1 | // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file |
2 | // for details. All rights reserved. Use of this source code is governed by a |
3 | // BSD-style license that can be found in the LICENSE file. |
4 | |
5 | #include "platform/unicode.h" |
6 | |
7 | #include "vm/allocation.h" |
8 | #include "vm/globals.h" |
9 | #include "vm/object.h" |
10 | |
11 | namespace dart { |
12 | |
13 | // A constant mask that can be 'and'ed with a word of data to determine if it |
14 | // is all ASCII (with no Latin1 characters). |
15 | #if defined(ARCH_IS_64_BIT) |
16 | static const uintptr_t kAsciiWordMask = DART_UINT64_C(0x8080808080808080); |
17 | #else |
18 | static const uintptr_t kAsciiWordMask = 0x80808080u; |
19 | #endif |
20 | |
21 | intptr_t Utf8::Length(const String& str) { |
22 | if (str.IsOneByteString() || str.IsExternalOneByteString()) { |
23 | // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
24 | // encodings and all >= 0x80 have two-byte encodings. To get the length, |
25 | // start with the number of code points and add the number of high bits in |
26 | // the bytes. |
27 | uintptr_t char_length = str.Length(); |
28 | uintptr_t length = char_length; |
29 | const uintptr_t* data; |
30 | NoSafepointScope no_safepoint; |
31 | if (str.IsOneByteString()) { |
32 | data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(str)); |
33 | } else { |
34 | data = reinterpret_cast<const uintptr_t*>( |
35 | ExternalOneByteString::DataStart(str)); |
36 | } |
37 | uintptr_t i; |
38 | for (i = sizeof(uintptr_t); i <= char_length; i += sizeof(uintptr_t)) { |
39 | uintptr_t chunk = *data++; |
40 | chunk &= kAsciiWordMask; |
41 | if (chunk != 0) { |
42 | // Shuffle the bits until we have a count of bits in the low nibble. |
43 | #if defined(ARCH_IS_64_BIT) |
44 | chunk += chunk >> 32; |
45 | #endif |
46 | chunk += chunk >> 16; |
47 | chunk += chunk >> 8; |
48 | length += (chunk >> 7) & 0xf; |
49 | } |
50 | } |
51 | // Take care of the tail of the string, the last length % wordsize chars. |
52 | i -= sizeof(uintptr_t); |
53 | for (; i < char_length; i++) { |
54 | if (str.CharAt(i) > kMaxOneByteChar) length++; |
55 | } |
56 | return length; |
57 | } |
58 | |
59 | // Slow case for 2-byte strings that handles surrogate pairs and longer UTF-8 |
60 | // encodings. |
61 | intptr_t length = 0; |
62 | String::CodePointIterator it(str); |
63 | while (it.Next()) { |
64 | int32_t ch = it.Current(); |
65 | length += Utf8::Length(ch); |
66 | } |
67 | return length; |
68 | } |
69 | |
70 | intptr_t Utf8::Encode(const String& src, char* dst, intptr_t len) { |
71 | uintptr_t array_len = len; |
72 | intptr_t pos = 0; |
73 | ASSERT(static_cast<intptr_t>(array_len) >= Length(src)); |
74 | if (src.IsOneByteString() || src.IsExternalOneByteString()) { |
75 | // For 1-byte strings, all code points < 0x80 have single-byte UTF-8 |
76 | // encodings and all >= 0x80 have two-byte encodings. |
77 | const uintptr_t* data; |
78 | NoSafepointScope scope; |
79 | if (src.IsOneByteString()) { |
80 | data = reinterpret_cast<const uintptr_t*>(OneByteString::DataStart(src)); |
81 | } else { |
82 | data = reinterpret_cast<const uintptr_t*>( |
83 | ExternalOneByteString::DataStart(src)); |
84 | } |
85 | uintptr_t char_length = src.Length(); |
86 | uintptr_t pos = 0; |
87 | ASSERT(kMaxOneByteChar + 1 == 0x80); |
88 | for (uintptr_t i = 0; i < char_length; i += sizeof(uintptr_t)) { |
89 | // Read the input one word at a time and just write it verbatim if it is |
90 | // plain ASCII, as determined by the mask. |
91 | if (i + sizeof(uintptr_t) <= char_length && |
92 | (*data & kAsciiWordMask) == 0 && |
93 | pos + sizeof(uintptr_t) <= array_len) { |
94 | StoreUnaligned(reinterpret_cast<uintptr_t*>(dst + pos), *data); |
95 | pos += sizeof(uintptr_t); |
96 | } else { |
97 | // Process up to one word of input that contains non-ASCII Latin1 |
98 | // characters. |
99 | const uint8_t* p = reinterpret_cast<const uint8_t*>(data); |
100 | const uint8_t* limit = |
101 | Utils::Minimum(p + sizeof(uintptr_t), p + (char_length - i)); |
102 | for (; p < limit; p++) { |
103 | uint8_t c = *p; |
104 | // These calls to Length and Encode get inlined and the cases for 3 |
105 | // and 4 byte sequences are removed. |
106 | intptr_t bytes = Length(c); |
107 | if (pos + bytes > array_len) { |
108 | return pos; |
109 | } |
110 | Encode(c, reinterpret_cast<char*>(dst) + pos); |
111 | pos += bytes; |
112 | } |
113 | } |
114 | data++; |
115 | } |
116 | } else { |
117 | // For two-byte strings, which can contain 3 and 4-byte UTF-8 encodings, |
118 | // which can result in surrogate pairs, use the more general code. |
119 | String::CodePointIterator it(src); |
120 | while (it.Next()) { |
121 | int32_t ch = it.Current(); |
122 | ASSERT(!Utf::IsOutOfRange(ch)); |
123 | if (Utf16::IsSurrogate(ch)) { |
124 | // Encode unpaired surrogates as replacement characters to ensure the |
125 | // output is valid UTF-8. Encoded size is the same (3), so the computed |
126 | // length is still valid. |
127 | ch = Utf::kReplacementChar; |
128 | } |
129 | intptr_t num_bytes = Utf8::Length(ch); |
130 | if (pos + num_bytes > len) { |
131 | break; |
132 | } |
133 | Utf8::Encode(ch, &dst[pos]); |
134 | pos += num_bytes; |
135 | } |
136 | } |
137 | return pos; |
138 | } |
139 | |
140 | } // namespace dart |
141 | |