1 | // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "platform/address_sanitizer.h" |
6 | #include "platform/memory_sanitizer.h" |
7 | #include "platform/utils.h" |
8 | |
9 | #include "platform/atomic.h" |
10 | #include "vm/allocation.h" |
11 | #include "vm/code_patcher.h" |
12 | #include "vm/debugger.h" |
13 | #include "vm/instructions.h" |
14 | #include "vm/isolate.h" |
15 | #include "vm/json_stream.h" |
16 | #include "vm/lockers.h" |
17 | #include "vm/message_handler.h" |
18 | #include "vm/native_symbol.h" |
19 | #include "vm/object.h" |
20 | #include "vm/os.h" |
21 | #include "vm/profiler.h" |
22 | #include "vm/reusable_handles.h" |
23 | #include "vm/signal_handler.h" |
24 | #include "vm/simulator.h" |
25 | #include "vm/stack_frame.h" |
26 | #include "vm/version.h" |
27 | |
28 | namespace dart { |
29 | |
30 | static const intptr_t kSampleSize = 8; |
31 | static const intptr_t kMaxSamplesPerTick = 16; |
32 | |
33 | DEFINE_FLAG(bool, trace_profiled_isolates, false, "Trace profiled isolates." ); |
34 | |
35 | DEFINE_FLAG(int, |
36 | profile_period, |
37 | 1000, |
38 | "Time between profiler samples in microseconds. Minimum 50." ); |
39 | DEFINE_FLAG(int, |
40 | max_profile_depth, |
41 | kSampleSize* kMaxSamplesPerTick, |
42 | "Maximum number stack frames walked. Minimum 1. Maximum 255." ); |
43 | #if defined(USING_SIMULATOR) |
44 | DEFINE_FLAG(bool, profile_vm, true, "Always collect native stack traces." ); |
45 | #else |
46 | DEFINE_FLAG(bool, profile_vm, false, "Always collect native stack traces." ); |
47 | #endif |
48 | DEFINE_FLAG(bool, |
49 | profile_vm_allocation, |
50 | false, |
51 | "Collect native stack traces when tracing Dart allocations." ); |
52 | |
53 | DEFINE_FLAG( |
54 | int, |
55 | sample_buffer_duration, |
56 | 0, |
57 | "Defines the size of the profiler sample buffer to contain at least " |
58 | "N seconds of samples at a given sample rate. If not provided, the " |
59 | "default is ~4 seconds. Large values will greatly increase memory " |
60 | "consumption." ); |
61 | |
62 | #ifndef PRODUCT |
63 | |
64 | RelaxedAtomic<bool> Profiler::initialized_ = false; |
65 | SampleBuffer* Profiler::sample_buffer_ = NULL; |
66 | AllocationSampleBuffer* Profiler::allocation_sample_buffer_ = NULL; |
67 | ProfilerCounters Profiler::counters_ = {}; |
68 | |
69 | void Profiler::Init() { |
70 | // Place some sane restrictions on user controlled flags. |
71 | SetSampleDepth(FLAG_max_profile_depth); |
72 | Sample::Init(); |
73 | if (!FLAG_profiler) { |
74 | return; |
75 | } |
76 | ASSERT(!initialized_); |
77 | SetSamplePeriod(FLAG_profile_period); |
78 | // The profiler may have been shutdown previously, in which case the sample |
79 | // buffer will have already been initialized. |
80 | if (sample_buffer_ == NULL) { |
81 | intptr_t capacity = CalculateSampleBufferCapacity(); |
82 | sample_buffer_ = new SampleBuffer(capacity); |
83 | Profiler::InitAllocationSampleBuffer(); |
84 | } |
85 | ThreadInterrupter::Init(); |
86 | ThreadInterrupter::Startup(); |
87 | initialized_ = true; |
88 | } |
89 | |
90 | void Profiler::InitAllocationSampleBuffer() { |
91 | ASSERT(Profiler::allocation_sample_buffer_ == NULL); |
92 | if (FLAG_profiler_native_memory) { |
93 | Profiler::allocation_sample_buffer_ = new AllocationSampleBuffer(); |
94 | } |
95 | } |
96 | |
97 | void Profiler::Cleanup() { |
98 | if (!FLAG_profiler) { |
99 | return; |
100 | } |
101 | ASSERT(initialized_); |
102 | ThreadInterrupter::Cleanup(); |
103 | delete sample_buffer_; |
104 | sample_buffer_ = NULL; |
105 | initialized_ = false; |
106 | } |
107 | |
108 | void Profiler::UpdateRunningState() { |
109 | if (!FLAG_profiler && initialized_) { |
110 | Cleanup(); |
111 | } else if (FLAG_profiler && !initialized_) { |
112 | Init(); |
113 | } |
114 | } |
115 | |
116 | void Profiler::SetSampleDepth(intptr_t depth) { |
117 | const int kMinimumDepth = 2; |
118 | const int kMaximumDepth = 255; |
119 | if (depth < kMinimumDepth) { |
120 | FLAG_max_profile_depth = kMinimumDepth; |
121 | } else if (depth > kMaximumDepth) { |
122 | FLAG_max_profile_depth = kMaximumDepth; |
123 | } else { |
124 | FLAG_max_profile_depth = depth; |
125 | } |
126 | } |
127 | |
128 | static intptr_t SamplesPerSecond() { |
129 | const intptr_t kMicrosPerSec = 1000000; |
130 | return kMicrosPerSec / FLAG_profile_period; |
131 | } |
132 | |
133 | intptr_t Profiler::CalculateSampleBufferCapacity() { |
134 | if (FLAG_sample_buffer_duration <= 0) { |
135 | return SampleBuffer::kDefaultBufferCapacity; |
136 | } |
137 | // Deeper stacks require more than a single Sample object to be represented |
138 | // correctly. These samples are chained, so we need to determine the worst |
139 | // case sample chain length for a single stack. |
140 | const intptr_t max_sample_chain_length = |
141 | FLAG_max_profile_depth / kMaxSamplesPerTick; |
142 | const intptr_t buffer_size = FLAG_sample_buffer_duration * |
143 | SamplesPerSecond() * max_sample_chain_length; |
144 | return buffer_size; |
145 | } |
146 | |
147 | void Profiler::SetSamplePeriod(intptr_t period) { |
148 | const int kMinimumProfilePeriod = 50; |
149 | if (period < kMinimumProfilePeriod) { |
150 | FLAG_profile_period = kMinimumProfilePeriod; |
151 | } else { |
152 | FLAG_profile_period = period; |
153 | } |
154 | ThreadInterrupter::SetInterruptPeriod(FLAG_profile_period); |
155 | } |
156 | |
157 | void Profiler::UpdateSamplePeriod() { |
158 | SetSamplePeriod(FLAG_profile_period); |
159 | } |
160 | |
161 | intptr_t Sample::pcs_length_ = 0; |
162 | intptr_t Sample::instance_size_ = 0; |
163 | |
164 | void Sample::Init() { |
165 | pcs_length_ = kSampleSize; |
166 | instance_size_ = sizeof(Sample) + (sizeof(uword) * pcs_length_); // NOLINT. |
167 | } |
168 | |
169 | uword* Sample::GetPCArray() const { |
170 | return reinterpret_cast<uword*>(reinterpret_cast<uintptr_t>(this) + |
171 | sizeof(*this)); |
172 | } |
173 | |
174 | SampleBuffer::SampleBuffer(intptr_t capacity) { |
175 | ASSERT(Sample::instance_size() > 0); |
176 | |
177 | const intptr_t size = Utils::RoundUp(capacity * Sample::instance_size(), |
178 | VirtualMemory::PageSize()); |
179 | const bool kNotExecutable = false; |
180 | memory_ = VirtualMemory::Allocate(size, kNotExecutable, "dart-profiler" ); |
181 | if (memory_ == NULL) { |
182 | OUT_OF_MEMORY(); |
183 | } |
184 | |
185 | samples_ = reinterpret_cast<Sample*>(memory_->address()); |
186 | capacity_ = capacity; |
187 | cursor_ = 0; |
188 | |
189 | if (FLAG_trace_profiler) { |
190 | OS::PrintErr("Profiler holds %" Pd " samples\n" , capacity); |
191 | OS::PrintErr("Profiler sample is %" Pd " bytes\n" , Sample::instance_size()); |
192 | OS::PrintErr("Profiler memory usage = %" Pd " bytes\n" , size); |
193 | } |
194 | if (FLAG_sample_buffer_duration != 0) { |
195 | OS::PrintErr( |
196 | "** WARNING ** Custom sample buffer size provided via " |
197 | "--sample-buffer-duration\n" ); |
198 | OS::PrintErr( |
199 | "The sample buffer can hold at least %ds worth of " |
200 | "samples with stacks depths of up to %d, collected at " |
201 | "a sample rate of %" Pd "Hz.\n" , |
202 | FLAG_sample_buffer_duration, FLAG_max_profile_depth, |
203 | SamplesPerSecond()); |
204 | OS::PrintErr("The resulting sample buffer size is %" Pd " bytes.\n" , size); |
205 | } |
206 | } |
207 | |
208 | AllocationSampleBuffer::AllocationSampleBuffer(intptr_t capacity) |
209 | : SampleBuffer(capacity), mutex_(), free_sample_list_(NULL) {} |
210 | |
211 | SampleBuffer::~SampleBuffer() { |
212 | delete memory_; |
213 | } |
214 | |
215 | AllocationSampleBuffer::~AllocationSampleBuffer() { |
216 | } |
217 | |
218 | Sample* SampleBuffer::At(intptr_t idx) const { |
219 | ASSERT(idx >= 0); |
220 | ASSERT(idx < capacity_); |
221 | intptr_t offset = idx * Sample::instance_size(); |
222 | uint8_t* samples = reinterpret_cast<uint8_t*>(samples_); |
223 | return reinterpret_cast<Sample*>(samples + offset); |
224 | } |
225 | |
226 | intptr_t SampleBuffer::ReserveSampleSlot() { |
227 | ASSERT(samples_ != NULL); |
228 | uintptr_t cursor = cursor_.fetch_add(1u); |
229 | // Map back into sample buffer range. |
230 | cursor = cursor % capacity_; |
231 | return cursor; |
232 | } |
233 | |
234 | Sample* SampleBuffer::ReserveSample() { |
235 | return At(ReserveSampleSlot()); |
236 | } |
237 | |
238 | Sample* SampleBuffer::ReserveSampleAndLink(Sample* previous) { |
239 | ASSERT(previous != NULL); |
240 | intptr_t next_index = ReserveSampleSlot(); |
241 | Sample* next = At(next_index); |
242 | next->Init(previous->port(), previous->timestamp(), previous->tid()); |
243 | next->set_head_sample(false); |
244 | // Mark that previous continues at next. |
245 | previous->SetContinuationIndex(next_index); |
246 | return next; |
247 | } |
248 | |
249 | void AllocationSampleBuffer::FreeAllocationSample(Sample* sample) { |
250 | MutexLocker ml(&mutex_); |
251 | while (sample != NULL) { |
252 | intptr_t continuation_index = -1; |
253 | if (sample->is_continuation_sample()) { |
254 | continuation_index = sample->continuation_index(); |
255 | } |
256 | sample->Clear(); |
257 | sample->set_next_free(free_sample_list_); |
258 | free_sample_list_ = sample; |
259 | |
260 | if (continuation_index != -1) { |
261 | sample = At(continuation_index); |
262 | } else { |
263 | sample = NULL; |
264 | } |
265 | } |
266 | } |
267 | |
268 | intptr_t AllocationSampleBuffer::ReserveSampleSlotLocked() { |
269 | if (free_sample_list_ != NULL) { |
270 | Sample* free_sample = free_sample_list_; |
271 | free_sample_list_ = free_sample->next_free(); |
272 | free_sample->set_next_free(NULL); |
273 | uint8_t* samples_array_ptr = reinterpret_cast<uint8_t*>(samples_); |
274 | uint8_t* free_sample_ptr = reinterpret_cast<uint8_t*>(free_sample); |
275 | return static_cast<intptr_t>((free_sample_ptr - samples_array_ptr) / |
276 | Sample::instance_size()); |
277 | } else if (cursor_ < static_cast<uintptr_t>(capacity_ - 1)) { |
278 | return cursor_ += 1; |
279 | } else { |
280 | return -1; |
281 | } |
282 | } |
283 | |
284 | Sample* AllocationSampleBuffer::ReserveSampleAndLink(Sample* previous) { |
285 | MutexLocker ml(&mutex_); |
286 | ASSERT(previous != NULL); |
287 | intptr_t next_index = ReserveSampleSlotLocked(); |
288 | if (next_index < 0) { |
289 | // Could not find a free sample. |
290 | return NULL; |
291 | } |
292 | Sample* next = At(next_index); |
293 | next->Init(previous->port(), previous->timestamp(), previous->tid()); |
294 | next->set_native_allocation_address(previous->native_allocation_address()); |
295 | next->set_native_allocation_size_bytes( |
296 | previous->native_allocation_size_bytes()); |
297 | next->set_head_sample(false); |
298 | // Mark that previous continues at next. |
299 | previous->SetContinuationIndex(next_index); |
300 | return next; |
301 | } |
302 | |
303 | Sample* AllocationSampleBuffer::ReserveSample() { |
304 | MutexLocker ml(&mutex_); |
305 | intptr_t index = ReserveSampleSlotLocked(); |
306 | if (index < 0) { |
307 | return NULL; |
308 | } |
309 | return At(index); |
310 | } |
311 | |
312 | // Attempts to find the true return address when a Dart frame is being setup |
313 | // or torn down. |
314 | // NOTE: Architecture specific implementations below. |
315 | class ReturnAddressLocator : public ValueObject { |
316 | public: |
317 | ReturnAddressLocator(Sample* sample, const Code& code) |
318 | : stack_buffer_(sample->GetStackBuffer()), |
319 | pc_(sample->pc()), |
320 | code_(Code::ZoneHandle(code.raw())) { |
321 | ASSERT(!code_.IsNull()); |
322 | ASSERT(code_.ContainsInstructionAt(pc())); |
323 | } |
324 | |
325 | ReturnAddressLocator(uword pc, uword* stack_buffer, const Code& code) |
326 | : stack_buffer_(stack_buffer), |
327 | pc_(pc), |
328 | code_(Code::ZoneHandle(code.raw())) { |
329 | ASSERT(!code_.IsNull()); |
330 | ASSERT(code_.ContainsInstructionAt(pc_)); |
331 | } |
332 | |
333 | uword pc() { return pc_; } |
334 | |
335 | // Returns false on failure. |
336 | bool LocateReturnAddress(uword* return_address); |
337 | |
338 | // Returns offset into code object. |
339 | intptr_t RelativePC() { |
340 | ASSERT(pc() >= code_.PayloadStart()); |
341 | return static_cast<intptr_t>(pc() - code_.PayloadStart()); |
342 | } |
343 | |
344 | uint8_t* CodePointer(intptr_t offset) { |
345 | const intptr_t size = code_.Size(); |
346 | ASSERT(offset < size); |
347 | uint8_t* code_pointer = reinterpret_cast<uint8_t*>(code_.PayloadStart()); |
348 | code_pointer += offset; |
349 | return code_pointer; |
350 | } |
351 | |
352 | uword StackAt(intptr_t i) { |
353 | ASSERT(i >= 0); |
354 | ASSERT(i < Sample::kStackBufferSizeInWords); |
355 | return stack_buffer_[i]; |
356 | } |
357 | |
358 | private: |
359 | uword* stack_buffer_; |
360 | uword pc_; |
361 | const Code& code_; |
362 | }; |
363 | |
364 | #if defined(TARGET_ARCH_IA32) || defined(TARGET_ARCH_X64) |
365 | bool ReturnAddressLocator::LocateReturnAddress(uword* return_address) { |
366 | ASSERT(return_address != NULL); |
367 | const intptr_t offset = RelativePC(); |
368 | ASSERT(offset >= 0); |
369 | const intptr_t size = code_.Size(); |
370 | ASSERT(offset < size); |
371 | const intptr_t prologue_offset = code_.GetPrologueOffset(); |
372 | if (offset < prologue_offset) { |
373 | // Before the prologue, return address is at the top of the stack. |
374 | // TODO(johnmccutchan): Some intrinsics and stubs do not conform to the |
375 | // expected stack layout. Use a more robust solution for those code objects. |
376 | *return_address = StackAt(0); |
377 | return true; |
378 | } |
379 | // Detect if we are: |
380 | // push ebp <--- here |
381 | // mov ebp, esp |
382 | // on X64 the register names are different but the sequence is the same. |
383 | ProloguePattern pp(pc()); |
384 | if (pp.IsValid()) { |
385 | // Stack layout: |
386 | // 0 RETURN ADDRESS. |
387 | *return_address = StackAt(0); |
388 | return true; |
389 | } |
390 | // Detect if we are: |
391 | // push ebp |
392 | // mov ebp, esp <--- here |
393 | // on X64 the register names are different but the sequence is the same. |
394 | SetFramePointerPattern sfpp(pc()); |
395 | if (sfpp.IsValid()) { |
396 | // Stack layout: |
397 | // 0 CALLER FRAME POINTER |
398 | // 1 RETURN ADDRESS |
399 | *return_address = StackAt(1); |
400 | return true; |
401 | } |
402 | // Detect if we are: |
403 | // ret <--- here |
404 | ReturnPattern rp(pc()); |
405 | if (rp.IsValid()) { |
406 | // Stack layout: |
407 | // 0 RETURN ADDRESS. |
408 | *return_address = StackAt(0); |
409 | return true; |
410 | } |
411 | return false; |
412 | } |
413 | #elif defined(TARGET_ARCH_ARM) |
414 | bool ReturnAddressLocator::LocateReturnAddress(uword* return_address) { |
415 | ASSERT(return_address != NULL); |
416 | return false; |
417 | } |
418 | #elif defined(TARGET_ARCH_ARM64) |
419 | bool ReturnAddressLocator::LocateReturnAddress(uword* return_address) { |
420 | ASSERT(return_address != NULL); |
421 | return false; |
422 | } |
423 | #else |
424 | #error ReturnAddressLocator implementation missing for this architecture. |
425 | #endif |
426 | |
427 | bool SampleFilter::TimeFilterSample(Sample* sample) { |
428 | if ((time_origin_micros_ == -1) || (time_extent_micros_ == -1)) { |
429 | // No time filter passed in, always pass. |
430 | return true; |
431 | } |
432 | const int64_t timestamp = sample->timestamp(); |
433 | int64_t delta = timestamp - time_origin_micros_; |
434 | return (delta >= 0) && (delta <= time_extent_micros_); |
435 | } |
436 | |
437 | bool SampleFilter::TaskFilterSample(Sample* sample) { |
438 | const intptr_t task = static_cast<intptr_t>(sample->thread_task()); |
439 | if (thread_task_mask_ == kNoTaskFilter) { |
440 | return true; |
441 | } |
442 | return (task & thread_task_mask_) != 0; |
443 | } |
444 | |
445 | ClearProfileVisitor::ClearProfileVisitor(Isolate* isolate) |
446 | : SampleVisitor(isolate->main_port()) {} |
447 | |
448 | void ClearProfileVisitor::VisitSample(Sample* sample) { |
449 | sample->Clear(); |
450 | } |
451 | |
452 | static void DumpStackFrame(intptr_t frame_index, uword pc, uword fp) { |
453 | uword start = 0; |
454 | if (auto const name = NativeSymbolResolver::LookupSymbolName(pc, &start)) { |
455 | uword offset = pc - start; |
456 | OS::PrintErr(" pc 0x%" Pp " fp 0x%" Pp " %s+0x%" Px "\n" , pc, fp, name, |
457 | offset); |
458 | NativeSymbolResolver::FreeSymbolName(name); |
459 | return; |
460 | } |
461 | |
462 | char* dso_name; |
463 | uword dso_base; |
464 | if (NativeSymbolResolver::LookupSharedObject(pc, &dso_base, &dso_name)) { |
465 | uword dso_offset = pc - dso_base; |
466 | OS::PrintErr(" pc 0x%" Pp " fp 0x%" Pp " %s+0x%" Px "\n" , pc, fp, dso_name, |
467 | dso_offset); |
468 | NativeSymbolResolver::FreeSymbolName(dso_name); |
469 | return; |
470 | } |
471 | |
472 | OS::PrintErr(" pc 0x%" Pp " fp 0x%" Pp " Unknown symbol\n" , pc, fp); |
473 | } |
474 | |
475 | class ProfilerStackWalker : public ValueObject { |
476 | public: |
477 | ProfilerStackWalker(Dart_Port port_id, |
478 | Sample* head_sample, |
479 | SampleBuffer* sample_buffer, |
480 | intptr_t skip_count = 0) |
481 | : port_id_(port_id), |
482 | sample_(head_sample), |
483 | sample_buffer_(sample_buffer), |
484 | skip_count_(skip_count), |
485 | frames_skipped_(0), |
486 | frame_index_(0), |
487 | total_frames_(0) { |
488 | if (sample_ == NULL) { |
489 | ASSERT(sample_buffer_ == NULL); |
490 | } else { |
491 | ASSERT(sample_buffer_ != NULL); |
492 | ASSERT(sample_->head_sample()); |
493 | } |
494 | } |
495 | |
496 | bool Append(uword pc, uword fp) { |
497 | if (frames_skipped_ < skip_count_) { |
498 | frames_skipped_++; |
499 | return true; |
500 | } |
501 | |
502 | if (sample_ == NULL) { |
503 | DumpStackFrame(frame_index_, pc, fp); |
504 | frame_index_++; |
505 | total_frames_++; |
506 | return true; |
507 | } |
508 | if (total_frames_ >= FLAG_max_profile_depth) { |
509 | sample_->set_truncated_trace(true); |
510 | return false; |
511 | } |
512 | ASSERT(sample_ != NULL); |
513 | if (frame_index_ == kSampleSize) { |
514 | Sample* new_sample = sample_buffer_->ReserveSampleAndLink(sample_); |
515 | if (new_sample == NULL) { |
516 | // Could not reserve new sample- mark this as truncated. |
517 | sample_->set_truncated_trace(true); |
518 | return false; |
519 | } |
520 | frame_index_ = 0; |
521 | sample_ = new_sample; |
522 | } |
523 | ASSERT(frame_index_ < kSampleSize); |
524 | sample_->SetAt(frame_index_, pc); |
525 | frame_index_++; |
526 | total_frames_++; |
527 | return true; |
528 | } |
529 | |
530 | protected: |
531 | Dart_Port port_id_; |
532 | Sample* sample_; |
533 | SampleBuffer* sample_buffer_; |
534 | intptr_t skip_count_; |
535 | intptr_t frames_skipped_; |
536 | intptr_t frame_index_; |
537 | intptr_t total_frames_; |
538 | }; |
539 | |
540 | // Executing Dart code, walk the stack. |
541 | class ProfilerDartStackWalker : public ProfilerStackWalker { |
542 | public: |
543 | ProfilerDartStackWalker(Thread* thread, |
544 | Sample* sample, |
545 | SampleBuffer* sample_buffer, |
546 | uword pc, |
547 | uword fp, |
548 | bool allocation_sample, |
549 | intptr_t skip_count = 0) |
550 | : ProfilerStackWalker((thread->isolate() != NULL) |
551 | ? thread->isolate()->main_port() |
552 | : ILLEGAL_PORT, |
553 | sample, |
554 | sample_buffer, |
555 | skip_count), |
556 | thread_(thread), |
557 | pc_(reinterpret_cast<uword*>(pc)), |
558 | fp_(reinterpret_cast<uword*>(fp)) {} |
559 | |
560 | bool IsInterpretedFrame(uword* fp) { |
561 | #if defined(DART_PRECOMPILED_RUNTIME) |
562 | return false; |
563 | #else |
564 | Interpreter* interpreter = thread_->interpreter(); |
565 | if (interpreter == nullptr) return false; |
566 | return interpreter->HasFrame(reinterpret_cast<uword>(fp)); |
567 | #endif |
568 | } |
569 | |
570 | void walk() { |
571 | RELEASE_ASSERT(StubCode::HasBeenInitialized()); |
572 | if (thread_->isolate()->IsDeoptimizing()) { |
573 | sample_->set_ignore_sample(true); |
574 | return; |
575 | } |
576 | |
577 | uword* exit_fp = reinterpret_cast<uword*>(thread_->top_exit_frame_info()); |
578 | bool in_interpreted_frame; |
579 | bool has_exit_frame = exit_fp != 0; |
580 | if (has_exit_frame) { |
581 | if (IsInterpretedFrame(exit_fp)) { |
582 | // Exited from interpreter. |
583 | pc_ = 0; |
584 | fp_ = exit_fp; |
585 | in_interpreted_frame = true; |
586 | RELEASE_ASSERT(IsInterpretedFrame(fp_)); |
587 | } else { |
588 | // Exited from compiled code. |
589 | pc_ = 0; |
590 | fp_ = exit_fp; |
591 | in_interpreted_frame = false; |
592 | } |
593 | |
594 | // Skip exit frame. |
595 | pc_ = CallerPC(in_interpreted_frame); |
596 | fp_ = CallerFP(in_interpreted_frame); |
597 | |
598 | // Can only move between interpreted and compiled frames after an exit |
599 | // frame. |
600 | RELEASE_ASSERT(IsInterpretedFrame(fp_) == in_interpreted_frame); |
601 | } else { |
602 | if (thread_->vm_tag() == VMTag::kDartCompiledTagId) { |
603 | // Running compiled code. |
604 | // Use the FP and PC from the thread interrupt or simulator; already set |
605 | // in the constructor. |
606 | in_interpreted_frame = false; |
607 | } else if (thread_->vm_tag() == VMTag::kDartInterpretedTagId) { |
608 | // Running interpreter. |
609 | #if defined(DART_PRECOMPILED_RUNTIME) |
610 | UNREACHABLE(); |
611 | #else |
612 | pc_ = reinterpret_cast<uword*>(thread_->interpreter()->get_pc()); |
613 | fp_ = reinterpret_cast<uword*>(thread_->interpreter()->get_fp()); |
614 | #endif |
615 | in_interpreted_frame = true; |
616 | RELEASE_ASSERT(IsInterpretedFrame(fp_)); |
617 | } else { |
618 | // No Dart on the stack; caller shouldn't use this walker. |
619 | UNREACHABLE(); |
620 | } |
621 | } |
622 | |
623 | sample_->set_exit_frame_sample(has_exit_frame); |
624 | |
625 | if (!has_exit_frame && !in_interpreted_frame && |
626 | (CallerPC(in_interpreted_frame) == EntryMarker(in_interpreted_frame))) { |
627 | // During the prologue of a function, CallerPC will return the caller's |
628 | // caller. For most frames, the missing PC will be added during profile |
629 | // processing. However, during this stack walk, it can cause us to fail |
630 | // to identify the entry frame and lead the stack walk into the weeds. |
631 | // Do not continue the stalk walk since this might be a false positive |
632 | // from a Smi or unboxed value. |
633 | RELEASE_ASSERT(!has_exit_frame); |
634 | sample_->set_ignore_sample(true); |
635 | return; |
636 | } |
637 | |
638 | for (;;) { |
639 | // Skip entry frame. |
640 | if (StubCode::InInvocationStub(reinterpret_cast<uword>(pc_), |
641 | in_interpreted_frame)) { |
642 | pc_ = 0; |
643 | fp_ = ExitLink(in_interpreted_frame); |
644 | if (fp_ == 0) { |
645 | break; // End of Dart stack. |
646 | } |
647 | in_interpreted_frame = IsInterpretedFrame(fp_); |
648 | |
649 | // Skip exit frame. |
650 | pc_ = CallerPC(in_interpreted_frame); |
651 | fp_ = CallerFP(in_interpreted_frame); |
652 | |
653 | // At least one frame between exit and next entry frame. |
654 | RELEASE_ASSERT(!StubCode::InInvocationStub(reinterpret_cast<uword>(pc_), |
655 | in_interpreted_frame)); |
656 | } |
657 | |
658 | if (!Append(reinterpret_cast<uword>(pc_), reinterpret_cast<uword>(fp_))) { |
659 | break; // Sample is full. |
660 | } |
661 | |
662 | pc_ = CallerPC(in_interpreted_frame); |
663 | fp_ = CallerFP(in_interpreted_frame); |
664 | |
665 | // Can only move between interpreted and compiled frames after an exit |
666 | // frame. |
667 | RELEASE_ASSERT(IsInterpretedFrame(fp_) == in_interpreted_frame); |
668 | } |
669 | } |
670 | |
671 | private: |
672 | uword* CallerPC(bool interp) const { |
673 | ASSERT(fp_ != NULL); |
674 | uword* caller_pc_ptr = |
675 | fp_ + (interp ? kKBCSavedCallerPcSlotFromFp : kSavedCallerPcSlotFromFp); |
676 | // MSan/ASan are unaware of frames initialized by generated code. |
677 | MSAN_UNPOISON(caller_pc_ptr, kWordSize); |
678 | ASAN_UNPOISON(caller_pc_ptr, kWordSize); |
679 | return reinterpret_cast<uword*>(*caller_pc_ptr); |
680 | } |
681 | |
682 | uword* CallerFP(bool interp) const { |
683 | ASSERT(fp_ != NULL); |
684 | uword* caller_fp_ptr = |
685 | fp_ + (interp ? kKBCSavedCallerFpSlotFromFp : kSavedCallerFpSlotFromFp); |
686 | // MSan/ASan are unaware of frames initialized by generated code. |
687 | MSAN_UNPOISON(caller_fp_ptr, kWordSize); |
688 | ASAN_UNPOISON(caller_fp_ptr, kWordSize); |
689 | return reinterpret_cast<uword*>(*caller_fp_ptr); |
690 | } |
691 | |
692 | uword* ExitLink(bool interp) const { |
693 | ASSERT(fp_ != NULL); |
694 | uword* exit_link_ptr = |
695 | fp_ + (interp ? kKBCExitLinkSlotFromEntryFp : kExitLinkSlotFromEntryFp); |
696 | // MSan/ASan are unaware of frames initialized by generated code. |
697 | MSAN_UNPOISON(exit_link_ptr, kWordSize); |
698 | ASAN_UNPOISON(exit_link_ptr, kWordSize); |
699 | return reinterpret_cast<uword*>(*exit_link_ptr); |
700 | } |
701 | |
702 | // Note because of stack guards, it is important that this marker lives |
703 | // above FP. |
704 | uword* EntryMarker(bool interp) const { |
705 | ASSERT(!interp); |
706 | ASSERT(fp_ != NULL); |
707 | uword* entry_marker_ptr = fp_ + kSavedCallerPcSlotFromFp + 1; |
708 | // MSan/ASan are unaware of frames initialized by generated code. |
709 | MSAN_UNPOISON(entry_marker_ptr, kWordSize); |
710 | ASAN_UNPOISON(entry_marker_ptr, kWordSize); |
711 | return reinterpret_cast<uword*>(*entry_marker_ptr); |
712 | } |
713 | |
714 | Thread* const thread_; |
715 | uword* pc_; |
716 | uword* fp_; |
717 | }; |
718 | |
719 | // If the VM is compiled without frame pointers (which is the default on |
720 | // recent GCC versions with optimizing enabled) the stack walking code may |
721 | // fail. |
722 | // |
723 | class ProfilerNativeStackWalker : public ProfilerStackWalker { |
724 | public: |
725 | ProfilerNativeStackWalker(ProfilerCounters* counters, |
726 | Dart_Port port_id, |
727 | Sample* sample, |
728 | SampleBuffer* sample_buffer, |
729 | uword stack_lower, |
730 | uword stack_upper, |
731 | uword pc, |
732 | uword fp, |
733 | uword sp, |
734 | intptr_t skip_count = 0) |
735 | : ProfilerStackWalker(port_id, sample, sample_buffer, skip_count), |
736 | counters_(counters), |
737 | stack_upper_(stack_upper), |
738 | original_pc_(pc), |
739 | original_fp_(fp), |
740 | original_sp_(sp), |
741 | lower_bound_(stack_lower) {} |
742 | |
743 | void walk() { |
744 | const uword kMaxStep = VirtualMemory::PageSize(); |
745 | |
746 | Append(original_pc_, original_fp_); |
747 | |
748 | uword* pc = reinterpret_cast<uword*>(original_pc_); |
749 | uword* fp = reinterpret_cast<uword*>(original_fp_); |
750 | uword* previous_fp = fp; |
751 | |
752 | uword gap = original_fp_ - original_sp_; |
753 | if (gap >= kMaxStep) { |
754 | // Gap between frame pointer and stack pointer is |
755 | // too large. |
756 | counters_->incomplete_sample_fp_step.fetch_add(1); |
757 | return; |
758 | } |
759 | |
760 | if (!ValidFramePointer(fp)) { |
761 | counters_->incomplete_sample_fp_bounds.fetch_add(1); |
762 | return; |
763 | } |
764 | |
765 | while (true) { |
766 | pc = CallerPC(fp); |
767 | previous_fp = fp; |
768 | fp = CallerFP(fp); |
769 | |
770 | if (fp == NULL) { |
771 | return; |
772 | } |
773 | |
774 | if (fp <= previous_fp) { |
775 | // Frame pointer did not move to a higher address. |
776 | counters_->incomplete_sample_fp_step.fetch_add(1); |
777 | return; |
778 | } |
779 | |
780 | gap = fp - previous_fp; |
781 | if (gap >= kMaxStep) { |
782 | // Frame pointer step is too large. |
783 | counters_->incomplete_sample_fp_step.fetch_add(1); |
784 | return; |
785 | } |
786 | |
787 | if (!ValidFramePointer(fp)) { |
788 | // Frame pointer is outside of isolate stack boundary. |
789 | counters_->incomplete_sample_fp_bounds.fetch_add(1); |
790 | return; |
791 | } |
792 | |
793 | const uword pc_value = reinterpret_cast<uword>(pc); |
794 | if ((pc_value + 1) < pc_value) { |
795 | // It is not uncommon to encounter an invalid pc as we |
796 | // traverse a stack frame. Most of these we can tolerate. If |
797 | // the pc is so large that adding one to it will cause an |
798 | // overflow it is invalid and it will cause headaches later |
799 | // while we are building the profile. Discard it. |
800 | counters_->incomplete_sample_bad_pc.fetch_add(1); |
801 | return; |
802 | } |
803 | |
804 | // Move the lower bound up. |
805 | lower_bound_ = reinterpret_cast<uword>(fp); |
806 | |
807 | if (!Append(pc_value, reinterpret_cast<uword>(fp))) { |
808 | return; |
809 | } |
810 | } |
811 | } |
812 | |
813 | private: |
814 | uword* CallerPC(uword* fp) const { |
815 | ASSERT(fp != NULL); |
816 | uword* caller_pc_ptr = fp + kSavedCallerPcSlotFromFp; |
817 | // This may actually be uninitialized, by design (see class comment above). |
818 | MSAN_UNPOISON(caller_pc_ptr, kWordSize); |
819 | ASAN_UNPOISON(caller_pc_ptr, kWordSize); |
820 | return reinterpret_cast<uword*>(*caller_pc_ptr); |
821 | } |
822 | |
823 | uword* CallerFP(uword* fp) const { |
824 | ASSERT(fp != NULL); |
825 | uword* caller_fp_ptr = fp + kSavedCallerFpSlotFromFp; |
826 | // This may actually be uninitialized, by design (see class comment above). |
827 | MSAN_UNPOISON(caller_fp_ptr, kWordSize); |
828 | ASAN_UNPOISON(caller_fp_ptr, kWordSize); |
829 | return reinterpret_cast<uword*>(*caller_fp_ptr); |
830 | } |
831 | |
832 | bool ValidFramePointer(uword* fp) const { |
833 | if (fp == NULL) { |
834 | return false; |
835 | } |
836 | uword cursor = reinterpret_cast<uword>(fp); |
837 | cursor += sizeof(fp); |
838 | bool r = (cursor >= lower_bound_) && (cursor < stack_upper_); |
839 | return r; |
840 | } |
841 | |
842 | ProfilerCounters* const counters_; |
843 | const uword stack_upper_; |
844 | const uword original_pc_; |
845 | const uword original_fp_; |
846 | const uword original_sp_; |
847 | uword lower_bound_; |
848 | }; |
849 | |
850 | static void CopyStackBuffer(Sample* sample, uword sp_addr) { |
851 | ASSERT(sample != NULL); |
852 | uword* sp = reinterpret_cast<uword*>(sp_addr); |
853 | uword* buffer = sample->GetStackBuffer(); |
854 | if (sp != NULL) { |
855 | for (intptr_t i = 0; i < Sample::kStackBufferSizeInWords; i++) { |
856 | MSAN_UNPOISON(sp, kWordSize); |
857 | ASAN_UNPOISON(sp, kWordSize); |
858 | buffer[i] = *sp; |
859 | sp++; |
860 | } |
861 | } |
862 | } |
863 | |
864 | #if defined(HOST_OS_WINDOWS) |
865 | // On Windows this code is synchronously executed from the thread interrupter |
866 | // thread. This means we can safely have a static fault_address. |
867 | static uword fault_address = 0; |
868 | static LONG GuardPageExceptionFilter(EXCEPTION_POINTERS* ep) { |
869 | fault_address = 0; |
870 | if (ep->ExceptionRecord->ExceptionCode != STATUS_GUARD_PAGE_VIOLATION) { |
871 | return EXCEPTION_CONTINUE_SEARCH; |
872 | } |
873 | // https://goo.gl/p5Fe10 |
874 | fault_address = ep->ExceptionRecord->ExceptionInformation[1]; |
875 | // Read access. |
876 | ASSERT(ep->ExceptionRecord->ExceptionInformation[0] == 0); |
877 | return EXCEPTION_EXECUTE_HANDLER; |
878 | } |
879 | #endif |
880 | |
881 | // All memory access done to collect the sample is performed in CollectSample. |
882 | static void CollectSample(Isolate* isolate, |
883 | bool exited_dart_code, |
884 | bool in_dart_code, |
885 | Sample* sample, |
886 | ProfilerNativeStackWalker* native_stack_walker, |
887 | ProfilerDartStackWalker* dart_stack_walker, |
888 | uword pc, |
889 | uword fp, |
890 | uword sp, |
891 | ProfilerCounters* counters) { |
892 | ASSERT(counters != NULL); |
893 | #if defined(HOST_OS_WINDOWS) |
894 | // Use structured exception handling to trap guard page access on Windows. |
895 | __try { |
896 | #endif |
897 | |
898 | if (in_dart_code) { |
899 | // We can only trust the stack pointer if we are executing Dart code. |
900 | // See http://dartbug.com/20421 for details. |
901 | CopyStackBuffer(sample, sp); |
902 | } |
903 | |
904 | if (FLAG_profile_vm) { |
905 | // Always walk the native stack collecting both native and Dart frames. |
906 | counters->stack_walker_native.fetch_add(1); |
907 | native_stack_walker->walk(); |
908 | } else if (StubCode::HasBeenInitialized() && exited_dart_code) { |
909 | counters->stack_walker_dart_exit.fetch_add(1); |
910 | // We have a valid exit frame info, use the Dart stack walker. |
911 | dart_stack_walker->walk(); |
912 | } else if (StubCode::HasBeenInitialized() && in_dart_code) { |
913 | counters->stack_walker_dart.fetch_add(1); |
914 | // We are executing Dart code. We have frame pointers. |
915 | dart_stack_walker->walk(); |
916 | } else { |
917 | counters->stack_walker_none.fetch_add(1); |
918 | sample->SetAt(0, pc); |
919 | } |
920 | |
921 | #if defined(HOST_OS_WINDOWS) |
922 | // Use structured exception handling to trap guard page access. |
923 | } __except (GuardPageExceptionFilter(GetExceptionInformation())) { // NOLINT |
924 | // Sample collection triggered a guard page fault: |
925 | // 1) discard entire sample. |
926 | sample->set_ignore_sample(true); |
927 | |
928 | // 2) Reenable guard bit on page that triggered the fault. |
929 | // https://goo.gl/5mCsXW |
930 | DWORD new_protect = PAGE_READWRITE | PAGE_GUARD; |
931 | DWORD old_protect = 0; |
932 | BOOL success = |
933 | VirtualProtect(reinterpret_cast<void*>(fault_address), |
934 | sizeof(fault_address), new_protect, &old_protect); |
935 | USE(success); |
936 | ASSERT(success); |
937 | ASSERT(old_protect == PAGE_READWRITE); |
938 | } |
939 | #endif |
940 | } |
941 | |
942 | static bool ValidateThreadStackBounds(uintptr_t fp, |
943 | uintptr_t sp, |
944 | uword stack_lower, |
945 | uword stack_upper) { |
946 | if (stack_lower >= stack_upper) { |
947 | // Stack boundary is invalid. |
948 | return false; |
949 | } |
950 | |
951 | if ((sp < stack_lower) || (sp >= stack_upper)) { |
952 | // Stack pointer is outside thread's stack boundary. |
953 | return false; |
954 | } |
955 | |
956 | if ((fp < stack_lower) || (fp >= stack_upper)) { |
957 | // Frame pointer is outside threads's stack boundary. |
958 | return false; |
959 | } |
960 | |
961 | return true; |
962 | } |
963 | |
964 | // Get |thread|'s stack boundary and verify that |sp| and |fp| are within |
965 | // it. Return |false| if anything looks suspicious. |
966 | static bool GetAndValidateThreadStackBounds(OSThread* os_thread, |
967 | Thread* thread, |
968 | uintptr_t fp, |
969 | uintptr_t sp, |
970 | uword* stack_lower, |
971 | uword* stack_upper) { |
972 | ASSERT(os_thread != NULL); |
973 | ASSERT(stack_lower != NULL); |
974 | ASSERT(stack_upper != NULL); |
975 | |
976 | #if defined(USING_SIMULATOR) |
977 | const bool use_simulator_stack_bounds = |
978 | thread != NULL && thread->IsExecutingDartCode(); |
979 | if (use_simulator_stack_bounds) { |
980 | Isolate* isolate = thread->isolate(); |
981 | ASSERT(isolate != NULL); |
982 | Simulator* simulator = isolate->simulator(); |
983 | *stack_lower = simulator->stack_limit(); |
984 | *stack_upper = simulator->stack_base(); |
985 | } |
986 | #else |
987 | const bool use_simulator_stack_bounds = false; |
988 | #endif // defined(USING_SIMULATOR) |
989 | |
990 | if (!use_simulator_stack_bounds) { |
991 | *stack_lower = os_thread->stack_limit(); |
992 | *stack_upper = os_thread->stack_base(); |
993 | } |
994 | |
995 | if ((*stack_lower == 0) || (*stack_upper == 0)) { |
996 | return false; |
997 | } |
998 | |
999 | if (!use_simulator_stack_bounds && (sp > *stack_lower)) { |
1000 | // The stack pointer gives us a tighter lower bound. |
1001 | *stack_lower = sp; |
1002 | } |
1003 | |
1004 | return ValidateThreadStackBounds(fp, sp, *stack_lower, *stack_upper); |
1005 | } |
1006 | |
1007 | // Some simple sanity checking of |pc|, |fp|, and |sp|. |
1008 | static bool InitialRegisterCheck(uintptr_t pc, uintptr_t fp, uintptr_t sp) { |
1009 | if ((sp == 0) || (fp == 0) || (pc == 0)) { |
1010 | // None of these registers should be zero. |
1011 | return false; |
1012 | } |
1013 | |
1014 | if (sp > fp) { |
1015 | // Assuming the stack grows down, we should never have a stack pointer above |
1016 | // the frame pointer. |
1017 | return false; |
1018 | } |
1019 | |
1020 | return true; |
1021 | } |
1022 | |
1023 | static Sample* SetupSample(Thread* thread, |
1024 | SampleBuffer* sample_buffer, |
1025 | ThreadId tid) { |
1026 | ASSERT(thread != NULL); |
1027 | Isolate* isolate = thread->isolate(); |
1028 | ASSERT(sample_buffer != NULL); |
1029 | Sample* sample = sample_buffer->ReserveSample(); |
1030 | sample->Init(isolate->main_port(), OS::GetCurrentMonotonicMicros(), tid); |
1031 | uword vm_tag = thread->vm_tag(); |
1032 | #if defined(USING_SIMULATOR) |
1033 | // When running in the simulator, the runtime entry function address |
1034 | // (stored as the vm tag) is the address of a redirect function. |
1035 | // Attempt to find the real runtime entry function address and use that. |
1036 | uword redirect_vm_tag = Simulator::FunctionForRedirect(vm_tag); |
1037 | if (redirect_vm_tag != 0) { |
1038 | vm_tag = redirect_vm_tag; |
1039 | } |
1040 | #endif |
1041 | sample->set_vm_tag(vm_tag); |
1042 | sample->set_user_tag(isolate->user_tag()); |
1043 | sample->set_thread_task(thread->task_kind()); |
1044 | return sample; |
1045 | } |
1046 | |
1047 | static Sample* SetupSampleNative(SampleBuffer* sample_buffer, ThreadId tid) { |
1048 | Sample* sample = sample_buffer->ReserveSample(); |
1049 | if (sample == NULL) { |
1050 | return NULL; |
1051 | } |
1052 | sample->Init(ILLEGAL_PORT, OS::GetCurrentMonotonicMicros(), tid); |
1053 | Thread* thread = Thread::Current(); |
1054 | |
1055 | // Note: setting thread task in order to be consistent with other samples. The |
1056 | // task kind is not used by NativeAllocationSampleFilter for filtering |
1057 | // purposes as some samples may be collected when no thread exists. |
1058 | if (thread != NULL) { |
1059 | sample->set_thread_task(thread->task_kind()); |
1060 | sample->set_vm_tag(thread->vm_tag()); |
1061 | } else { |
1062 | sample->set_vm_tag(VMTag::kEmbedderTagId); |
1063 | } |
1064 | return sample; |
1065 | } |
1066 | |
1067 | static bool CheckIsolate(Isolate* isolate) { |
1068 | if ((isolate == NULL) || (Dart::vm_isolate() == NULL)) { |
1069 | // No isolate. |
1070 | return false; |
1071 | } |
1072 | return isolate != Dart::vm_isolate(); |
1073 | } |
1074 | |
1075 | void Profiler::DumpStackTrace(void* context) { |
1076 | if (context == NULL) { |
1077 | DumpStackTrace(/*for_crash=*/true); |
1078 | return; |
1079 | } |
1080 | #if defined(HOST_OS_LINUX) || defined(HOST_OS_MACOS) || defined(HOST_OS_ANDROID) |
1081 | ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context); |
1082 | mcontext_t mcontext = ucontext->uc_mcontext; |
1083 | uword pc = SignalHandler::GetProgramCounter(mcontext); |
1084 | uword fp = SignalHandler::GetFramePointer(mcontext); |
1085 | uword sp = SignalHandler::GetCStackPointer(mcontext); |
1086 | DumpStackTrace(sp, fp, pc, /*for_crash=*/true); |
1087 | #elif defined(HOST_OS_WINDOWS) |
1088 | CONTEXT* ctx = reinterpret_cast<CONTEXT*>(context); |
1089 | #if defined(HOST_ARCH_IA32) |
1090 | uword pc = static_cast<uword>(ctx->Eip); |
1091 | uword fp = static_cast<uword>(ctx->Ebp); |
1092 | uword sp = static_cast<uword>(ctx->Esp); |
1093 | #elif defined(HOST_ARCH_X64) |
1094 | uword pc = static_cast<uword>(ctx->Rip); |
1095 | uword fp = static_cast<uword>(ctx->Rbp); |
1096 | uword sp = static_cast<uword>(ctx->Rsp); |
1097 | #else |
1098 | #error Unsupported architecture. |
1099 | #endif |
1100 | DumpStackTrace(sp, fp, pc, /*for_crash=*/true); |
1101 | #else |
1102 | // TODO(fschneider): Add support for more platforms. |
1103 | // Do nothing on unsupported platforms. |
1104 | #endif |
1105 | } |
1106 | |
1107 | void Profiler::DumpStackTrace(bool for_crash) { |
1108 | uintptr_t sp = OSThread::GetCurrentStackPointer(); |
1109 | uintptr_t fp = 0; |
1110 | uintptr_t pc = OS::GetProgramCounter(); |
1111 | |
1112 | COPY_FP_REGISTER(fp); |
1113 | |
1114 | DumpStackTrace(sp, fp, pc, for_crash); |
1115 | } |
1116 | |
1117 | void Profiler::DumpStackTrace(uword sp, uword fp, uword pc, bool for_crash) { |
1118 | if (for_crash) { |
1119 | // Allow only one stack trace to prevent recursively printing stack traces |
1120 | // if we hit an assert while printing the stack. |
1121 | static RelaxedAtomic<uintptr_t> started_dump = 0; |
1122 | if (started_dump.fetch_add(1u) != 0) { |
1123 | OS::PrintErr("Aborting re-entrant request for stack trace.\n" ); |
1124 | return; |
1125 | } |
1126 | } |
1127 | |
1128 | auto os_thread = OSThread::Current(); |
1129 | ASSERT(os_thread != nullptr); |
1130 | auto thread = Thread::Current(); // NULL if no current isolate. |
1131 | auto isolate = thread == nullptr ? nullptr : thread->isolate(); |
1132 | auto isolate_group = thread == nullptr ? nullptr : thread->isolate_group(); |
1133 | auto source = isolate_group == nullptr ? nullptr : isolate_group->source(); |
1134 | auto vm_source = |
1135 | Dart::vm_isolate() == nullptr ? nullptr : Dart::vm_isolate()->source(); |
1136 | const char* isolate_group_name = |
1137 | isolate_group == nullptr ? "(nil)" : isolate_group->source()->name; |
1138 | const char* isolate_name = isolate == nullptr ? "(nil)" : isolate->name(); |
1139 | |
1140 | OS::PrintErr("version=%s\n" , Version::String()); |
1141 | OS::PrintErr("pid=%" Pd ", thread=%" Pd |
1142 | ", isolate_group=%s(%p), isolate=%s(%p)\n" , |
1143 | static_cast<intptr_t>(OS::ProcessId()), |
1144 | OSThread::ThreadIdToIntPtr(os_thread->trace_id()), |
1145 | isolate_group_name, isolate_group, isolate_name, isolate); |
1146 | OS::PrintErr("isolate_instructions=%" Px ", vm_instructions=%" Px "\n" , |
1147 | source == nullptr |
1148 | ? 0 |
1149 | : reinterpret_cast<uword>(source->snapshot_instructions), |
1150 | vm_source == nullptr |
1151 | ? 0 |
1152 | : reinterpret_cast<uword>(vm_source->snapshot_instructions)); |
1153 | |
1154 | if (!InitialRegisterCheck(pc, fp, sp)) { |
1155 | OS::PrintErr("Stack dump aborted because InitialRegisterCheck failed.\n" ); |
1156 | return; |
1157 | } |
1158 | |
1159 | uword stack_lower = 0; |
1160 | uword stack_upper = 0; |
1161 | if (!GetAndValidateThreadStackBounds(os_thread, thread, fp, sp, &stack_lower, |
1162 | &stack_upper)) { |
1163 | OS::PrintErr( |
1164 | "Stack dump aborted because GetAndValidateThreadStackBounds failed.\n" ); |
1165 | return; |
1166 | } |
1167 | |
1168 | ProfilerNativeStackWalker native_stack_walker(&counters_, ILLEGAL_PORT, NULL, |
1169 | NULL, stack_lower, stack_upper, |
1170 | pc, fp, sp, |
1171 | /*skip_count=*/0); |
1172 | native_stack_walker.walk(); |
1173 | OS::PrintErr("-- End of DumpStackTrace\n" ); |
1174 | |
1175 | if (thread != nullptr) { |
1176 | if (thread->execution_state() == Thread::kThreadInNative) { |
1177 | TransitionNativeToVM transition(thread); |
1178 | StackFrame::DumpCurrentTrace(); |
1179 | } else if (thread->execution_state() == Thread::kThreadInVM) { |
1180 | StackFrame::DumpCurrentTrace(); |
1181 | } |
1182 | } |
1183 | } |
1184 | |
1185 | void Profiler::SampleAllocation(Thread* thread, intptr_t cid) { |
1186 | ASSERT(thread != NULL); |
1187 | OSThread* os_thread = thread->os_thread(); |
1188 | ASSERT(os_thread != NULL); |
1189 | Isolate* isolate = thread->isolate(); |
1190 | if (!CheckIsolate(isolate)) { |
1191 | return; |
1192 | } |
1193 | |
1194 | const bool exited_dart_code = thread->HasExitedDartCode(); |
1195 | |
1196 | SampleBuffer* sample_buffer = Profiler::sample_buffer(); |
1197 | if (sample_buffer == NULL) { |
1198 | // Profiler not initialized. |
1199 | return; |
1200 | } |
1201 | |
1202 | uintptr_t sp = OSThread::GetCurrentStackPointer(); |
1203 | uintptr_t fp = 0; |
1204 | uintptr_t pc = OS::GetProgramCounter(); |
1205 | |
1206 | COPY_FP_REGISTER(fp); |
1207 | |
1208 | uword stack_lower = 0; |
1209 | uword stack_upper = 0; |
1210 | |
1211 | if (!InitialRegisterCheck(pc, fp, sp)) { |
1212 | return; |
1213 | } |
1214 | |
1215 | if (!GetAndValidateThreadStackBounds(os_thread, thread, fp, sp, &stack_lower, |
1216 | &stack_upper)) { |
1217 | // Could not get stack boundary. |
1218 | return; |
1219 | } |
1220 | |
1221 | Sample* sample = SetupSample(thread, sample_buffer, os_thread->trace_id()); |
1222 | sample->SetAllocationCid(cid); |
1223 | |
1224 | if (FLAG_profile_vm_allocation) { |
1225 | ProfilerNativeStackWalker native_stack_walker( |
1226 | &counters_, (isolate != NULL) ? isolate->main_port() : ILLEGAL_PORT, |
1227 | sample, sample_buffer, stack_lower, stack_upper, pc, fp, sp); |
1228 | native_stack_walker.walk(); |
1229 | } else if (exited_dart_code) { |
1230 | ProfilerDartStackWalker dart_exit_stack_walker( |
1231 | thread, sample, sample_buffer, pc, fp, /* allocation_sample*/ true); |
1232 | dart_exit_stack_walker.walk(); |
1233 | } else { |
1234 | // Fall back. |
1235 | uintptr_t pc = OS::GetProgramCounter(); |
1236 | Sample* sample = SetupSample(thread, sample_buffer, os_thread->trace_id()); |
1237 | sample->SetAllocationCid(cid); |
1238 | sample->SetAt(0, pc); |
1239 | } |
1240 | } |
1241 | |
1242 | Sample* Profiler::SampleNativeAllocation(intptr_t skip_count, |
1243 | uword address, |
1244 | uintptr_t allocation_size) { |
1245 | AllocationSampleBuffer* sample_buffer = Profiler::allocation_sample_buffer(); |
1246 | if (sample_buffer == NULL) { |
1247 | return NULL; |
1248 | } |
1249 | |
1250 | uintptr_t sp = OSThread::GetCurrentStackPointer(); |
1251 | uintptr_t fp = 0; |
1252 | uintptr_t pc = OS::GetProgramCounter(); |
1253 | |
1254 | COPY_FP_REGISTER(fp); |
1255 | |
1256 | uword stack_lower = 0; |
1257 | uword stack_upper = 0; |
1258 | if (!InitialRegisterCheck(pc, fp, sp)) { |
1259 | counters_.failure_native_allocation_sample.fetch_add(1); |
1260 | return NULL; |
1261 | } |
1262 | |
1263 | if (!(OSThread::GetCurrentStackBounds(&stack_lower, &stack_upper) && |
1264 | ValidateThreadStackBounds(fp, sp, stack_lower, stack_upper))) { |
1265 | // Could not get stack boundary. |
1266 | counters_.failure_native_allocation_sample.fetch_add(1); |
1267 | return NULL; |
1268 | } |
1269 | |
1270 | OSThread* os_thread = OSThread::Current(); |
1271 | Sample* sample = SetupSampleNative(sample_buffer, os_thread->trace_id()); |
1272 | if (sample == NULL) { |
1273 | OS::PrintErr( |
1274 | "Native memory profile sample buffer is full because there are more " |
1275 | "than %" Pd |
1276 | " outstanding allocations. Not recording allocation " |
1277 | "0x%" Px " with size: %" Pu " bytes.\n" , |
1278 | sample_buffer->capacity(), address, allocation_size); |
1279 | return NULL; |
1280 | } |
1281 | |
1282 | sample->set_native_allocation_address(address); |
1283 | sample->set_native_allocation_size_bytes(allocation_size); |
1284 | |
1285 | ProfilerNativeStackWalker native_stack_walker( |
1286 | &counters_, ILLEGAL_PORT, sample, sample_buffer, stack_lower, stack_upper, |
1287 | pc, fp, sp, skip_count); |
1288 | |
1289 | native_stack_walker.walk(); |
1290 | |
1291 | return sample; |
1292 | } |
1293 | |
1294 | void Profiler::SampleThreadSingleFrame(Thread* thread, uintptr_t pc) { |
1295 | ASSERT(thread != NULL); |
1296 | OSThread* os_thread = thread->os_thread(); |
1297 | ASSERT(os_thread != NULL); |
1298 | Isolate* isolate = thread->isolate(); |
1299 | |
1300 | SampleBuffer* sample_buffer = Profiler::sample_buffer(); |
1301 | if (sample_buffer == NULL) { |
1302 | // Profiler not initialized. |
1303 | return; |
1304 | } |
1305 | |
1306 | // Setup sample. |
1307 | Sample* sample = SetupSample(thread, sample_buffer, os_thread->trace_id()); |
1308 | // Increment counter for vm tag. |
1309 | VMTagCounters* counters = isolate->vm_tag_counters(); |
1310 | ASSERT(counters != NULL); |
1311 | if (thread->IsMutatorThread()) { |
1312 | counters->Increment(sample->vm_tag()); |
1313 | } |
1314 | |
1315 | // Write the single pc value. |
1316 | sample->SetAt(0, pc); |
1317 | } |
1318 | |
1319 | void Profiler::SampleThread(Thread* thread, |
1320 | const InterruptedThreadState& state) { |
1321 | ASSERT(thread != NULL); |
1322 | OSThread* os_thread = thread->os_thread(); |
1323 | ASSERT(os_thread != NULL); |
1324 | Isolate* isolate = thread->isolate(); |
1325 | |
1326 | // Thread is not doing VM work. |
1327 | if (thread->task_kind() == Thread::kUnknownTask) { |
1328 | counters_.bail_out_unknown_task.fetch_add(1); |
1329 | return; |
1330 | } |
1331 | |
1332 | if (StubCode::HasBeenInitialized() && StubCode::InJumpToFrameStub(state.pc)) { |
1333 | // The JumpToFrame stub manually adjusts the stack pointer, frame |
1334 | // pointer, and some isolate state. It is not safe to walk the |
1335 | // stack when executing this stub. |
1336 | counters_.bail_out_jump_to_exception_handler.fetch_add(1); |
1337 | return; |
1338 | } |
1339 | |
1340 | const bool in_dart_code = thread->IsExecutingDartCode(); |
1341 | |
1342 | uintptr_t sp = 0; |
1343 | uintptr_t fp = state.fp; |
1344 | uintptr_t pc = state.pc; |
1345 | #if defined(USING_SIMULATOR) |
1346 | Simulator* simulator = NULL; |
1347 | #endif |
1348 | |
1349 | if (in_dart_code) { |
1350 | // If we're in Dart code, use the Dart stack pointer. |
1351 | #if defined(USING_SIMULATOR) |
1352 | simulator = isolate->simulator(); |
1353 | sp = simulator->get_register(SPREG); |
1354 | fp = simulator->get_register(FPREG); |
1355 | pc = simulator->get_pc(); |
1356 | #else |
1357 | sp = state.dsp; |
1358 | #endif |
1359 | } else { |
1360 | // If we're in runtime code, use the C stack pointer. |
1361 | sp = state.csp; |
1362 | } |
1363 | |
1364 | if (!CheckIsolate(isolate)) { |
1365 | counters_.bail_out_check_isolate.fetch_add(1); |
1366 | return; |
1367 | } |
1368 | |
1369 | if (thread->IsMutatorThread()) { |
1370 | if (isolate->IsDeoptimizing()) { |
1371 | counters_.single_frame_sample_deoptimizing.fetch_add(1); |
1372 | SampleThreadSingleFrame(thread, pc); |
1373 | return; |
1374 | } |
1375 | if (isolate->group()->compaction_in_progress()) { |
1376 | // The Dart stack isn't fully walkable. |
1377 | SampleThreadSingleFrame(thread, pc); |
1378 | return; |
1379 | } |
1380 | } |
1381 | |
1382 | if (!InitialRegisterCheck(pc, fp, sp)) { |
1383 | counters_.single_frame_sample_register_check.fetch_add(1); |
1384 | SampleThreadSingleFrame(thread, pc); |
1385 | return; |
1386 | } |
1387 | |
1388 | uword stack_lower = 0; |
1389 | uword stack_upper = 0; |
1390 | if (!GetAndValidateThreadStackBounds(os_thread, thread, fp, sp, &stack_lower, |
1391 | &stack_upper)) { |
1392 | counters_.single_frame_sample_get_and_validate_stack_bounds.fetch_add(1); |
1393 | // Could not get stack boundary. |
1394 | SampleThreadSingleFrame(thread, pc); |
1395 | return; |
1396 | } |
1397 | |
1398 | // At this point we have a valid stack boundary for this isolate and |
1399 | // know that our initial stack and frame pointers are within the boundary. |
1400 | SampleBuffer* sample_buffer = Profiler::sample_buffer(); |
1401 | if (sample_buffer == NULL) { |
1402 | // Profiler not initialized. |
1403 | return; |
1404 | } |
1405 | |
1406 | // Setup sample. |
1407 | Sample* sample = SetupSample(thread, sample_buffer, os_thread->trace_id()); |
1408 | // Increment counter for vm tag. |
1409 | VMTagCounters* counters = isolate->vm_tag_counters(); |
1410 | ASSERT(counters != NULL); |
1411 | if (thread->IsMutatorThread()) { |
1412 | counters->Increment(sample->vm_tag()); |
1413 | } |
1414 | |
1415 | ProfilerNativeStackWalker native_stack_walker( |
1416 | &counters_, (isolate != NULL) ? isolate->main_port() : ILLEGAL_PORT, |
1417 | sample, sample_buffer, stack_lower, stack_upper, pc, fp, sp); |
1418 | const bool exited_dart_code = thread->HasExitedDartCode(); |
1419 | ProfilerDartStackWalker dart_stack_walker(thread, sample, sample_buffer, pc, |
1420 | fp, /* allocation_sample*/ false); |
1421 | |
1422 | // All memory access is done inside CollectSample. |
1423 | CollectSample(isolate, exited_dart_code, in_dart_code, sample, |
1424 | &native_stack_walker, &dart_stack_walker, pc, fp, sp, |
1425 | &counters_); |
1426 | } |
1427 | |
1428 | CodeDescriptor::CodeDescriptor(const AbstractCode code) : code_(code) {} |
1429 | |
1430 | uword CodeDescriptor::Start() const { |
1431 | return code_.PayloadStart(); |
1432 | } |
1433 | |
1434 | uword CodeDescriptor::Size() const { |
1435 | return code_.Size(); |
1436 | } |
1437 | |
1438 | int64_t CodeDescriptor::CompileTimestamp() const { |
1439 | return code_.compile_timestamp(); |
1440 | } |
1441 | |
1442 | CodeLookupTable::CodeLookupTable(Thread* thread) { |
1443 | Build(thread); |
1444 | } |
1445 | |
1446 | class CodeLookupTableBuilder : public ObjectVisitor { |
1447 | public: |
1448 | explicit CodeLookupTableBuilder(CodeLookupTable* table) : table_(table) { |
1449 | ASSERT(table_ != NULL); |
1450 | } |
1451 | |
1452 | ~CodeLookupTableBuilder() {} |
1453 | |
1454 | void VisitObject(ObjectPtr raw_obj) { |
1455 | if (raw_obj->IsCode()) { |
1456 | table_->Add(Code::Handle(Code::RawCast(raw_obj))); |
1457 | } else if (raw_obj->IsBytecode()) { |
1458 | table_->Add(Bytecode::Handle(Bytecode::RawCast(raw_obj))); |
1459 | } |
1460 | } |
1461 | |
1462 | private: |
1463 | CodeLookupTable* table_; |
1464 | }; |
1465 | |
1466 | void CodeLookupTable::Build(Thread* thread) { |
1467 | ASSERT(thread != NULL); |
1468 | Isolate* isolate = thread->isolate(); |
1469 | ASSERT(isolate != NULL); |
1470 | Isolate* vm_isolate = Dart::vm_isolate(); |
1471 | ASSERT(vm_isolate != NULL); |
1472 | |
1473 | // Clear. |
1474 | code_objects_.Clear(); |
1475 | |
1476 | // Add all found Code objects. |
1477 | { |
1478 | HeapIterationScope iteration(thread); |
1479 | CodeLookupTableBuilder cltb(this); |
1480 | iteration.IterateVMIsolateObjects(&cltb); |
1481 | iteration.IterateOldObjects(&cltb); |
1482 | } |
1483 | |
1484 | // Sort by entry. |
1485 | code_objects_.Sort(CodeDescriptor::Compare); |
1486 | |
1487 | #if defined(DEBUG) |
1488 | if (length() <= 1) { |
1489 | return; |
1490 | } |
1491 | ASSERT(FindCode(0) == NULL); |
1492 | ASSERT(FindCode(~0) == NULL); |
1493 | // Sanity check that we don't have duplicate entries and that the entries |
1494 | // are sorted. |
1495 | for (intptr_t i = 0; i < length() - 1; i++) { |
1496 | const CodeDescriptor* a = At(i); |
1497 | const CodeDescriptor* b = At(i + 1); |
1498 | ASSERT(a->Start() < b->Start()); |
1499 | ASSERT(FindCode(a->Start()) == a); |
1500 | ASSERT(FindCode(b->Start()) == b); |
1501 | ASSERT(FindCode(a->Start() + a->Size() - 1) == a); |
1502 | ASSERT(FindCode(b->Start() + b->Size() - 1) == b); |
1503 | } |
1504 | #endif |
1505 | } |
1506 | |
1507 | void CodeLookupTable::Add(const Object& code) { |
1508 | ASSERT(!code.IsNull()); |
1509 | ASSERT(code.IsCode() || code.IsBytecode()); |
1510 | CodeDescriptor* cd = new CodeDescriptor(AbstractCode(code.raw())); |
1511 | code_objects_.Add(cd); |
1512 | } |
1513 | |
1514 | const CodeDescriptor* CodeLookupTable::FindCode(uword pc) const { |
1515 | intptr_t first = 0; |
1516 | intptr_t count = length(); |
1517 | while (count > 0) { |
1518 | intptr_t current = first; |
1519 | intptr_t step = count / 2; |
1520 | current += step; |
1521 | const CodeDescriptor* cd = At(current); |
1522 | if (pc >= cd->Start()) { |
1523 | first = ++current; |
1524 | count -= step + 1; |
1525 | } else { |
1526 | count = step; |
1527 | } |
1528 | } |
1529 | // First points to the first code object whose entry is greater than PC. |
1530 | // That means the code object we need to check is first - 1. |
1531 | if (first == 0) { |
1532 | return NULL; |
1533 | } |
1534 | first--; |
1535 | ASSERT(first >= 0); |
1536 | ASSERT(first < length()); |
1537 | const CodeDescriptor* cd = At(first); |
1538 | if (cd->Contains(pc)) { |
1539 | return cd; |
1540 | } |
1541 | return NULL; |
1542 | } |
1543 | |
1544 | ProcessedSampleBuffer* SampleBuffer::BuildProcessedSampleBuffer( |
1545 | SampleFilter* filter) { |
1546 | ASSERT(filter != NULL); |
1547 | Thread* thread = Thread::Current(); |
1548 | Zone* zone = thread->zone(); |
1549 | |
1550 | ProcessedSampleBuffer* buffer = new (zone) ProcessedSampleBuffer(); |
1551 | |
1552 | const intptr_t length = capacity(); |
1553 | for (intptr_t i = 0; i < length; i++) { |
1554 | Sample* sample = At(i); |
1555 | if (sample->ignore_sample()) { |
1556 | // Bad sample. |
1557 | continue; |
1558 | } |
1559 | if (!sample->head_sample()) { |
1560 | // An inner sample in a chain of samples. |
1561 | continue; |
1562 | } |
1563 | // If we're requesting all the native allocation samples, we don't care |
1564 | // whether or not we're in the same isolate as the sample. |
1565 | if (sample->port() != filter->port()) { |
1566 | // Another isolate. |
1567 | continue; |
1568 | } |
1569 | if (sample->timestamp() == 0) { |
1570 | // Empty. |
1571 | continue; |
1572 | } |
1573 | if (sample->At(0) == 0) { |
1574 | // No frames. |
1575 | continue; |
1576 | } |
1577 | if (!filter->TimeFilterSample(sample)) { |
1578 | // Did not pass time filter. |
1579 | continue; |
1580 | } |
1581 | if (!filter->TaskFilterSample(sample)) { |
1582 | // Did not pass task filter. |
1583 | continue; |
1584 | } |
1585 | if (!filter->FilterSample(sample)) { |
1586 | // Did not pass filter. |
1587 | continue; |
1588 | } |
1589 | buffer->Add(BuildProcessedSample(sample, buffer->code_lookup_table())); |
1590 | } |
1591 | return buffer; |
1592 | } |
1593 | |
1594 | ProcessedSample* SampleBuffer::BuildProcessedSample( |
1595 | Sample* sample, |
1596 | const CodeLookupTable& clt) { |
1597 | Thread* thread = Thread::Current(); |
1598 | Zone* zone = thread->zone(); |
1599 | |
1600 | ProcessedSample* processed_sample = new (zone) ProcessedSample(); |
1601 | |
1602 | // Copy state bits from sample. |
1603 | processed_sample->set_native_allocation_size_bytes( |
1604 | sample->native_allocation_size_bytes()); |
1605 | processed_sample->set_timestamp(sample->timestamp()); |
1606 | processed_sample->set_tid(sample->tid()); |
1607 | processed_sample->set_vm_tag(sample->vm_tag()); |
1608 | processed_sample->set_user_tag(sample->user_tag()); |
1609 | if (sample->is_allocation_sample()) { |
1610 | processed_sample->set_allocation_cid(sample->allocation_cid()); |
1611 | } |
1612 | processed_sample->set_first_frame_executing(!sample->exit_frame_sample()); |
1613 | |
1614 | // Copy stack trace from sample(s). |
1615 | bool truncated = false; |
1616 | Sample* current = sample; |
1617 | while (current != NULL) { |
1618 | for (intptr_t i = 0; i < kSampleSize; i++) { |
1619 | if (current->At(i) == 0) { |
1620 | break; |
1621 | } |
1622 | processed_sample->Add(current->At(i)); |
1623 | } |
1624 | |
1625 | truncated = truncated || current->truncated_trace(); |
1626 | current = Next(current); |
1627 | } |
1628 | |
1629 | if (!sample->exit_frame_sample()) { |
1630 | processed_sample->FixupCaller(clt, sample->pc_marker(), |
1631 | sample->GetStackBuffer()); |
1632 | } |
1633 | |
1634 | processed_sample->set_truncated(truncated); |
1635 | return processed_sample; |
1636 | } |
1637 | |
1638 | Sample* SampleBuffer::Next(Sample* sample) { |
1639 | if (!sample->is_continuation_sample()) return NULL; |
1640 | Sample* next_sample = At(sample->continuation_index()); |
1641 | // Sanity check. |
1642 | ASSERT(sample != next_sample); |
1643 | // Detect invalid chaining. |
1644 | if (sample->port() != next_sample->port()) { |
1645 | return NULL; |
1646 | } |
1647 | if (sample->timestamp() != next_sample->timestamp()) { |
1648 | return NULL; |
1649 | } |
1650 | if (sample->tid() != next_sample->tid()) { |
1651 | return NULL; |
1652 | } |
1653 | return next_sample; |
1654 | } |
1655 | |
1656 | ProcessedSample::ProcessedSample() |
1657 | : pcs_(kSampleSize), |
1658 | timestamp_(0), |
1659 | vm_tag_(0), |
1660 | user_tag_(0), |
1661 | allocation_cid_(-1), |
1662 | truncated_(false), |
1663 | timeline_code_trie_(nullptr), |
1664 | timeline_function_trie_(nullptr) {} |
1665 | |
1666 | void ProcessedSample::FixupCaller(const CodeLookupTable& clt, |
1667 | uword pc_marker, |
1668 | uword* stack_buffer) { |
1669 | const CodeDescriptor* cd = clt.FindCode(At(0)); |
1670 | if (cd == NULL) { |
1671 | // No Dart code. |
1672 | return; |
1673 | } |
1674 | if (cd->CompileTimestamp() > timestamp()) { |
1675 | // Code compiled after sample. Ignore. |
1676 | return; |
1677 | } |
1678 | CheckForMissingDartFrame(clt, cd, pc_marker, stack_buffer); |
1679 | } |
1680 | |
1681 | void ProcessedSample::CheckForMissingDartFrame(const CodeLookupTable& clt, |
1682 | const CodeDescriptor* cd, |
1683 | uword pc_marker, |
1684 | uword* stack_buffer) { |
1685 | ASSERT(cd != NULL); |
1686 | if (cd->code().IsBytecode()) { |
1687 | // Bytecode frame build is atomic from the profiler's perspective: no |
1688 | // missing frame. |
1689 | return; |
1690 | } |
1691 | const Code& code = Code::Handle(Code::RawCast(cd->code().raw())); |
1692 | ASSERT(!code.IsNull()); |
1693 | // Some stubs (and intrinsics) do not push a frame onto the stack leaving |
1694 | // the frame pointer in the caller. |
1695 | // |
1696 | // PC -> STUB |
1697 | // FP -> DART3 <-+ |
1698 | // DART2 <-| <- TOP FRAME RETURN ADDRESS. |
1699 | // DART1 <-| |
1700 | // ..... |
1701 | // |
1702 | // In this case, traversing the linked stack frames will not collect a PC |
1703 | // inside DART3. The stack will incorrectly be: STUB, DART2, DART1. |
1704 | // In Dart code, after pushing the FP onto the stack, an IP in the current |
1705 | // function is pushed onto the stack as well. This stack slot is called |
1706 | // the PC marker. We can use the PC marker to insert DART3 into the stack |
1707 | // so that it will correctly be: STUB, DART3, DART2, DART1. Note the |
1708 | // inserted PC may not accurately reflect the true return address into DART3. |
1709 | |
1710 | // The pc marker is our current best guess of a return address. |
1711 | uword return_address = pc_marker; |
1712 | |
1713 | // Attempt to find a better return address. |
1714 | ReturnAddressLocator ral(At(0), stack_buffer, code); |
1715 | |
1716 | if (!ral.LocateReturnAddress(&return_address)) { |
1717 | ASSERT(return_address == pc_marker); |
1718 | if (code.GetPrologueOffset() == 0) { |
1719 | // Code has the prologue at offset 0. The frame is already setup and |
1720 | // can be trusted. |
1721 | return; |
1722 | } |
1723 | // Could not find a better return address than the pc_marker. |
1724 | if (code.ContainsInstructionAt(return_address)) { |
1725 | // PC marker is in the same code as pc, no missing frame. |
1726 | return; |
1727 | } |
1728 | } |
1729 | |
1730 | if (clt.FindCode(return_address) == NULL) { |
1731 | // Return address is not from a Dart code object. Do not insert. |
1732 | return; |
1733 | } |
1734 | |
1735 | if (return_address != 0) { |
1736 | InsertAt(1, return_address); |
1737 | } |
1738 | } |
1739 | |
1740 | ProcessedSampleBuffer::ProcessedSampleBuffer() |
1741 | : code_lookup_table_(new CodeLookupTable(Thread::Current())) { |
1742 | ASSERT(code_lookup_table_ != NULL); |
1743 | } |
1744 | |
1745 | #endif // !PRODUCT |
1746 | |
1747 | } // namespace dart |
1748 | |