| 1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
| 2 | // for details. All rights reserved. Use of this source code is governed by a |
| 3 | // BSD-style license that can be found in the LICENSE file. |
| 4 | |
| 5 | #include "platform/unicode.h" |
| 6 | |
| 7 | #include "vm/allocation.h" |
| 8 | #include "vm/globals.h" |
| 9 | #include "vm/object.h" |
| 10 | |
| 11 | namespace dart { |
| 12 | |
| 13 | // A constant mask that can be 'and'ed with a word of data to determine if it |
| 14 | // is all ASCII (with no Latin1 characters). |
| 15 | #if defined(ARCH_IS_64_BIT) |
| 16 | static const uintptr_t kAsciiWordMask = DART_UINT64_C(0x8080808080808080); |
| 17 | #else |
| 18 | static const uintptr_t kAsciiWordMask = 0x80808080u; |
| 19 | #endif |
| 20 | |
| 21 | intptr_t Utf8::Length(const String& str) { |
| 22 | if (str.IsOneByteString() || str.IsExternalOneByteString()) { |
| 23 | // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
| 24 | // encodings and all >= 0x80 have two-byte encodings. To get the length, |
| 25 | // start with the number of code points and add the number of high bits in |
| 26 | // the bytes. |
| 27 | uintptr_t char_length = str.Length(); |
| 28 | uintptr_t length = char_length; |
| 29 | const uintptr_t* data; |
| 30 | NoSafepointScope no_safepoint; |
| 31 | if (str.IsOneByteString()) { |
| 32 | data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(str)); |
| 33 | } else { |
| 34 | data = reinterpret_cast<const uintptr_t*>( |
| 35 | ExternalOneByteString::DataStart(str)); |
| 36 | } |
| 37 | uintptr_t i; |
| 38 | for (i = sizeof(uintptr_t); i <= char_length; i += sizeof(uintptr_t)) { |
| 39 | uintptr_t chunk = *data++; |
| 40 | chunk &= kAsciiWordMask; |
| 41 | if (chunk != 0) { |
| 42 | // Shuffle the bits until we have a count of bits in the low nibble. |
| 43 | #if defined(ARCH_IS_64_BIT) |
| 44 | chunk += chunk >> 32; |
| 45 | #endif |
| 46 | chunk += chunk >> 16; |
| 47 | chunk += chunk >> 8; |
| 48 | length += (chunk >> 7) & 0xf; |
| 49 | } |
| 50 | } |
| 51 | // Take care of the tail of the string, the last length % wordsize chars. |
| 52 | i -= sizeof(uintptr_t); |
| 53 | for (; i < char_length; i++) { |
| 54 | if (str.CharAt(i) > kMaxOneByteChar) length++; |
| 55 | } |
| 56 | return length; |
| 57 | } |
| 58 | |
| 59 | // Slow case for 2-byte strings that handles surrogate pairs and longer UTF-8 |
| 60 | // encodings. |
| 61 | intptr_t length = 0; |
| 62 | String::CodePointIterator it(str); |
| 63 | while (it.Next()) { |
| 64 | int32_t ch = it.Current(); |
| 65 | length += Utf8::Length(ch); |
| 66 | } |
| 67 | return length; |
| 68 | } |
| 69 | |
| 70 | intptr_t Utf8::Encode(const String& src, char* dst, intptr_t len) { |
| 71 | uintptr_t array_len = len; |
| 72 | intptr_t pos = 0; |
| 73 | ASSERT(static_cast<intptr_t>(array_len) >= Length(src)); |
| 74 | if (src.IsOneByteString() || src.IsExternalOneByteString()) { |
| 75 | // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
| 76 | // encodings and all >= 0x80 have two-byte encodings. |
| 77 | const uintptr_t* data; |
| 78 | NoSafepointScope scope; |
| 79 | if (src.IsOneByteString()) { |
| 80 | data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(src)); |
| 81 | } else { |
| 82 | data = reinterpret_cast<const uintptr_t*>( |
| 83 | ExternalOneByteString::DataStart(src)); |
| 84 | } |
| 85 | uintptr_t char_length = src.Length(); |
| 86 | uintptr_t pos = 0; |
| 87 | ASSERT(kMaxOneByteChar + 1 == 0x80); |
| 88 | for (uintptr_t i = 0; i < char_length; i += sizeof(uintptr_t)) { |
| 89 | // Read the input one word at a time and just write it verbatim if it is |
| 90 | // plain ASCII, as determined by the mask. |
| 91 | if (i + sizeof(uintptr_t) <= char_length && |
| 92 | (*data & kAsciiWordMask) == 0 && |
| 93 | pos + sizeof(uintptr_t) <= array_len) { |
| 94 | StoreUnaligned(reinterpret_cast<uintptr_t*>(dst + pos), *data); |
| 95 | pos += sizeof(uintptr_t); |
| 96 | } else { |
| 97 | // Process up to one word of input that contains non-ASCII Latin1 |
| 98 | // characters. |
| 99 | const uint8_t* p = reinterpret_cast<const uint8_t*>(data); |
| 100 | const uint8_t* limit = |
| 101 | Utils::Minimum(p + sizeof(uintptr_t), p + (char_length - i)); |
| 102 | for (; p < limit; p++) { |
| 103 | uint8_t c = *p; |
| 104 | // These calls to Length and Encode get inlined and the cases for 3 |
| 105 | // and 4 byte sequences are removed. |
| 106 | intptr_t bytes = Length(c); |
| 107 | if (pos + bytes > array_len) { |
| 108 | return pos; |
| 109 | } |
| 110 | Encode(c, reinterpret_cast<char*>(dst) + pos); |
| 111 | pos += bytes; |
| 112 | } |
| 113 | } |
| 114 | data++; |
| 115 | } |
| 116 | } else { |
| 117 | // For two-byte strings, which can contain 3 and 4-byte UTF-8 encodings, |
| 118 | // which can result in surrogate pairs, use the more general code. |
| 119 | String::CodePointIterator it(src); |
| 120 | while (it.Next()) { |
| 121 | int32_t ch = it.Current(); |
| 122 | ASSERT(!Utf::IsOutOfRange(ch)); |
| 123 | if (Utf16::IsSurrogate(ch)) { |
| 124 | // Encode unpaired surrogates as replacement characters to ensure the |
| 125 | // output is valid UTF-8. Encoded size is the same (3), so the computed |
| 126 | // length is still valid. |
| 127 | ch = Utf::kReplacementChar; |
| 128 | } |
| 129 | intptr_t num_bytes = Utf8::Length(ch); |
| 130 | if (pos + num_bytes > len) { |
| 131 | break; |
| 132 | } |
| 133 | Utf8::Encode(ch, &dst[pos]); |
| 134 | pos += num_bytes; |
| 135 | } |
| 136 | } |
| 137 | return pos; |
| 138 | } |
| 139 | |
| 140 | } // namespace dart |
| 141 | |