| 1 | // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "vm/thread.h" |
| 6 | |
| 7 | #include "vm/dart_api_state.h" |
| 8 | #include "vm/growable_array.h" |
| 9 | #include "vm/heap/safepoint.h" |
| 10 | #include "vm/isolate.h" |
| 11 | #include "vm/json_stream.h" |
| 12 | #include "vm/lockers.h" |
| 13 | #include "vm/log.h" |
| 14 | #include "vm/message_handler.h" |
| 15 | #include "vm/native_entry.h" |
| 16 | #include "vm/object.h" |
| 17 | #include "vm/os_thread.h" |
| 18 | #include "vm/profiler.h" |
| 19 | #include "vm/runtime_entry.h" |
| 20 | #include "vm/stub_code.h" |
| 21 | #include "vm/symbols.h" |
| 22 | #include "vm/thread_interrupter.h" |
| 23 | #include "vm/thread_registry.h" |
| 24 | #include "vm/timeline.h" |
| 25 | #include "vm/zone.h" |
| 26 | |
| 27 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 28 | #include "vm/ffi_callback_trampolines.h" |
| 29 | #endif // !defined(DART_PRECOMPILED_RUNTIME) |
| 30 | |
| 31 | namespace dart { |
| 32 | |
| 33 | #if !defined(PRODUCT) |
| 34 | DECLARE_FLAG(bool, trace_service); |
| 35 | DECLARE_FLAG(bool, trace_service_verbose); |
| 36 | #endif // !defined(PRODUCT) |
| 37 | |
| 38 | Thread::~Thread() { |
| 39 | // We should cleanly exit any isolate before destruction. |
| 40 | ASSERT(isolate_ == NULL); |
| 41 | ASSERT(store_buffer_block_ == NULL); |
| 42 | ASSERT(marking_stack_block_ == NULL); |
| 43 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 44 | delete interpreter_; |
| 45 | interpreter_ = nullptr; |
| 46 | #endif |
| 47 | // There should be no top api scopes at this point. |
| 48 | ASSERT(api_top_scope() == NULL); |
| 49 | // Delete the resusable api scope if there is one. |
| 50 | if (api_reusable_scope_ != nullptr) { |
| 51 | delete api_reusable_scope_; |
| 52 | api_reusable_scope_ = NULL; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | #if defined(DEBUG) |
| 57 | #define REUSABLE_HANDLE_SCOPE_INIT(object) \ |
| 58 | reusable_##object##_handle_scope_active_(false), |
| 59 | #else |
| 60 | #define REUSABLE_HANDLE_SCOPE_INIT(object) |
| 61 | #endif // defined(DEBUG) |
| 62 | |
| 63 | #define REUSABLE_HANDLE_INITIALIZERS(object) object##_handle_(NULL), |
| 64 | |
| 65 | Thread::Thread(bool is_vm_isolate) |
| 66 | : ThreadState(false), |
| 67 | stack_limit_(0), |
| 68 | write_barrier_mask_(ObjectLayout::kGenerationalBarrierMask), |
| 69 | isolate_(NULL), |
| 70 | dispatch_table_array_(NULL), |
| 71 | saved_stack_limit_(0), |
| 72 | stack_overflow_flags_(0), |
| 73 | heap_(NULL), |
| 74 | top_exit_frame_info_(0), |
| 75 | store_buffer_block_(NULL), |
| 76 | marking_stack_block_(NULL), |
| 77 | vm_tag_(0), |
| 78 | async_stack_trace_(StackTrace::null()), |
| 79 | unboxed_int64_runtime_arg_(0), |
| 80 | active_exception_(Object::null()), |
| 81 | active_stacktrace_(Object::null()), |
| 82 | global_object_pool_(ObjectPool::null()), |
| 83 | resume_pc_(0), |
| 84 | execution_state_(kThreadInNative), |
| 85 | safepoint_state_(0), |
| 86 | ffi_callback_code_(GrowableObjectArray::null()), |
| 87 | api_top_scope_(NULL), |
| 88 | task_kind_(kUnknownTask), |
| 89 | dart_stream_(NULL), |
| 90 | thread_lock_(), |
| 91 | api_reusable_scope_(NULL), |
| 92 | no_callback_scope_depth_(0), |
| 93 | #if defined(DEBUG) |
| 94 | no_safepoint_scope_depth_(0), |
| 95 | #endif |
| 96 | reusable_handles_(), |
| 97 | defer_oob_messages_count_(0), |
| 98 | deferred_interrupts_mask_(0), |
| 99 | deferred_interrupts_(0), |
| 100 | stack_overflow_count_(0), |
| 101 | hierarchy_info_(NULL), |
| 102 | type_usage_info_(NULL), |
| 103 | pending_functions_(GrowableObjectArray::null()), |
| 104 | sticky_error_(Error::null()), |
| 105 | REUSABLE_HANDLE_LIST(REUSABLE_HANDLE_INITIALIZERS) |
| 106 | REUSABLE_HANDLE_LIST(REUSABLE_HANDLE_SCOPE_INIT) |
| 107 | #if defined(USING_SAFE_STACK) |
| 108 | saved_safestack_limit_(0), |
| 109 | #endif |
| 110 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 111 | interpreter_(nullptr), |
| 112 | #endif |
| 113 | next_(NULL) { |
| 114 | #if defined(SUPPORT_TIMELINE) |
| 115 | dart_stream_ = Timeline::GetDartStream(); |
| 116 | ASSERT(dart_stream_ != NULL); |
| 117 | #endif |
| 118 | #define DEFAULT_INIT(type_name, member_name, init_expr, default_init_value) \ |
| 119 | member_name = default_init_value; |
| 120 | CACHED_CONSTANTS_LIST(DEFAULT_INIT) |
| 121 | #undef DEFAULT_INIT |
| 122 | |
| 123 | #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64) || \ |
| 124 | defined(TARGET_ARCH_X64) |
| 125 | for (intptr_t i = 0; i < kNumberOfDartAvailableCpuRegs; ++i) { |
| 126 | write_barrier_wrappers_entry_points_[i] = 0; |
| 127 | } |
| 128 | #endif |
| 129 | |
| 130 | #define DEFAULT_INIT(name) name##_entry_point_ = 0; |
| 131 | RUNTIME_ENTRY_LIST(DEFAULT_INIT) |
| 132 | #undef DEFAULT_INIT |
| 133 | |
| 134 | #define DEFAULT_INIT(returntype, name, ...) name##_entry_point_ = 0; |
| 135 | LEAF_RUNTIME_ENTRY_LIST(DEFAULT_INIT) |
| 136 | #undef DEFAULT_INIT |
| 137 | |
| 138 | // We cannot initialize the VM constants here for the vm isolate thread |
| 139 | // due to boot strapping issues. |
| 140 | if (!is_vm_isolate) { |
| 141 | InitVMConstants(); |
| 142 | } |
| 143 | } |
| 144 | |
| 145 | static const double double_nan_constant = NAN; |
| 146 | |
| 147 | static const struct ALIGN16 { |
| 148 | uint64_t a; |
| 149 | uint64_t b; |
| 150 | } double_negate_constant = {0x8000000000000000ULL, 0x8000000000000000ULL}; |
| 151 | |
| 152 | static const struct ALIGN16 { |
| 153 | uint64_t a; |
| 154 | uint64_t b; |
| 155 | } double_abs_constant = {0x7FFFFFFFFFFFFFFFULL, 0x7FFFFFFFFFFFFFFFULL}; |
| 156 | |
| 157 | static const struct ALIGN16 { |
| 158 | uint32_t a; |
| 159 | uint32_t b; |
| 160 | uint32_t c; |
| 161 | uint32_t d; |
| 162 | } float_not_constant = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}; |
| 163 | |
| 164 | static const struct ALIGN16 { |
| 165 | uint32_t a; |
| 166 | uint32_t b; |
| 167 | uint32_t c; |
| 168 | uint32_t d; |
| 169 | } float_negate_constant = {0x80000000, 0x80000000, 0x80000000, 0x80000000}; |
| 170 | |
| 171 | static const struct ALIGN16 { |
| 172 | uint32_t a; |
| 173 | uint32_t b; |
| 174 | uint32_t c; |
| 175 | uint32_t d; |
| 176 | } float_absolute_constant = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; |
| 177 | |
| 178 | static const struct ALIGN16 { |
| 179 | uint32_t a; |
| 180 | uint32_t b; |
| 181 | uint32_t c; |
| 182 | uint32_t d; |
| 183 | } float_zerow_constant = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000}; |
| 184 | |
| 185 | void Thread::InitVMConstants() { |
| 186 | #define ASSERT_VM_HEAP(type_name, member_name, init_expr, default_init_value) \ |
| 187 | ASSERT((init_expr)->IsOldObject()); |
| 188 | CACHED_VM_OBJECTS_LIST(ASSERT_VM_HEAP) |
| 189 | #undef ASSERT_VM_HEAP |
| 190 | |
| 191 | #define INIT_VALUE(type_name, member_name, init_expr, default_init_value) \ |
| 192 | ASSERT(member_name == default_init_value); \ |
| 193 | member_name = (init_expr); |
| 194 | CACHED_CONSTANTS_LIST(INIT_VALUE) |
| 195 | #undef INIT_VALUE |
| 196 | |
| 197 | #if defined(TARGET_ARCH_ARM) || defined(TARGET_ARCH_ARM64) || \ |
| 198 | defined(TARGET_ARCH_X64) |
| 199 | for (intptr_t i = 0; i < kNumberOfDartAvailableCpuRegs; ++i) { |
| 200 | write_barrier_wrappers_entry_points_[i] = |
| 201 | StubCode::WriteBarrierWrappers().EntryPoint() + |
| 202 | i * kStoreBufferWrapperSize; |
| 203 | } |
| 204 | #endif |
| 205 | |
| 206 | #define INIT_VALUE(name) \ |
| 207 | ASSERT(name##_entry_point_ == 0); \ |
| 208 | name##_entry_point_ = k##name##RuntimeEntry.GetEntryPoint(); |
| 209 | RUNTIME_ENTRY_LIST(INIT_VALUE) |
| 210 | #undef INIT_VALUE |
| 211 | |
| 212 | #define INIT_VALUE(returntype, name, ...) \ |
| 213 | ASSERT(name##_entry_point_ == 0); \ |
| 214 | name##_entry_point_ = k##name##RuntimeEntry.GetEntryPoint(); |
| 215 | LEAF_RUNTIME_ENTRY_LIST(INIT_VALUE) |
| 216 | #undef INIT_VALUE |
| 217 | |
| 218 | // Setup the thread specific reusable handles. |
| 219 | #define REUSABLE_HANDLE_ALLOCATION(object) \ |
| 220 | this->object##_handle_ = this->AllocateReusableHandle<object>(); |
| 221 | REUSABLE_HANDLE_LIST(REUSABLE_HANDLE_ALLOCATION) |
| 222 | #undef REUSABLE_HANDLE_ALLOCATION |
| 223 | } |
| 224 | |
| 225 | #ifndef PRODUCT |
| 226 | // Collect information about each individual zone associated with this thread. |
| 227 | void Thread::PrintJSON(JSONStream* stream) const { |
| 228 | JSONObject jsobj(stream); |
| 229 | jsobj.AddProperty("type" , "_Thread" ); |
| 230 | jsobj.AddPropertyF("id" , "threads/%" Pd "" , |
| 231 | OSThread::ThreadIdToIntPtr(os_thread()->trace_id())); |
| 232 | jsobj.AddProperty("kind" , TaskKindToCString(task_kind())); |
| 233 | jsobj.AddPropertyF("_zoneHighWatermark" , "%" Pu "" , zone_high_watermark()); |
| 234 | jsobj.AddPropertyF("_zoneCapacity" , "%" Pu "" , current_zone_capacity()); |
| 235 | } |
| 236 | #endif |
| 237 | |
| 238 | GrowableObjectArrayPtr Thread::pending_functions() { |
| 239 | if (pending_functions_ == GrowableObjectArray::null()) { |
| 240 | pending_functions_ = GrowableObjectArray::New(Heap::kOld); |
| 241 | } |
| 242 | return pending_functions_; |
| 243 | } |
| 244 | |
| 245 | void Thread::clear_pending_functions() { |
| 246 | pending_functions_ = GrowableObjectArray::null(); |
| 247 | } |
| 248 | |
| 249 | void Thread::set_active_exception(const Object& value) { |
| 250 | active_exception_ = value.raw(); |
| 251 | } |
| 252 | |
| 253 | void Thread::set_active_stacktrace(const Object& value) { |
| 254 | active_stacktrace_ = value.raw(); |
| 255 | } |
| 256 | |
| 257 | ErrorPtr Thread::sticky_error() const { |
| 258 | return sticky_error_; |
| 259 | } |
| 260 | |
| 261 | void Thread::set_sticky_error(const Error& value) { |
| 262 | ASSERT(!value.IsNull()); |
| 263 | sticky_error_ = value.raw(); |
| 264 | } |
| 265 | |
| 266 | void Thread::ClearStickyError() { |
| 267 | sticky_error_ = Error::null(); |
| 268 | } |
| 269 | |
| 270 | ErrorPtr Thread::StealStickyError() { |
| 271 | NoSafepointScope no_safepoint; |
| 272 | ErrorPtr return_value = sticky_error_; |
| 273 | sticky_error_ = Error::null(); |
| 274 | return return_value; |
| 275 | } |
| 276 | |
| 277 | const char* Thread::TaskKindToCString(TaskKind kind) { |
| 278 | switch (kind) { |
| 279 | case kUnknownTask: |
| 280 | return "kUnknownTask" ; |
| 281 | case kMutatorTask: |
| 282 | return "kMutatorTask" ; |
| 283 | case kCompilerTask: |
| 284 | return "kCompilerTask" ; |
| 285 | case kSweeperTask: |
| 286 | return "kSweeperTask" ; |
| 287 | case kMarkerTask: |
| 288 | return "kMarkerTask" ; |
| 289 | default: |
| 290 | UNREACHABLE(); |
| 291 | return "" ; |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | StackTracePtr Thread::async_stack_trace() const { |
| 296 | return async_stack_trace_; |
| 297 | } |
| 298 | |
| 299 | void Thread::set_async_stack_trace(const StackTrace& stack_trace) { |
| 300 | ASSERT(!stack_trace.IsNull()); |
| 301 | async_stack_trace_ = stack_trace.raw(); |
| 302 | } |
| 303 | |
| 304 | void Thread::set_raw_async_stack_trace(StackTracePtr raw_stack_trace) { |
| 305 | async_stack_trace_ = raw_stack_trace; |
| 306 | } |
| 307 | |
| 308 | void Thread::clear_async_stack_trace() { |
| 309 | async_stack_trace_ = StackTrace::null(); |
| 310 | } |
| 311 | |
| 312 | bool Thread::EnterIsolate(Isolate* isolate) { |
| 313 | const bool kIsMutatorThread = true; |
| 314 | Thread* thread = isolate->ScheduleThread(kIsMutatorThread); |
| 315 | if (thread != NULL) { |
| 316 | ASSERT(thread->store_buffer_block_ == NULL); |
| 317 | ASSERT(thread->isolate() == isolate); |
| 318 | ASSERT(thread->isolate_group() == isolate->group()); |
| 319 | thread->FinishEntering(kMutatorTask); |
| 320 | return true; |
| 321 | } |
| 322 | return false; |
| 323 | } |
| 324 | |
| 325 | void Thread::ExitIsolate() { |
| 326 | Thread* thread = Thread::Current(); |
| 327 | ASSERT(thread != nullptr); |
| 328 | ASSERT(thread->IsMutatorThread()); |
| 329 | ASSERT(thread->isolate() != nullptr); |
| 330 | ASSERT(thread->isolate_group() != nullptr); |
| 331 | DEBUG_ASSERT(!thread->IsAnyReusableHandleScopeActive()); |
| 332 | |
| 333 | thread->PrepareLeaving(); |
| 334 | |
| 335 | Isolate* isolate = thread->isolate(); |
| 336 | thread->set_vm_tag(isolate->is_runnable() ? VMTag::kIdleTagId |
| 337 | : VMTag::kLoadWaitTagId); |
| 338 | const bool kIsMutatorThread = true; |
| 339 | isolate->UnscheduleThread(thread, kIsMutatorThread); |
| 340 | } |
| 341 | |
| 342 | bool Thread::EnterIsolateAsHelper(Isolate* isolate, |
| 343 | TaskKind kind, |
| 344 | bool bypass_safepoint) { |
| 345 | ASSERT(kind != kMutatorTask); |
| 346 | const bool kIsMutatorThread = false; |
| 347 | Thread* thread = isolate->ScheduleThread(kIsMutatorThread, bypass_safepoint); |
| 348 | if (thread != NULL) { |
| 349 | ASSERT(!thread->IsMutatorThread()); |
| 350 | ASSERT(thread->isolate() == isolate); |
| 351 | ASSERT(thread->isolate_group() == isolate->group()); |
| 352 | thread->FinishEntering(kind); |
| 353 | return true; |
| 354 | } |
| 355 | return false; |
| 356 | } |
| 357 | |
| 358 | void Thread::ExitIsolateAsHelper(bool bypass_safepoint) { |
| 359 | Thread* thread = Thread::Current(); |
| 360 | ASSERT(thread != nullptr); |
| 361 | ASSERT(!thread->IsMutatorThread()); |
| 362 | ASSERT(thread->isolate() != nullptr); |
| 363 | ASSERT(thread->isolate_group() != nullptr); |
| 364 | |
| 365 | thread->PrepareLeaving(); |
| 366 | |
| 367 | Isolate* isolate = thread->isolate(); |
| 368 | ASSERT(isolate != NULL); |
| 369 | const bool kIsMutatorThread = false; |
| 370 | isolate->UnscheduleThread(thread, kIsMutatorThread, bypass_safepoint); |
| 371 | } |
| 372 | |
| 373 | bool Thread::EnterIsolateGroupAsHelper(IsolateGroup* isolate_group, |
| 374 | TaskKind kind, |
| 375 | bool bypass_safepoint) { |
| 376 | ASSERT(kind != kMutatorTask); |
| 377 | Thread* thread = isolate_group->ScheduleThread(bypass_safepoint); |
| 378 | if (thread != NULL) { |
| 379 | ASSERT(!thread->IsMutatorThread()); |
| 380 | ASSERT(thread->isolate() == nullptr); |
| 381 | ASSERT(thread->isolate_group() == isolate_group); |
| 382 | thread->FinishEntering(kind); |
| 383 | return true; |
| 384 | } |
| 385 | return false; |
| 386 | } |
| 387 | |
| 388 | void Thread::ExitIsolateGroupAsHelper(bool bypass_safepoint) { |
| 389 | Thread* thread = Thread::Current(); |
| 390 | ASSERT(thread != nullptr); |
| 391 | ASSERT(!thread->IsMutatorThread()); |
| 392 | ASSERT(thread->isolate() == nullptr); |
| 393 | ASSERT(thread->isolate_group() != nullptr); |
| 394 | |
| 395 | thread->PrepareLeaving(); |
| 396 | |
| 397 | const bool kIsMutatorThread = false; |
| 398 | thread->isolate_group()->UnscheduleThread(thread, kIsMutatorThread, |
| 399 | bypass_safepoint); |
| 400 | } |
| 401 | |
| 402 | void Thread::ReleaseStoreBuffer() { |
| 403 | ASSERT(IsAtSafepoint()); |
| 404 | // Prevent scheduling another GC by ignoring the threshold. |
| 405 | ASSERT(store_buffer_block_ != NULL); |
| 406 | StoreBufferRelease(StoreBuffer::kIgnoreThreshold); |
| 407 | // Make sure to get an *empty* block; the isolate needs all entries |
| 408 | // at GC time. |
| 409 | // TODO(koda): Replace with an epilogue (PrepareAfterGC) that acquires. |
| 410 | store_buffer_block_ = isolate_group()->store_buffer()->PopEmptyBlock(); |
| 411 | } |
| 412 | |
| 413 | void Thread::SetStackLimit(uword limit) { |
| 414 | // The thread setting the stack limit is not necessarily the thread which |
| 415 | // the stack limit is being set on. |
| 416 | MonitorLocker ml(&thread_lock_); |
| 417 | if (!HasScheduledInterrupts()) { |
| 418 | // No interrupt pending, set stack_limit_ too. |
| 419 | stack_limit_ = limit; |
| 420 | } |
| 421 | saved_stack_limit_ = limit; |
| 422 | } |
| 423 | |
| 424 | void Thread::ClearStackLimit() { |
| 425 | SetStackLimit(~static_cast<uword>(0)); |
| 426 | } |
| 427 | |
| 428 | void Thread::ScheduleInterrupts(uword interrupt_bits) { |
| 429 | MonitorLocker ml(&thread_lock_); |
| 430 | ScheduleInterruptsLocked(interrupt_bits); |
| 431 | } |
| 432 | |
| 433 | void Thread::ScheduleInterruptsLocked(uword interrupt_bits) { |
| 434 | ASSERT(thread_lock_.IsOwnedByCurrentThread()); |
| 435 | ASSERT((interrupt_bits & ~kInterruptsMask) == 0); // Must fit in mask. |
| 436 | |
| 437 | // Check to see if any of the requested interrupts should be deferred. |
| 438 | uword defer_bits = interrupt_bits & deferred_interrupts_mask_; |
| 439 | if (defer_bits != 0) { |
| 440 | deferred_interrupts_ |= defer_bits; |
| 441 | interrupt_bits &= ~deferred_interrupts_mask_; |
| 442 | if (interrupt_bits == 0) { |
| 443 | return; |
| 444 | } |
| 445 | } |
| 446 | |
| 447 | if (stack_limit_ == saved_stack_limit_) { |
| 448 | stack_limit_ = (kInterruptStackLimit & ~kInterruptsMask) | interrupt_bits; |
| 449 | } else { |
| 450 | stack_limit_ = stack_limit_ | interrupt_bits; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | uword Thread::GetAndClearInterrupts() { |
| 455 | MonitorLocker ml(&thread_lock_); |
| 456 | if (stack_limit_ == saved_stack_limit_) { |
| 457 | return 0; // No interrupt was requested. |
| 458 | } |
| 459 | uword interrupt_bits = stack_limit_ & kInterruptsMask; |
| 460 | stack_limit_ = saved_stack_limit_; |
| 461 | return interrupt_bits; |
| 462 | } |
| 463 | |
| 464 | void Thread::DeferOOBMessageInterrupts() { |
| 465 | MonitorLocker ml(&thread_lock_); |
| 466 | defer_oob_messages_count_++; |
| 467 | if (defer_oob_messages_count_ > 1) { |
| 468 | // OOB message interrupts are already deferred. |
| 469 | return; |
| 470 | } |
| 471 | ASSERT(deferred_interrupts_mask_ == 0); |
| 472 | deferred_interrupts_mask_ = kMessageInterrupt; |
| 473 | |
| 474 | if (stack_limit_ != saved_stack_limit_) { |
| 475 | // Defer any interrupts which are currently pending. |
| 476 | deferred_interrupts_ = stack_limit_ & deferred_interrupts_mask_; |
| 477 | |
| 478 | // Clear deferrable interrupts, if present. |
| 479 | stack_limit_ = stack_limit_ & ~deferred_interrupts_mask_; |
| 480 | |
| 481 | if ((stack_limit_ & kInterruptsMask) == 0) { |
| 482 | // No other pending interrupts. Restore normal stack limit. |
| 483 | stack_limit_ = saved_stack_limit_; |
| 484 | } |
| 485 | } |
| 486 | #if !defined(PRODUCT) |
| 487 | if (FLAG_trace_service && FLAG_trace_service_verbose) { |
| 488 | OS::PrintErr("[+%" Pd64 "ms] Isolate %s deferring OOB interrupts\n" , |
| 489 | Dart::UptimeMillis(), isolate()->name()); |
| 490 | } |
| 491 | #endif // !defined(PRODUCT) |
| 492 | } |
| 493 | |
| 494 | void Thread::RestoreOOBMessageInterrupts() { |
| 495 | MonitorLocker ml(&thread_lock_); |
| 496 | defer_oob_messages_count_--; |
| 497 | if (defer_oob_messages_count_ > 0) { |
| 498 | return; |
| 499 | } |
| 500 | ASSERT(defer_oob_messages_count_ == 0); |
| 501 | ASSERT(deferred_interrupts_mask_ == kMessageInterrupt); |
| 502 | deferred_interrupts_mask_ = 0; |
| 503 | if (deferred_interrupts_ != 0) { |
| 504 | if (stack_limit_ == saved_stack_limit_) { |
| 505 | stack_limit_ = kInterruptStackLimit & ~kInterruptsMask; |
| 506 | } |
| 507 | stack_limit_ = stack_limit_ | deferred_interrupts_; |
| 508 | deferred_interrupts_ = 0; |
| 509 | } |
| 510 | #if !defined(PRODUCT) |
| 511 | if (FLAG_trace_service && FLAG_trace_service_verbose) { |
| 512 | OS::PrintErr("[+%" Pd64 "ms] Isolate %s restoring OOB interrupts\n" , |
| 513 | Dart::UptimeMillis(), isolate()->name()); |
| 514 | } |
| 515 | #endif // !defined(PRODUCT) |
| 516 | } |
| 517 | |
| 518 | ErrorPtr Thread::HandleInterrupts() { |
| 519 | uword interrupt_bits = GetAndClearInterrupts(); |
| 520 | if ((interrupt_bits & kVMInterrupt) != 0) { |
| 521 | CheckForSafepoint(); |
| 522 | if (isolate_group()->store_buffer()->Overflowed()) { |
| 523 | if (FLAG_verbose_gc) { |
| 524 | OS::PrintErr("Scavenge scheduled by store buffer overflow.\n" ); |
| 525 | } |
| 526 | heap()->CollectGarbage(Heap::kNew); |
| 527 | } |
| 528 | } |
| 529 | if ((interrupt_bits & kMessageInterrupt) != 0) { |
| 530 | MessageHandler::MessageStatus status = |
| 531 | isolate()->message_handler()->HandleOOBMessages(); |
| 532 | if (status != MessageHandler::kOK) { |
| 533 | // False result from HandleOOBMessages signals that the isolate should |
| 534 | // be terminating. |
| 535 | if (FLAG_trace_isolates) { |
| 536 | OS::PrintErr( |
| 537 | "[!] Terminating isolate due to OOB message:\n" |
| 538 | "\tisolate: %s\n" , |
| 539 | isolate()->name()); |
| 540 | } |
| 541 | NoSafepointScope no_safepoint; |
| 542 | ErrorPtr error = Thread::Current()->StealStickyError(); |
| 543 | ASSERT(error->IsUnwindError()); |
| 544 | return error; |
| 545 | } |
| 546 | } |
| 547 | return Error::null(); |
| 548 | } |
| 549 | |
| 550 | uword Thread::GetAndClearStackOverflowFlags() { |
| 551 | uword stack_overflow_flags = stack_overflow_flags_; |
| 552 | stack_overflow_flags_ = 0; |
| 553 | return stack_overflow_flags; |
| 554 | } |
| 555 | |
| 556 | void Thread::StoreBufferBlockProcess(StoreBuffer::ThresholdPolicy policy) { |
| 557 | StoreBufferRelease(policy); |
| 558 | StoreBufferAcquire(); |
| 559 | } |
| 560 | |
| 561 | void Thread::StoreBufferAddObject(ObjectPtr obj) { |
| 562 | ASSERT(this == Thread::Current()); |
| 563 | store_buffer_block_->Push(obj); |
| 564 | if (store_buffer_block_->IsFull()) { |
| 565 | StoreBufferBlockProcess(StoreBuffer::kCheckThreshold); |
| 566 | } |
| 567 | } |
| 568 | |
| 569 | void Thread::StoreBufferAddObjectGC(ObjectPtr obj) { |
| 570 | store_buffer_block_->Push(obj); |
| 571 | if (store_buffer_block_->IsFull()) { |
| 572 | StoreBufferBlockProcess(StoreBuffer::kIgnoreThreshold); |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | void Thread::StoreBufferRelease(StoreBuffer::ThresholdPolicy policy) { |
| 577 | StoreBufferBlock* block = store_buffer_block_; |
| 578 | store_buffer_block_ = NULL; |
| 579 | isolate_group()->store_buffer()->PushBlock(block, policy); |
| 580 | } |
| 581 | |
| 582 | void Thread::StoreBufferAcquire() { |
| 583 | store_buffer_block_ = isolate_group()->store_buffer()->PopNonFullBlock(); |
| 584 | } |
| 585 | |
| 586 | void Thread::MarkingStackBlockProcess() { |
| 587 | MarkingStackRelease(); |
| 588 | MarkingStackAcquire(); |
| 589 | } |
| 590 | |
| 591 | void Thread::DeferredMarkingStackBlockProcess() { |
| 592 | DeferredMarkingStackRelease(); |
| 593 | DeferredMarkingStackAcquire(); |
| 594 | } |
| 595 | |
| 596 | void Thread::MarkingStackAddObject(ObjectPtr obj) { |
| 597 | marking_stack_block_->Push(obj); |
| 598 | if (marking_stack_block_->IsFull()) { |
| 599 | MarkingStackBlockProcess(); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | void Thread::DeferredMarkingStackAddObject(ObjectPtr obj) { |
| 604 | deferred_marking_stack_block_->Push(obj); |
| 605 | if (deferred_marking_stack_block_->IsFull()) { |
| 606 | DeferredMarkingStackBlockProcess(); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | void Thread::MarkingStackRelease() { |
| 611 | MarkingStackBlock* block = marking_stack_block_; |
| 612 | marking_stack_block_ = NULL; |
| 613 | write_barrier_mask_ = ObjectLayout::kGenerationalBarrierMask; |
| 614 | isolate_group()->marking_stack()->PushBlock(block); |
| 615 | } |
| 616 | |
| 617 | void Thread::MarkingStackAcquire() { |
| 618 | marking_stack_block_ = isolate_group()->marking_stack()->PopEmptyBlock(); |
| 619 | write_barrier_mask_ = ObjectLayout::kGenerationalBarrierMask | |
| 620 | ObjectLayout::kIncrementalBarrierMask; |
| 621 | } |
| 622 | |
| 623 | void Thread::DeferredMarkingStackRelease() { |
| 624 | MarkingStackBlock* block = deferred_marking_stack_block_; |
| 625 | deferred_marking_stack_block_ = NULL; |
| 626 | isolate_group()->deferred_marking_stack()->PushBlock(block); |
| 627 | } |
| 628 | |
| 629 | void Thread::DeferredMarkingStackAcquire() { |
| 630 | deferred_marking_stack_block_ = |
| 631 | isolate_group()->deferred_marking_stack()->PopEmptyBlock(); |
| 632 | } |
| 633 | |
| 634 | bool Thread::CanCollectGarbage() const { |
| 635 | // We grow the heap instead of triggering a garbage collection when a |
| 636 | // thread is at a safepoint in the following situations : |
| 637 | // - background compiler thread finalizing and installing code |
| 638 | // - disassembly of the generated code is done after compilation |
| 639 | // So essentially we state that garbage collection is possible only |
| 640 | // when we are not at a safepoint. |
| 641 | return !IsAtSafepoint(); |
| 642 | } |
| 643 | |
| 644 | bool Thread::IsExecutingDartCode() const { |
| 645 | return (top_exit_frame_info() == 0) && VMTag::IsDartTag(vm_tag()); |
| 646 | } |
| 647 | |
| 648 | bool Thread::HasExitedDartCode() const { |
| 649 | return (top_exit_frame_info() != 0) && !VMTag::IsDartTag(vm_tag()); |
| 650 | } |
| 651 | |
| 652 | template <class C> |
| 653 | C* Thread::AllocateReusableHandle() { |
| 654 | C* handle = reinterpret_cast<C*>(reusable_handles_.AllocateScopedHandle()); |
| 655 | C::initializeHandle(handle, C::null()); |
| 656 | return handle; |
| 657 | } |
| 658 | |
| 659 | void Thread::ClearReusableHandles() { |
| 660 | #define CLEAR_REUSABLE_HANDLE(object) *object##_handle_ = object::null(); |
| 661 | REUSABLE_HANDLE_LIST(CLEAR_REUSABLE_HANDLE) |
| 662 | #undef CLEAR_REUSABLE_HANDLE |
| 663 | } |
| 664 | |
| 665 | void Thread::VisitObjectPointers(ObjectPointerVisitor* visitor, |
| 666 | ValidationPolicy validation_policy) { |
| 667 | ASSERT(visitor != NULL); |
| 668 | |
| 669 | if (zone() != NULL) { |
| 670 | zone()->VisitObjectPointers(visitor); |
| 671 | } |
| 672 | |
| 673 | // Visit objects in thread specific handles area. |
| 674 | reusable_handles_.VisitObjectPointers(visitor); |
| 675 | |
| 676 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&pending_functions_)); |
| 677 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&global_object_pool_)); |
| 678 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&active_exception_)); |
| 679 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&active_stacktrace_)); |
| 680 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&sticky_error_)); |
| 681 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&async_stack_trace_)); |
| 682 | visitor->VisitPointer(reinterpret_cast<ObjectPtr*>(&ffi_callback_code_)); |
| 683 | |
| 684 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 685 | if (interpreter() != NULL) { |
| 686 | interpreter()->VisitObjectPointers(visitor); |
| 687 | } |
| 688 | #endif |
| 689 | |
| 690 | // Visit the api local scope as it has all the api local handles. |
| 691 | ApiLocalScope* scope = api_top_scope_; |
| 692 | while (scope != NULL) { |
| 693 | scope->local_handles()->VisitObjectPointers(visitor); |
| 694 | scope = scope->previous(); |
| 695 | } |
| 696 | |
| 697 | // Only the mutator thread can run Dart code. |
| 698 | if (IsMutatorThread()) { |
| 699 | // The MarkTask, which calls this method, can run on a different thread. We |
| 700 | // therefore assume the mutator is at a safepoint and we can iterate its |
| 701 | // stack. |
| 702 | // TODO(vm-team): It would be beneficial to be able to ask the mutator |
| 703 | // thread whether it is in fact blocked at the moment (at a "safepoint") so |
| 704 | // we can safely iterate its stack. |
| 705 | // |
| 706 | // Unfortunately we cannot use `this->IsAtSafepoint()` here because that |
| 707 | // will return `false` even though the mutator thread is waiting for mark |
| 708 | // tasks (which iterate its stack) to finish. |
| 709 | const StackFrameIterator::CrossThreadPolicy cross_thread_policy = |
| 710 | StackFrameIterator::kAllowCrossThreadIteration; |
| 711 | |
| 712 | // Iterate over all the stack frames and visit objects on the stack. |
| 713 | StackFrameIterator frames_iterator(top_exit_frame_info(), validation_policy, |
| 714 | this, cross_thread_policy); |
| 715 | StackFrame* frame = frames_iterator.NextFrame(); |
| 716 | while (frame != NULL) { |
| 717 | frame->VisitObjectPointers(visitor); |
| 718 | frame = frames_iterator.NextFrame(); |
| 719 | } |
| 720 | } else { |
| 721 | // We are not on the mutator thread. |
| 722 | RELEASE_ASSERT(top_exit_frame_info() == 0); |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | class RestoreWriteBarrierInvariantVisitor : public ObjectPointerVisitor { |
| 727 | public: |
| 728 | RestoreWriteBarrierInvariantVisitor(IsolateGroup* group, |
| 729 | Thread* thread, |
| 730 | Thread::RestoreWriteBarrierInvariantOp op) |
| 731 | : ObjectPointerVisitor(group), |
| 732 | thread_(thread), |
| 733 | current_(Thread::Current()), |
| 734 | op_(op) {} |
| 735 | |
| 736 | void VisitPointers(ObjectPtr* first, ObjectPtr* last) { |
| 737 | for (; first != last + 1; first++) { |
| 738 | ObjectPtr obj = *first; |
| 739 | // Stores into new-space objects don't need a write barrier. |
| 740 | if (obj->IsSmiOrNewObject()) continue; |
| 741 | |
| 742 | // To avoid adding too much work into the remembered set, skip |
| 743 | // arrays. Write barrier elimination will not remove the barrier |
| 744 | // if we can trigger GC between array allocation and store. |
| 745 | if (obj->GetClassId() == kArrayCid) continue; |
| 746 | |
| 747 | // Dart code won't store into VM-internal objects except Contexts and |
| 748 | // UnhandledExceptions. This assumption is checked by an assertion in |
| 749 | // WriteBarrierElimination::UpdateVectorForBlock. |
| 750 | if (!obj->IsDartInstance() && !obj->IsContext() && |
| 751 | !obj->IsUnhandledException()) |
| 752 | continue; |
| 753 | |
| 754 | // Dart code won't store into canonical instances. |
| 755 | if (obj->ptr()->IsCanonical()) continue; |
| 756 | |
| 757 | // Objects in the VM isolate heap are immutable and won't be |
| 758 | // stored into. Check this condition last because there's no bit |
| 759 | // in the header for it. |
| 760 | if (obj->ptr()->InVMIsolateHeap()) continue; |
| 761 | |
| 762 | switch (op_) { |
| 763 | case Thread::RestoreWriteBarrierInvariantOp::kAddToRememberedSet: |
| 764 | if (!obj->ptr()->IsRemembered()) { |
| 765 | obj->ptr()->AddToRememberedSet(current_); |
| 766 | } |
| 767 | if (current_->is_marking()) { |
| 768 | current_->DeferredMarkingStackAddObject(obj); |
| 769 | } |
| 770 | break; |
| 771 | case Thread::RestoreWriteBarrierInvariantOp::kAddToDeferredMarkingStack: |
| 772 | // Re-scan obj when finalizing marking. |
| 773 | current_->DeferredMarkingStackAddObject(obj); |
| 774 | break; |
| 775 | } |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | private: |
| 780 | Thread* const thread_; |
| 781 | Thread* const current_; |
| 782 | Thread::RestoreWriteBarrierInvariantOp op_; |
| 783 | }; |
| 784 | |
| 785 | // Write barrier elimination assumes that all live temporaries will be |
| 786 | // in the remembered set after a scavenge triggered by a non-Dart-call |
| 787 | // instruction (see Instruction::CanCallDart()), and additionally they will be |
| 788 | // in the deferred marking stack if concurrent marking started. Specifically, |
| 789 | // this includes any instruction which will always create an exit frame |
| 790 | // below the current frame before any other Dart frames. |
| 791 | // |
| 792 | // Therefore, to support this assumption, we scan the stack after a scavenge |
| 793 | // or when concurrent marking begins and add all live temporaries in |
| 794 | // Dart frames preceeding an exit frame to the store buffer or deferred |
| 795 | // marking stack. |
| 796 | void Thread::RestoreWriteBarrierInvariant(RestoreWriteBarrierInvariantOp op) { |
| 797 | ASSERT(IsAtSafepoint()); |
| 798 | ASSERT(IsMutatorThread()); |
| 799 | |
| 800 | const StackFrameIterator::CrossThreadPolicy cross_thread_policy = |
| 801 | StackFrameIterator::kAllowCrossThreadIteration; |
| 802 | StackFrameIterator frames_iterator(top_exit_frame_info(), |
| 803 | ValidationPolicy::kDontValidateFrames, |
| 804 | this, cross_thread_policy); |
| 805 | RestoreWriteBarrierInvariantVisitor visitor(isolate_group(), this, op); |
| 806 | bool scan_next_dart_frame = false; |
| 807 | for (StackFrame* frame = frames_iterator.NextFrame(); frame != NULL; |
| 808 | frame = frames_iterator.NextFrame()) { |
| 809 | if (frame->IsExitFrame()) { |
| 810 | scan_next_dart_frame = true; |
| 811 | } else if (frame->IsDartFrame(/*validate=*/false)) { |
| 812 | if (scan_next_dart_frame) { |
| 813 | frame->VisitObjectPointers(&visitor); |
| 814 | } |
| 815 | scan_next_dart_frame = false; |
| 816 | } |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | void Thread::DeferredMarkLiveTemporaries() { |
| 821 | RestoreWriteBarrierInvariant( |
| 822 | RestoreWriteBarrierInvariantOp::kAddToDeferredMarkingStack); |
| 823 | } |
| 824 | |
| 825 | void Thread::RememberLiveTemporaries() { |
| 826 | RestoreWriteBarrierInvariant( |
| 827 | RestoreWriteBarrierInvariantOp::kAddToRememberedSet); |
| 828 | } |
| 829 | |
| 830 | bool Thread::CanLoadFromThread(const Object& object) { |
| 831 | // In order to allow us to use assembler helper routines with non-[Code] |
| 832 | // objects *before* stubs are initialized, we only loop ver the stubs if the |
| 833 | // [object] is in fact a [Code] object. |
| 834 | if (object.IsCode()) { |
| 835 | #define CHECK_OBJECT(type_name, member_name, expr, default_init_value) \ |
| 836 | if (object.raw() == expr) { \ |
| 837 | return true; \ |
| 838 | } |
| 839 | CACHED_VM_STUBS_LIST(CHECK_OBJECT) |
| 840 | #undef CHECK_OBJECT |
| 841 | } |
| 842 | |
| 843 | // For non [Code] objects we check if the object equals to any of the cached |
| 844 | // non-stub entries. |
| 845 | #define CHECK_OBJECT(type_name, member_name, expr, default_init_value) \ |
| 846 | if (object.raw() == expr) { \ |
| 847 | return true; \ |
| 848 | } |
| 849 | CACHED_NON_VM_STUB_LIST(CHECK_OBJECT) |
| 850 | #undef CHECK_OBJECT |
| 851 | return false; |
| 852 | } |
| 853 | |
| 854 | intptr_t Thread::OffsetFromThread(const Object& object) { |
| 855 | // In order to allow us to use assembler helper routines with non-[Code] |
| 856 | // objects *before* stubs are initialized, we only loop ver the stubs if the |
| 857 | // [object] is in fact a [Code] object. |
| 858 | if (object.IsCode()) { |
| 859 | #define COMPUTE_OFFSET(type_name, member_name, expr, default_init_value) \ |
| 860 | ASSERT((expr)->ptr()->InVMIsolateHeap()); \ |
| 861 | if (object.raw() == expr) { \ |
| 862 | return Thread::member_name##offset(); \ |
| 863 | } |
| 864 | CACHED_VM_STUBS_LIST(COMPUTE_OFFSET) |
| 865 | #undef COMPUTE_OFFSET |
| 866 | } |
| 867 | |
| 868 | // For non [Code] objects we check if the object equals to any of the cached |
| 869 | // non-stub entries. |
| 870 | #define COMPUTE_OFFSET(type_name, member_name, expr, default_init_value) \ |
| 871 | if (object.raw() == expr) { \ |
| 872 | return Thread::member_name##offset(); \ |
| 873 | } |
| 874 | CACHED_NON_VM_STUB_LIST(COMPUTE_OFFSET) |
| 875 | #undef COMPUTE_OFFSET |
| 876 | |
| 877 | UNREACHABLE(); |
| 878 | return -1; |
| 879 | } |
| 880 | |
| 881 | bool Thread::ObjectAtOffset(intptr_t offset, Object* object) { |
| 882 | if (Isolate::Current() == Dart::vm_isolate()) { |
| 883 | // --disassemble-stubs runs before all the references through |
| 884 | // thread have targets |
| 885 | return false; |
| 886 | } |
| 887 | |
| 888 | #define COMPUTE_OFFSET(type_name, member_name, expr, default_init_value) \ |
| 889 | if (Thread::member_name##offset() == offset) { \ |
| 890 | *object = expr; \ |
| 891 | return true; \ |
| 892 | } |
| 893 | CACHED_VM_OBJECTS_LIST(COMPUTE_OFFSET) |
| 894 | #undef COMPUTE_OFFSET |
| 895 | return false; |
| 896 | } |
| 897 | |
| 898 | intptr_t Thread::OffsetFromThread(const RuntimeEntry* runtime_entry) { |
| 899 | #define COMPUTE_OFFSET(name) \ |
| 900 | if (runtime_entry->function() == k##name##RuntimeEntry.function()) { \ |
| 901 | return Thread::name##_entry_point_offset(); \ |
| 902 | } |
| 903 | RUNTIME_ENTRY_LIST(COMPUTE_OFFSET) |
| 904 | #undef COMPUTE_OFFSET |
| 905 | |
| 906 | #define COMPUTE_OFFSET(returntype, name, ...) \ |
| 907 | if (runtime_entry->function() == k##name##RuntimeEntry.function()) { \ |
| 908 | return Thread::name##_entry_point_offset(); \ |
| 909 | } |
| 910 | LEAF_RUNTIME_ENTRY_LIST(COMPUTE_OFFSET) |
| 911 | #undef COMPUTE_OFFSET |
| 912 | |
| 913 | UNREACHABLE(); |
| 914 | return -1; |
| 915 | } |
| 916 | |
| 917 | #if defined(DEBUG) |
| 918 | bool Thread::TopErrorHandlerIsSetJump() const { |
| 919 | if (long_jump_base() == nullptr) return false; |
| 920 | if (top_exit_frame_info_ == 0) return true; |
| 921 | #if defined(USING_SIMULATOR) || defined(USING_SAFE_STACK) |
| 922 | // False positives: simulator stack and native stack are unordered. |
| 923 | return true; |
| 924 | #else |
| 925 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 926 | // False positives: interpreter stack and native stack are unordered. |
| 927 | if ((interpreter_ != nullptr) && interpreter_->HasFrame(top_exit_frame_info_)) |
| 928 | return true; |
| 929 | #endif |
| 930 | return reinterpret_cast<uword>(long_jump_base()) < top_exit_frame_info_; |
| 931 | #endif |
| 932 | } |
| 933 | |
| 934 | bool Thread::TopErrorHandlerIsExitFrame() const { |
| 935 | if (top_exit_frame_info_ == 0) return false; |
| 936 | if (long_jump_base() == nullptr) return true; |
| 937 | #if defined(USING_SIMULATOR) || defined(USING_SAFE_STACK) |
| 938 | // False positives: simulator stack and native stack are unordered. |
| 939 | return true; |
| 940 | #else |
| 941 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 942 | // False positives: interpreter stack and native stack are unordered. |
| 943 | if ((interpreter_ != nullptr) && interpreter_->HasFrame(top_exit_frame_info_)) |
| 944 | return true; |
| 945 | #endif |
| 946 | return top_exit_frame_info_ < reinterpret_cast<uword>(long_jump_base()); |
| 947 | #endif |
| 948 | } |
| 949 | #endif // defined(DEBUG) |
| 950 | |
| 951 | bool Thread::IsValidHandle(Dart_Handle object) const { |
| 952 | return IsValidLocalHandle(object) || IsValidZoneHandle(object) || |
| 953 | IsValidScopedHandle(object); |
| 954 | } |
| 955 | |
| 956 | bool Thread::IsValidLocalHandle(Dart_Handle object) const { |
| 957 | ApiLocalScope* scope = api_top_scope_; |
| 958 | while (scope != NULL) { |
| 959 | if (scope->local_handles()->IsValidHandle(object)) { |
| 960 | return true; |
| 961 | } |
| 962 | scope = scope->previous(); |
| 963 | } |
| 964 | return false; |
| 965 | } |
| 966 | |
| 967 | intptr_t Thread::CountLocalHandles() const { |
| 968 | intptr_t total = 0; |
| 969 | ApiLocalScope* scope = api_top_scope_; |
| 970 | while (scope != NULL) { |
| 971 | total += scope->local_handles()->CountHandles(); |
| 972 | scope = scope->previous(); |
| 973 | } |
| 974 | return total; |
| 975 | } |
| 976 | |
| 977 | int Thread::ZoneSizeInBytes() const { |
| 978 | int total = 0; |
| 979 | ApiLocalScope* scope = api_top_scope_; |
| 980 | while (scope != NULL) { |
| 981 | total += scope->zone()->SizeInBytes(); |
| 982 | scope = scope->previous(); |
| 983 | } |
| 984 | return total; |
| 985 | } |
| 986 | |
| 987 | void Thread::EnterApiScope() { |
| 988 | ASSERT(MayAllocateHandles()); |
| 989 | ApiLocalScope* new_scope = api_reusable_scope(); |
| 990 | if (new_scope == NULL) { |
| 991 | new_scope = new ApiLocalScope(api_top_scope(), top_exit_frame_info()); |
| 992 | ASSERT(new_scope != NULL); |
| 993 | } else { |
| 994 | new_scope->Reinit(this, api_top_scope(), top_exit_frame_info()); |
| 995 | set_api_reusable_scope(NULL); |
| 996 | } |
| 997 | set_api_top_scope(new_scope); // New scope is now the top scope. |
| 998 | } |
| 999 | |
| 1000 | void Thread::ExitApiScope() { |
| 1001 | ASSERT(MayAllocateHandles()); |
| 1002 | ApiLocalScope* scope = api_top_scope(); |
| 1003 | ApiLocalScope* reusable_scope = api_reusable_scope(); |
| 1004 | set_api_top_scope(scope->previous()); // Reset top scope to previous. |
| 1005 | if (reusable_scope == NULL) { |
| 1006 | scope->Reset(this); // Reset the old scope which we just exited. |
| 1007 | set_api_reusable_scope(scope); |
| 1008 | } else { |
| 1009 | ASSERT(reusable_scope != scope); |
| 1010 | delete scope; |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | void Thread::UnwindScopes(uword stack_marker) { |
| 1015 | // Unwind all scopes using the same stack_marker, i.e. all scopes allocated |
| 1016 | // under the same top_exit_frame_info. |
| 1017 | ApiLocalScope* scope = api_top_scope_; |
| 1018 | while (scope != NULL && scope->stack_marker() != 0 && |
| 1019 | scope->stack_marker() == stack_marker) { |
| 1020 | api_top_scope_ = scope->previous(); |
| 1021 | delete scope; |
| 1022 | scope = api_top_scope_; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | void Thread::EnterSafepointUsingLock() { |
| 1027 | isolate_group()->safepoint_handler()->EnterSafepointUsingLock(this); |
| 1028 | } |
| 1029 | |
| 1030 | void Thread::ExitSafepointUsingLock() { |
| 1031 | isolate_group()->safepoint_handler()->ExitSafepointUsingLock(this); |
| 1032 | } |
| 1033 | |
| 1034 | void Thread::BlockForSafepoint() { |
| 1035 | isolate_group()->safepoint_handler()->BlockForSafepoint(this); |
| 1036 | } |
| 1037 | |
| 1038 | void Thread::FinishEntering(TaskKind kind) { |
| 1039 | ASSERT(store_buffer_block_ == nullptr); |
| 1040 | |
| 1041 | task_kind_ = kind; |
| 1042 | if (isolate_group()->marking_stack() != NULL) { |
| 1043 | // Concurrent mark in progress. Enable barrier for this thread. |
| 1044 | MarkingStackAcquire(); |
| 1045 | DeferredMarkingStackAcquire(); |
| 1046 | } |
| 1047 | |
| 1048 | // TODO(koda): Use StoreBufferAcquire once we properly flush |
| 1049 | // before Scavenge. |
| 1050 | if (kind == kMutatorTask) { |
| 1051 | StoreBufferAcquire(); |
| 1052 | } else { |
| 1053 | store_buffer_block_ = isolate_group()->store_buffer()->PopEmptyBlock(); |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | void Thread::PrepareLeaving() { |
| 1058 | ASSERT(store_buffer_block_ != nullptr); |
| 1059 | ASSERT(execution_state() == Thread::kThreadInVM); |
| 1060 | |
| 1061 | task_kind_ = kUnknownTask; |
| 1062 | if (is_marking()) { |
| 1063 | MarkingStackRelease(); |
| 1064 | DeferredMarkingStackRelease(); |
| 1065 | } |
| 1066 | StoreBufferRelease(); |
| 1067 | } |
| 1068 | |
| 1069 | DisableThreadInterruptsScope::DisableThreadInterruptsScope(Thread* thread) |
| 1070 | : StackResource(thread) { |
| 1071 | if (thread != NULL) { |
| 1072 | OSThread* os_thread = thread->os_thread(); |
| 1073 | ASSERT(os_thread != NULL); |
| 1074 | os_thread->DisableThreadInterrupts(); |
| 1075 | } |
| 1076 | } |
| 1077 | |
| 1078 | DisableThreadInterruptsScope::~DisableThreadInterruptsScope() { |
| 1079 | if (thread() != NULL) { |
| 1080 | OSThread* os_thread = thread()->os_thread(); |
| 1081 | ASSERT(os_thread != NULL); |
| 1082 | os_thread->EnableThreadInterrupts(); |
| 1083 | } |
| 1084 | } |
| 1085 | |
| 1086 | const intptr_t kInitialCallbackIdsReserved = 1024; |
| 1087 | int32_t Thread::AllocateFfiCallbackId() { |
| 1088 | Zone* Z = isolate()->current_zone(); |
| 1089 | if (ffi_callback_code_ == GrowableObjectArray::null()) { |
| 1090 | ffi_callback_code_ = GrowableObjectArray::New(kInitialCallbackIdsReserved); |
| 1091 | } |
| 1092 | const auto& array = GrowableObjectArray::Handle(Z, ffi_callback_code_); |
| 1093 | array.Add(Code::Handle(Z, Code::null())); |
| 1094 | const int32_t id = array.Length() - 1; |
| 1095 | |
| 1096 | // Allocate a native callback trampoline if necessary. |
| 1097 | #if !defined(DART_PRECOMPILED_RUNTIME) |
| 1098 | if (NativeCallbackTrampolines::Enabled()) { |
| 1099 | auto* const tramps = isolate()->native_callback_trampolines(); |
| 1100 | ASSERT(tramps->next_callback_id() == id); |
| 1101 | tramps->AllocateTrampoline(); |
| 1102 | } |
| 1103 | #endif |
| 1104 | |
| 1105 | return id; |
| 1106 | } |
| 1107 | |
| 1108 | void Thread::SetFfiCallbackCode(int32_t callback_id, const Code& code) { |
| 1109 | Zone* Z = isolate()->current_zone(); |
| 1110 | |
| 1111 | /// In AOT the callback ID might have been allocated during compilation but |
| 1112 | /// 'ffi_callback_code_' is initialized to empty again when the program |
| 1113 | /// starts. Therefore we may need to initialize or expand it to accomodate |
| 1114 | /// the callback ID. |
| 1115 | |
| 1116 | if (ffi_callback_code_ == GrowableObjectArray::null()) { |
| 1117 | ffi_callback_code_ = GrowableObjectArray::New(kInitialCallbackIdsReserved); |
| 1118 | } |
| 1119 | |
| 1120 | const auto& array = GrowableObjectArray::Handle(Z, ffi_callback_code_); |
| 1121 | |
| 1122 | if (callback_id >= array.Length()) { |
| 1123 | if (callback_id >= array.Capacity()) { |
| 1124 | array.Grow(callback_id + 1); |
| 1125 | } |
| 1126 | array.SetLength(callback_id + 1); |
| 1127 | } |
| 1128 | |
| 1129 | array.SetAt(callback_id, code); |
| 1130 | } |
| 1131 | |
| 1132 | void Thread::VerifyCallbackIsolate(int32_t callback_id, uword entry) { |
| 1133 | NoSafepointScope _; |
| 1134 | |
| 1135 | const GrowableObjectArrayPtr array = ffi_callback_code_; |
| 1136 | if (array == GrowableObjectArray::null()) { |
| 1137 | FATAL("Cannot invoke callback on incorrect isolate." ); |
| 1138 | } |
| 1139 | |
| 1140 | const SmiPtr length_smi = GrowableObjectArray::NoSafepointLength(array); |
| 1141 | const intptr_t length = Smi::Value(length_smi); |
| 1142 | |
| 1143 | if (callback_id < 0 || callback_id >= length) { |
| 1144 | FATAL("Cannot invoke callback on incorrect isolate." ); |
| 1145 | } |
| 1146 | |
| 1147 | if (entry != 0) { |
| 1148 | ObjectPtr* const code_array = |
| 1149 | Array::DataOf(GrowableObjectArray::NoSafepointData(array)); |
| 1150 | // RawCast allocates handles in ASSERTs. |
| 1151 | const CodePtr code = static_cast<CodePtr>(code_array[callback_id]); |
| 1152 | if (!Code::ContainsInstructionAt(code, entry)) { |
| 1153 | FATAL("Cannot invoke callback on incorrect isolate." ); |
| 1154 | } |
| 1155 | } |
| 1156 | } |
| 1157 | |
| 1158 | } // namespace dart |
| 1159 | |