 | |
| 1275 | for (intptr_t i = 0; i < num_shards; i++) { |
| 1276 | DataFreeList(i)->mutex()->Unlock(); |
| 1277 | } |
| 1278 | |
| 1279 | if (FLAG_verify_after_gc) { |
| 1280 | OS::PrintErr("Verifying after sweeping..." ); |
| 1281 | heap_->VerifyGC(kForbidMarked); |
| 1282 | OS::PrintErr(" done.\n" ); |
| 1283 | } |
| 1284 | } |
| 1285 | |
| 1286 | void PageSpace::ConcurrentSweep(IsolateGroup* isolate_group) { |
| 1287 | // Start the concurrent sweeper task now. |
| 1288 | GCSweeper::SweepConcurrent(isolate_group, pages_, pages_tail_, large_pages_, |
| 1289 | large_pages_tail_, &freelists_[OldPage::kData]); |
| 1290 | } |
| 1291 | |
| 1292 | void PageSpace::Compact(Thread* thread) { |
| 1293 | thread->isolate_group()->set_compaction_in_progress(true); |
| 1294 | GCCompactor compactor(thread, heap_); |
| 1295 | compactor.Compact(pages_, &freelists_[OldPage::kData], &pages_lock_); |
| 1296 | thread->isolate_group()->set_compaction_in_progress(false); |
| 1297 | |
| 1298 | if (FLAG_verify_after_gc) { |
| 1299 | OS::PrintErr("Verifying after compacting..." ); |
| 1300 | heap_->VerifyGC(kForbidMarked); |
| 1301 | OS::PrintErr(" done.\n" ); |
| 1302 | } |
| 1303 | } |
| 1304 | |
| 1305 | uword PageSpace::TryAllocateDataBumpLocked(FreeList* freelist, intptr_t size) { |
| 1306 | ASSERT(size >= kObjectAlignment); |
| 1307 | ASSERT(Utils::IsAligned(size, kObjectAlignment)); |
| 1308 | |
| 1309 | intptr_t remaining = freelist->end() - freelist->top(); |
| 1310 | if (UNLIKELY(remaining < size)) { |
| 1311 | // Checking this first would be logical, but needlessly slow. |
| 1312 | if (!Heap::IsAllocatableViaFreeLists(size)) { |
| 1313 | return TryAllocateDataLocked(freelist, size, kForceGrowth); |
| 1314 | } |
| 1315 | FreeListElement* block = freelist->TryAllocateLargeLocked(size); |
| 1316 | if (block == NULL) { |
| 1317 | // Allocating from a new page (if growth policy allows) will have the |
| 1318 | // side-effect of populating the freelist with a large block. The next |
| 1319 | // bump allocation request will have a chance to consume that block. |
| 1320 | // TODO(koda): Could take freelist lock just once instead of twice. |
| 1321 | return TryAllocateInFreshPage(size, freelist, OldPage::kData, |
| 1322 | kForceGrowth, true /* is_locked*/); |
| 1323 | } |
| 1324 | intptr_t block_size = block->HeapSize(); |
| 1325 | if (remaining > 0) { |
| 1326 | freelist->FreeLocked(freelist->top(), remaining); |
| 1327 | } |
| 1328 | freelist->set_top(reinterpret_cast<uword>(block)); |
| 1329 | freelist->set_end(freelist->top() + block_size); |
| 1330 | remaining = block_size; |
| 1331 | } |
| 1332 | ASSERT(remaining >= size); |
| 1333 | uword result = freelist->top(); |
| 1334 | freelist->set_top(result + size); |
| 1335 | |
| 1336 | freelist->AddUnaccountedSize(size); |
| 1337 | |
| 1338 | // Note: Remaining block is unwalkable until MakeIterable is called. |
| 1339 | #ifdef DEBUG |
| 1340 | if (freelist->top() < freelist->end()) { |
| 1341 | // Fail fast if we try to walk the remaining block. |
| 1342 | COMPILE_ASSERT(kIllegalCid == 0); |
| 1343 | *reinterpret_cast<uword*>(freelist->top()) = 0; |
| 1344 | } |
| 1345 | #endif // DEBUG |
| 1346 | return result; |
| 1347 | } |
| 1348 | |
| 1349 | uword PageSpace::TryAllocatePromoLockedSlow(FreeList* freelist, intptr_t size) { |
| 1350 | uword result = freelist->TryAllocateSmallLocked(size); |
| 1351 | if (result != 0) { |
| 1352 | freelist->AddUnaccountedSize(size); |
| 1353 | return result; |
| 1354 | } |
| 1355 | return TryAllocateDataBumpLocked(freelist, size); |
| 1356 | } |
| 1357 | |
| 1358 | void PageSpace::SetupImagePage(void* pointer, uword size, bool is_executable) { |
| 1359 | // Setup a OldPage so precompiled Instructions can be traversed. |
| 1360 | // Instructions are contiguous at [pointer, pointer + size). OldPage |
| 1361 | // expects to find objects at [memory->start() + ObjectStartOffset, |
| 1362 | // memory->end()). |
| 1363 | uword offset = OldPage::ObjectStartOffset(); |
| 1364 | pointer = reinterpret_cast<void*>(reinterpret_cast<uword>(pointer) - offset); |
| 1365 | ASSERT(Utils::IsAligned(pointer, kObjectAlignment)); |
| 1366 | size += offset; |
| 1367 | |
| 1368 | VirtualMemory* memory = VirtualMemory::ForImagePage(pointer, size); |
| 1369 | ASSERT(memory != NULL); |
| 1370 | OldPage* page = reinterpret_cast<OldPage*>(malloc(sizeof(OldPage))); |
| 1371 | page->memory_ = memory; |
| 1372 | page->next_ = NULL; |
| 1373 | page->object_end_ = memory->end(); |
| 1374 | page->used_in_bytes_ = page->object_end_ - page->object_start(); |
| 1375 | page->forwarding_page_ = NULL; |
| 1376 | page->card_table_ = NULL; |
| 1377 | if (is_executable) { |
| 1378 | page->type_ = OldPage::kExecutable; |
| 1379 | } else { |
| 1380 | page->type_ = OldPage::kData; |
| 1381 | } |
| 1382 | |
| 1383 | MutexLocker ml(&pages_lock_); |
| 1384 | page->next_ = image_pages_; |
| 1385 | image_pages_ = page; |
| 1386 | } |
| 1387 | |
| 1388 | bool PageSpace::IsObjectFromImagePages(dart::ObjectPtr object) { |
| 1389 | uword object_addr = ObjectLayout::ToAddr(object); |
| 1390 | OldPage* image_page = image_pages_; |
| 1391 | while (image_page != nullptr) { |
| 1392 | if (image_page->Contains(object_addr)) { |
| 1393 | return true; |
| 1394 | } |
| 1395 | image_page = image_page->next(); |
| 1396 | } |
| 1397 | return false; |
| 1398 | } |
| 1399 | |
| 1400 | static void AppendList(OldPage** pages, |
| 1401 | OldPage** pages_tail, |
| 1402 | OldPage** other_pages, |
| 1403 | OldPage** other_pages_tail) { |
| 1404 | ASSERT((*pages == nullptr) == (*pages_tail == nullptr)); |
| 1405 | ASSERT((*other_pages == nullptr) == (*other_pages_tail == nullptr)); |
| 1406 | |
| 1407 | if (*other_pages != nullptr) { |
| 1408 | if (*pages_tail == nullptr) { |
| 1409 | *pages = *other_pages; |
| 1410 | *pages_tail = *other_pages_tail; |
| 1411 | } else { |
| 1412 | const bool is_execute = FLAG_write_protect_code && |
| 1413 | (*pages_tail)->type() == OldPage::kExecutable; |
| 1414 | if (is_execute) { |
| 1415 | (*pages_tail)->WriteProtect(false); |
| 1416 | } |
| 1417 | (*pages_tail)->set_next(*other_pages); |
| 1418 | if (is_execute) { |
| 1419 | (*pages_tail)->WriteProtect(true); |
| 1420 | } |
| 1421 | *pages_tail = *other_pages_tail; |
| 1422 | } |
| 1423 | *other_pages = nullptr; |
| 1424 | *other_pages_tail = nullptr; |
| 1425 | } |
| 1426 | } |
| 1427 | |
| 1428 | static void EnsureEqualImagePages(OldPage* pages, OldPage* other_pages) { |
| 1429 | #if defined(DEBUG) |
| 1430 | while (pages != nullptr) { |
| 1431 | ASSERT((pages == nullptr) == (other_pages == nullptr)); |
| 1432 | ASSERT(pages->object_start() == other_pages->object_start()); |
| 1433 | ASSERT(pages->object_end() == other_pages->object_end()); |
| 1434 | pages = pages->next(); |
| 1435 | other_pages = other_pages->next(); |
| 1436 | } |
| 1437 | #endif |
| 1438 | } |
| 1439 | |
| 1440 | void PageSpace::MergeFrom(PageSpace* donor) { |
| 1441 | donor->AbandonBumpAllocation(); |
| 1442 | |
| 1443 | ASSERT(donor->tasks_ == 0); |
| 1444 | ASSERT(donor->concurrent_marker_tasks_ == 0); |
| 1445 | ASSERT(donor->phase_ == kDone); |
| 1446 | DEBUG_ASSERT(donor->iterating_thread_ == nullptr); |
| 1447 | ASSERT(donor->marker_ == nullptr); |
| 1448 | |
| 1449 | for (intptr_t i = 0; i < num_freelists_; ++i) { |
| 1450 | ASSERT(donor->freelists_[i].top() == 0); |
| 1451 | ASSERT(donor->freelists_[i].end() == 0); |
| 1452 | const bool is_protected = |
| 1453 | FLAG_write_protect_code && i == OldPage::kExecutable; |
| 1454 | freelists_[i].MergeFrom(&donor->freelists_[i], is_protected); |
| 1455 | donor->freelists_[i].Reset(); |
| 1456 | } |
| 1457 | |
| 1458 | // The freelist locks will be taken in MergeOtherFreelist above, and the |
| 1459 | // locking order is the freelist locks are taken before the page list locks, |
| 1460 | // so don't take the pages lock until after MergeOtherFreelist. |
| 1461 | MutexLocker ml(&pages_lock_); |
| 1462 | MutexLocker ml2(&donor->pages_lock_); |
| 1463 | |
| 1464 | AppendList(&pages_, &pages_tail_, &donor->pages_, &donor->pages_tail_); |
| 1465 | AppendList(&exec_pages_, &exec_pages_tail_, &donor->exec_pages_, |
| 1466 | &donor->exec_pages_tail_); |
| 1467 | AppendList(&large_pages_, &large_pages_tail_, &donor->large_pages_, |
| 1468 | &donor->large_pages_tail_); |
| 1469 | // We intentionall do not merge [image_pages_] beause [this] and [other] have |
| 1470 | // the same mmap()ed image page areas. |
| 1471 | EnsureEqualImagePages(image_pages_, donor->image_pages_); |
| 1472 | |
| 1473 | // We intentionaly do not increase [max_capacity_in_words_] because this can |
| 1474 | // lead [max_capacity_in_words_] to become larger and larger and eventually |
| 1475 | // wrap-around and become negative. |
| 1476 | allocated_black_in_words_ += donor->allocated_black_in_words_; |
| 1477 | gc_time_micros_ += donor->gc_time_micros_; |
| 1478 | collections_ += donor->collections_; |
| 1479 | |
| 1480 | usage_.capacity_in_words += donor->usage_.capacity_in_words; |
| 1481 | usage_.used_in_words += donor->usage_.used_in_words; |
| 1482 | usage_.external_in_words += donor->usage_.external_in_words; |
| 1483 | |
| 1484 | page_space_controller_.MergeFrom(&donor->page_space_controller_); |
| 1485 | |
| 1486 | ASSERT(FLAG_concurrent_mark || donor->enable_concurrent_mark_ == false); |
| 1487 | } |
| 1488 | |
| 1489 | PageSpaceController::PageSpaceController(Heap* heap, |
| 1490 | int heap_growth_ratio, |
| 1491 | int heap_growth_max, |
| 1492 | int garbage_collection_time_ratio) |
| 1493 | : heap_(heap), |
| 1494 | is_enabled_(false), |
| 1495 | heap_growth_ratio_(heap_growth_ratio), |
| 1496 | desired_utilization_((100.0 - heap_growth_ratio) / 100.0), |
| 1497 | heap_growth_max_(heap_growth_max), |
| 1498 | garbage_collection_time_ratio_(garbage_collection_time_ratio), |
| 1499 | idle_gc_threshold_in_words_(0) { |
| 1500 | const intptr_t growth_in_pages = heap_growth_max / 2; |
| 1501 | RecordUpdate(last_usage_, last_usage_, growth_in_pages, "initial" ); |
| 1502 | } |
| 1503 | |
| 1504 | PageSpaceController::~PageSpaceController() {} |
| 1505 | |
| 1506 | bool PageSpaceController::ReachedHardThreshold(SpaceUsage after) const { |
| 1507 | if (!is_enabled_) { |
| 1508 | return false; |
| 1509 | } |
| 1510 | if (heap_growth_ratio_ == 100) { |
| 1511 | return false; |
| 1512 | } |
| 1513 | return after.CombinedUsedInWords() > hard_gc_threshold_in_words_; |
| 1514 | } |
| 1515 | |
| 1516 | bool PageSpaceController::ReachedSoftThreshold(SpaceUsage after) const { |
| 1517 | if (!is_enabled_) { |
| 1518 | return false; |
| 1519 | } |
| 1520 | if (heap_growth_ratio_ == 100) { |
| 1521 | return false; |
| 1522 | } |
| 1523 | return after.CombinedUsedInWords() > soft_gc_threshold_in_words_; |
| 1524 | } |
| 1525 | |
| 1526 | bool PageSpaceController::ReachedIdleThreshold(SpaceUsage current) const { |
| 1527 | if (!is_enabled_) { |
| 1528 | return false; |
| 1529 | } |
| 1530 | if (heap_growth_ratio_ == 100) { |
| 1531 | return false; |
| 1532 | } |
| 1533 | return current.CombinedUsedInWords() > idle_gc_threshold_in_words_; |
| 1534 | } |
| 1535 | |
| 1536 | void PageSpaceController::EvaluateGarbageCollection(SpaceUsage before, |
| 1537 | SpaceUsage after, |
| 1538 | int64_t start, |
| 1539 | int64_t end) { |
| 1540 | ASSERT(end >= start); |
| 1541 | history_.AddGarbageCollectionTime(start, end); |
| 1542 | const int gc_time_fraction = history_.GarbageCollectionTimeFraction(); |
| 1543 | heap_->RecordData(PageSpace::kGCTimeFraction, gc_time_fraction); |
| 1544 | |
| 1545 | // Assume garbage increases linearly with allocation: |
| 1546 | // G = kA, and estimate k from the previous cycle. |
| 1547 | const intptr_t allocated_since_previous_gc = |
| 1548 | before.CombinedUsedInWords() - last_usage_.CombinedUsedInWords(); |
| 1549 | intptr_t grow_heap; |
| 1550 | if (allocated_since_previous_gc > 0) { |
| 1551 | const intptr_t garbage = |
| 1552 | before.CombinedUsedInWords() - after.CombinedUsedInWords(); |
| 1553 | ASSERT(garbage >= 0); |
| 1554 | // It makes no sense to expect that each kb allocated will cause more than |
| 1555 | // one kb of garbage, so we clamp k at 1.0. |
| 1556 | const double k = Utils::Minimum( |
| 1557 | 1.0, garbage / static_cast<double>(allocated_since_previous_gc)); |
| 1558 | |
| 1559 | const int garbage_ratio = static_cast<int>(k * 100); |
| 1560 | heap_->RecordData(PageSpace::kGarbageRatio, garbage_ratio); |
| 1561 | |
| 1562 | // Define GC to be 'worthwhile' iff at least fraction t of heap is garbage. |
| 1563 | double t = 1.0 - desired_utilization_; |
| 1564 | // If we spend too much time in GC, strive for even more free space. |
| 1565 | if (gc_time_fraction > garbage_collection_time_ratio_) { |
| 1566 | t += (gc_time_fraction - garbage_collection_time_ratio_) / 100.0; |
| 1567 | } |
| 1568 | |
| 1569 | // Number of pages we can allocate and still be within the desired growth |
| 1570 | // ratio. |
| 1571 | const intptr_t grow_pages = |
| 1572 | (static_cast<intptr_t>(after.CombinedUsedInWords() / |
| 1573 | desired_utilization_) - |
| 1574 | (after.CombinedUsedInWords())) / |
| 1575 | kOldPageSizeInWords; |
| 1576 | if (garbage_ratio == 0) { |
| 1577 | // No garbage in the previous cycle so it would be hard to compute a |
| 1578 | // grow_heap size based on estimated garbage so we use growth ratio |
| 1579 | // heuristics instead. |
| 1580 | grow_heap = |
| 1581 | Utils::Maximum(static_cast<intptr_t>(heap_growth_max_), grow_pages); |
| 1582 | } else { |
| 1583 | // Find minimum 'grow_heap' such that after increasing capacity by |
| 1584 | // 'grow_heap' pages and filling them, we expect a GC to be worthwhile. |
| 1585 | intptr_t max = heap_growth_max_; |
| 1586 | intptr_t min = 0; |
| 1587 | intptr_t local_grow_heap = 0; |
| 1588 | while (min < max) { |
| 1589 | local_grow_heap = (max + min) / 2; |
| 1590 | const intptr_t limit = after.CombinedUsedInWords() + |
| 1591 | (local_grow_heap * kOldPageSizeInWords); |
| 1592 | const intptr_t allocated_before_next_gc = |
| 1593 | limit - (after.CombinedUsedInWords()); |
| 1594 | const double estimated_garbage = k * allocated_before_next_gc; |
| 1595 | if (t <= estimated_garbage / limit) { |
| 1596 | max = local_grow_heap - 1; |
| 1597 | } else { |
| 1598 | min = local_grow_heap + 1; |
| 1599 | } |
| 1600 | } |
| 1601 | local_grow_heap = (max + min) / 2; |
| 1602 | grow_heap = local_grow_heap; |
| 1603 | ASSERT(grow_heap >= 0); |
| 1604 | // If we are going to grow by heap_grow_max_ then ensure that we |
| 1605 | // will be growing the heap at least by the growth ratio heuristics. |
| 1606 | if (grow_heap >= heap_growth_max_) { |
| 1607 | grow_heap = Utils::Maximum(grow_pages, grow_heap); |
| 1608 | } |
| 1609 | } |
| 1610 | } else { |
| 1611 | heap_->RecordData(PageSpace::kGarbageRatio, 100); |
| 1612 | grow_heap = 0; |
| 1613 | } |
| 1614 | heap_->RecordData(PageSpace::kPageGrowth, grow_heap); |
| 1615 | last_usage_ = after; |
| 1616 | |
| 1617 | intptr_t max_capacity_in_words = heap_->old_space()->max_capacity_in_words_; |
| 1618 | if (max_capacity_in_words != 0) { |
| 1619 | ASSERT(grow_heap >= 0); |
| 1620 | // Fraction of asymptote used. |
| 1621 | double f = static_cast<double>(after.CombinedUsedInWords() + |
| 1622 | (kOldPageSizeInWords * grow_heap)) / |
| 1623 | static_cast<double>(max_capacity_in_words); |
| 1624 | ASSERT(f >= 0.0); |
| 1625 | // Increase weight at the high end. |
| 1626 | f = f * f; |
| 1627 | // Fraction of asymptote available. |
| 1628 | f = 1.0 - f; |
| 1629 | ASSERT(f <= 1.0); |
| 1630 | // Discount growth more the closer we get to the desired asymptote. |
| 1631 | grow_heap = static_cast<intptr_t>(grow_heap * f); |
| 1632 | // Minimum growth step after reaching the asymptote. |
| 1633 | intptr_t min_step = (2 * MB) / kOldPageSize; |
| 1634 | grow_heap = Utils::Maximum(min_step, grow_heap); |
| 1635 | } |
| 1636 | |
| 1637 | RecordUpdate(before, after, grow_heap, "gc" ); |
| 1638 | } |
| 1639 | |
| 1640 | void PageSpaceController::EvaluateAfterLoading(SpaceUsage after) { |
| 1641 | // Number of pages we can allocate and still be within the desired growth |
| 1642 | // ratio. |
| 1643 | intptr_t growth_in_pages; |
| 1644 | if (desired_utilization_ == 0.0) { |
| 1645 | growth_in_pages = heap_growth_max_; |
| 1646 | } else { |
| 1647 | growth_in_pages = (static_cast<intptr_t>(after.CombinedUsedInWords() / |
| 1648 | desired_utilization_) - |
| 1649 | (after.CombinedUsedInWords())) / |
| 1650 | kOldPageSizeInWords; |
| 1651 | } |
| 1652 | |
| 1653 | // Apply growth cap. |
| 1654 | growth_in_pages = |
| 1655 | Utils::Minimum(static_cast<intptr_t>(heap_growth_max_), growth_in_pages); |
| 1656 | |
| 1657 | RecordUpdate(after, after, growth_in_pages, "loaded" ); |
| 1658 | } |
| 1659 | |
| 1660 | void PageSpaceController::RecordUpdate(SpaceUsage before, |
| 1661 | SpaceUsage after, |
| 1662 | intptr_t growth_in_pages, |
| 1663 | const char* reason) { |
| 1664 | // Save final threshold compared before growing. |
| 1665 | hard_gc_threshold_in_words_ = |
| 1666 | after.CombinedUsedInWords() + (kOldPageSizeInWords * growth_in_pages); |
| 1667 | |
| 1668 | // Start concurrent marking when old-space has less than half of new-space |
| 1669 | // available or less than 5% available. |
| 1670 | #if defined(TARGET_ARCH_IA32) |
| 1671 | const intptr_t headroom = 0; // No concurrent marking. |
| 1672 | #else |
| 1673 | // Note that heap_ can be null in some unit tests. |
| 1674 | const intptr_t new_space = |
| 1675 | heap_ == nullptr ? 0 : heap_->new_space()->CapacityInWords(); |
| 1676 | const intptr_t headroom = |
| 1677 | Utils::Maximum(new_space / 2, hard_gc_threshold_in_words_ / 20); |
| 1678 | #endif |
| 1679 | soft_gc_threshold_in_words_ = hard_gc_threshold_in_words_ - headroom; |
| 1680 | |
| 1681 | // Set a tight idle threshold. |
| 1682 | idle_gc_threshold_in_words_ = |
| 1683 | after.CombinedUsedInWords() + (2 * kOldPageSizeInWords); |
| 1684 | |
| 1685 | #if defined(SUPPORT_TIMELINE) |
| 1686 | Thread* thread = Thread::Current(); |
| 1687 | if (thread != nullptr) { |
| 1688 | TIMELINE_FUNCTION_GC_DURATION(thread, "UpdateGrowthLimit" ); |
| 1689 | tbes.SetNumArguments(6); |
| 1690 | tbes.CopyArgument(0, "Reason" , reason); |
| 1691 | tbes.FormatArgument(1, "Before.CombinedUsed (kB)" , "%" Pd "" , |
| 1692 | RoundWordsToKB(before.CombinedUsedInWords())); |
| 1693 | tbes.FormatArgument(2, "After.CombinedUsed (kB)" , "%" Pd "" , |
| 1694 | RoundWordsToKB(after.CombinedUsedInWords())); |
| 1695 | tbes.FormatArgument(3, "Hard Threshold (kB)" , "%" Pd "" , |
| 1696 | RoundWordsToKB(hard_gc_threshold_in_words_)); |
| 1697 | tbes.FormatArgument(4, "Soft Threshold (kB)" , "%" Pd "" , |
| 1698 | RoundWordsToKB(soft_gc_threshold_in_words_)); |
| 1699 | tbes.FormatArgument(5, "Idle Threshold (kB)" , "%" Pd "" , |
| 1700 | RoundWordsToKB(idle_gc_threshold_in_words_)); |
| 1701 | } |
| 1702 | #endif |
| 1703 | |
| 1704 | if (FLAG_log_growth) { |
| 1705 | THR_Print("%s: threshold=%" Pd "kB, idle_threshold=%" Pd "kB, reason=%s\n" , |
| 1706 | heap_->isolate_group()->source()->name, |
| 1707 | hard_gc_threshold_in_words_ / KBInWords, |
| 1708 | idle_gc_threshold_in_words_ / KBInWords, reason); |
| 1709 | } |
| 1710 | } |
| 1711 | |
| 1712 | void PageSpaceController::HintFreed(intptr_t size) { |
| 1713 | intptr_t size_in_words = size << kWordSizeLog2; |
| 1714 | if (size_in_words > idle_gc_threshold_in_words_) { |
| 1715 | idle_gc_threshold_in_words_ = 0; |
| 1716 | } else { |
| 1717 | idle_gc_threshold_in_words_ -= size_in_words; |
| 1718 | } |
| 1719 | |
| 1720 | // TODO(rmacnak): Hasten the soft threshold at some discount? |
| 1721 | } |
| 1722 | |
| 1723 | void PageSpaceController::MergeFrom(PageSpaceController* donor) { |
| 1724 | last_usage_.capacity_in_words += donor->last_usage_.capacity_in_words; |
| 1725 | last_usage_.used_in_words += donor->last_usage_.used_in_words; |
| 1726 | last_usage_.external_in_words += donor->last_usage_.external_in_words; |
| 1727 | } |
| 1728 | |
| 1729 | void PageSpaceGarbageCollectionHistory::AddGarbageCollectionTime(int64_t start, |
| 1730 | int64_t end) { |
| 1731 | Entry entry; |
| 1732 | entry.start = start; |
| 1733 | entry.end = end; |
| 1734 | history_.Add(entry); |
| 1735 | } |
| 1736 | |
| 1737 | int PageSpaceGarbageCollectionHistory::GarbageCollectionTimeFraction() { |
| 1738 | int64_t gc_time = 0; |
| 1739 | int64_t total_time = 0; |
| 1740 | for (int i = 0; i < history_.Size() - 1; i++) { |
| 1741 | Entry current = history_.Get(i); |
| 1742 | Entry previous = history_.Get(i + 1); |
| 1743 | gc_time += current.end - current.start; |
| 1744 | total_time += current.end - previous.end; |
| 1745 | } |
| 1746 | if (total_time == 0) { |
| 1747 | return 0; |
| 1748 | } else { |
| 1749 | ASSERT(total_time >= gc_time); |
| 1750 | int result = static_cast<int>( |
| 1751 | (static_cast<double>(gc_time) / static_cast<double>(total_time)) * 100); |
| 1752 | return result; |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | } // namespace dart |
| 1757 | |