1 | // Copyright 2005, Google Inc. |
2 | // All rights reserved. |
3 | // |
4 | // Redistribution and use in source and binary forms, with or without |
5 | // modification, are permitted provided that the following conditions are |
6 | // met: |
7 | // |
8 | // * Redistributions of source code must retain the above copyright |
9 | // notice, this list of conditions and the following disclaimer. |
10 | // * Redistributions in binary form must reproduce the above |
11 | // copyright notice, this list of conditions and the following disclaimer |
12 | // in the documentation and/or other materials provided with the |
13 | // distribution. |
14 | // * Neither the name of Google Inc. nor the names of its |
15 | // contributors may be used to endorse or promote products derived from |
16 | // this software without specific prior written permission. |
17 | // |
18 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | // |
30 | // The Google C++ Testing and Mocking Framework (Google Test) |
31 | // |
32 | // This header file declares functions and macros used internally by |
33 | // Google Test. They are subject to change without notice. |
34 | |
35 | // GOOGLETEST_CM0001 DO NOT DELETE |
36 | |
37 | #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
38 | #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
39 | |
40 | #include "gtest/internal/gtest-port.h" |
41 | |
42 | #if GTEST_OS_LINUX |
43 | # include <stdlib.h> |
44 | # include <sys/types.h> |
45 | # include <sys/wait.h> |
46 | # include <unistd.h> |
47 | #endif // GTEST_OS_LINUX |
48 | |
49 | #if GTEST_HAS_EXCEPTIONS |
50 | # include <stdexcept> |
51 | #endif |
52 | |
53 | #include <ctype.h> |
54 | #include <float.h> |
55 | #include <string.h> |
56 | #include <iomanip> |
57 | #include <limits> |
58 | #include <map> |
59 | #include <set> |
60 | #include <string> |
61 | #include <type_traits> |
62 | #include <vector> |
63 | |
64 | #include "gtest/gtest-message.h" |
65 | #include "gtest/internal/gtest-filepath.h" |
66 | #include "gtest/internal/gtest-string.h" |
67 | #include "gtest/internal/gtest-type-util.h" |
68 | |
69 | // Due to C++ preprocessor weirdness, we need double indirection to |
70 | // concatenate two tokens when one of them is __LINE__. Writing |
71 | // |
72 | // foo ## __LINE__ |
73 | // |
74 | // will result in the token foo__LINE__, instead of foo followed by |
75 | // the current line number. For more details, see |
76 | // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6 |
77 | #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar) |
78 | #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar |
79 | |
80 | // Stringifies its argument. |
81 | #define GTEST_STRINGIFY_(name) #name |
82 | |
83 | namespace proto2 { class Message; } |
84 | |
85 | namespace testing { |
86 | |
87 | // Forward declarations. |
88 | |
89 | class AssertionResult; // Result of an assertion. |
90 | class Message; // Represents a failure message. |
91 | class Test; // Represents a test. |
92 | class TestInfo; // Information about a test. |
93 | class TestPartResult; // Result of a test part. |
94 | class UnitTest; // A collection of test suites. |
95 | |
96 | template <typename T> |
97 | ::std::string PrintToString(const T& value); |
98 | |
99 | namespace internal { |
100 | |
101 | struct TraceInfo; // Information about a trace point. |
102 | class TestInfoImpl; // Opaque implementation of TestInfo |
103 | class UnitTestImpl; // Opaque implementation of UnitTest |
104 | |
105 | // The text used in failure messages to indicate the start of the |
106 | // stack trace. |
107 | GTEST_API_ extern const char kStackTraceMarker[]; |
108 | |
109 | // An IgnoredValue object can be implicitly constructed from ANY value. |
110 | class IgnoredValue { |
111 | struct Sink {}; |
112 | public: |
113 | // This constructor template allows any value to be implicitly |
114 | // converted to IgnoredValue. The object has no data member and |
115 | // doesn't try to remember anything about the argument. We |
116 | // deliberately omit the 'explicit' keyword in order to allow the |
117 | // conversion to be implicit. |
118 | // Disable the conversion if T already has a magical conversion operator. |
119 | // Otherwise we get ambiguity. |
120 | template <typename T, |
121 | typename std::enable_if<!std::is_convertible<T, Sink>::value, |
122 | int>::type = 0> |
123 | IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit) |
124 | }; |
125 | |
126 | // Appends the user-supplied message to the Google-Test-generated message. |
127 | GTEST_API_ std::string AppendUserMessage( |
128 | const std::string& gtest_msg, const Message& user_msg); |
129 | |
130 | #if GTEST_HAS_EXCEPTIONS |
131 | |
132 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4275 \ |
133 | /* an exported class was derived from a class that was not exported */) |
134 | |
135 | // This exception is thrown by (and only by) a failed Google Test |
136 | // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions |
137 | // are enabled). We derive it from std::runtime_error, which is for |
138 | // errors presumably detectable only at run time. Since |
139 | // std::runtime_error inherits from std::exception, many testing |
140 | // frameworks know how to extract and print the message inside it. |
141 | class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error { |
142 | public: |
143 | explicit GoogleTestFailureException(const TestPartResult& failure); |
144 | }; |
145 | |
146 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4275 |
147 | |
148 | #endif // GTEST_HAS_EXCEPTIONS |
149 | |
150 | namespace edit_distance { |
151 | // Returns the optimal edits to go from 'left' to 'right'. |
152 | // All edits cost the same, with replace having lower priority than |
153 | // add/remove. |
154 | // Simple implementation of the Wagner-Fischer algorithm. |
155 | // See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm |
156 | enum EditType { kMatch, kAdd, kRemove, kReplace }; |
157 | GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
158 | const std::vector<size_t>& left, const std::vector<size_t>& right); |
159 | |
160 | // Same as above, but the input is represented as strings. |
161 | GTEST_API_ std::vector<EditType> CalculateOptimalEdits( |
162 | const std::vector<std::string>& left, |
163 | const std::vector<std::string>& right); |
164 | |
165 | // Create a diff of the input strings in Unified diff format. |
166 | GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left, |
167 | const std::vector<std::string>& right, |
168 | size_t context = 2); |
169 | |
170 | } // namespace edit_distance |
171 | |
172 | // Calculate the diff between 'left' and 'right' and return it in unified diff |
173 | // format. |
174 | // If not null, stores in 'total_line_count' the total number of lines found |
175 | // in left + right. |
176 | GTEST_API_ std::string DiffStrings(const std::string& left, |
177 | const std::string& right, |
178 | size_t* total_line_count); |
179 | |
180 | // Constructs and returns the message for an equality assertion |
181 | // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure. |
182 | // |
183 | // The first four parameters are the expressions used in the assertion |
184 | // and their values, as strings. For example, for ASSERT_EQ(foo, bar) |
185 | // where foo is 5 and bar is 6, we have: |
186 | // |
187 | // expected_expression: "foo" |
188 | // actual_expression: "bar" |
189 | // expected_value: "5" |
190 | // actual_value: "6" |
191 | // |
192 | // The ignoring_case parameter is true if and only if the assertion is a |
193 | // *_STRCASEEQ*. When it's true, the string " (ignoring case)" will |
194 | // be inserted into the message. |
195 | GTEST_API_ AssertionResult EqFailure(const char* expected_expression, |
196 | const char* actual_expression, |
197 | const std::string& expected_value, |
198 | const std::string& actual_value, |
199 | bool ignoring_case); |
200 | |
201 | // Constructs a failure message for Boolean assertions such as EXPECT_TRUE. |
202 | GTEST_API_ std::string GetBoolAssertionFailureMessage( |
203 | const AssertionResult& assertion_result, |
204 | const char* expression_text, |
205 | const char* actual_predicate_value, |
206 | const char* expected_predicate_value); |
207 | |
208 | // This template class represents an IEEE floating-point number |
209 | // (either single-precision or double-precision, depending on the |
210 | // template parameters). |
211 | // |
212 | // The purpose of this class is to do more sophisticated number |
213 | // comparison. (Due to round-off error, etc, it's very unlikely that |
214 | // two floating-points will be equal exactly. Hence a naive |
215 | // comparison by the == operation often doesn't work.) |
216 | // |
217 | // Format of IEEE floating-point: |
218 | // |
219 | // The most-significant bit being the leftmost, an IEEE |
220 | // floating-point looks like |
221 | // |
222 | // sign_bit exponent_bits fraction_bits |
223 | // |
224 | // Here, sign_bit is a single bit that designates the sign of the |
225 | // number. |
226 | // |
227 | // For float, there are 8 exponent bits and 23 fraction bits. |
228 | // |
229 | // For double, there are 11 exponent bits and 52 fraction bits. |
230 | // |
231 | // More details can be found at |
232 | // http://en.wikipedia.org/wiki/IEEE_floating-point_standard. |
233 | // |
234 | // Template parameter: |
235 | // |
236 | // RawType: the raw floating-point type (either float or double) |
237 | template <typename RawType> |
238 | class FloatingPoint { |
239 | public: |
240 | // Defines the unsigned integer type that has the same size as the |
241 | // floating point number. |
242 | typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; |
243 | |
244 | // Constants. |
245 | |
246 | // # of bits in a number. |
247 | static const size_t kBitCount = 8*sizeof(RawType); |
248 | |
249 | // # of fraction bits in a number. |
250 | static const size_t kFractionBitCount = |
251 | std::numeric_limits<RawType>::digits - 1; |
252 | |
253 | // # of exponent bits in a number. |
254 | static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; |
255 | |
256 | // The mask for the sign bit. |
257 | static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); |
258 | |
259 | // The mask for the fraction bits. |
260 | static const Bits kFractionBitMask = |
261 | ~static_cast<Bits>(0) >> (kExponentBitCount + 1); |
262 | |
263 | // The mask for the exponent bits. |
264 | static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); |
265 | |
266 | // How many ULP's (Units in the Last Place) we want to tolerate when |
267 | // comparing two numbers. The larger the value, the more error we |
268 | // allow. A 0 value means that two numbers must be exactly the same |
269 | // to be considered equal. |
270 | // |
271 | // The maximum error of a single floating-point operation is 0.5 |
272 | // units in the last place. On Intel CPU's, all floating-point |
273 | // calculations are done with 80-bit precision, while double has 64 |
274 | // bits. Therefore, 4 should be enough for ordinary use. |
275 | // |
276 | // See the following article for more details on ULP: |
277 | // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ |
278 | static const size_t kMaxUlps = 4; |
279 | |
280 | // Constructs a FloatingPoint from a raw floating-point number. |
281 | // |
282 | // On an Intel CPU, passing a non-normalized NAN (Not a Number) |
283 | // around may change its bits, although the new value is guaranteed |
284 | // to be also a NAN. Therefore, don't expect this constructor to |
285 | // preserve the bits in x when x is a NAN. |
286 | explicit FloatingPoint(const RawType& x) { u_.value_ = x; } |
287 | |
288 | // Static methods |
289 | |
290 | // Reinterprets a bit pattern as a floating-point number. |
291 | // |
292 | // This function is needed to test the AlmostEquals() method. |
293 | static RawType ReinterpretBits(const Bits bits) { |
294 | FloatingPoint fp(0); |
295 | fp.u_.bits_ = bits; |
296 | return fp.u_.value_; |
297 | } |
298 | |
299 | // Returns the floating-point number that represent positive infinity. |
300 | static RawType Infinity() { |
301 | return ReinterpretBits(kExponentBitMask); |
302 | } |
303 | |
304 | // Returns the maximum representable finite floating-point number. |
305 | static RawType Max(); |
306 | |
307 | // Non-static methods |
308 | |
309 | // Returns the bits that represents this number. |
310 | const Bits &bits() const { return u_.bits_; } |
311 | |
312 | // Returns the exponent bits of this number. |
313 | Bits exponent_bits() const { return kExponentBitMask & u_.bits_; } |
314 | |
315 | // Returns the fraction bits of this number. |
316 | Bits fraction_bits() const { return kFractionBitMask & u_.bits_; } |
317 | |
318 | // Returns the sign bit of this number. |
319 | Bits sign_bit() const { return kSignBitMask & u_.bits_; } |
320 | |
321 | // Returns true if and only if this is NAN (not a number). |
322 | bool is_nan() const { |
323 | // It's a NAN if the exponent bits are all ones and the fraction |
324 | // bits are not entirely zeros. |
325 | return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); |
326 | } |
327 | |
328 | // Returns true if and only if this number is at most kMaxUlps ULP's away |
329 | // from rhs. In particular, this function: |
330 | // |
331 | // - returns false if either number is (or both are) NAN. |
332 | // - treats really large numbers as almost equal to infinity. |
333 | // - thinks +0.0 and -0.0 are 0 DLP's apart. |
334 | bool AlmostEquals(const FloatingPoint& rhs) const { |
335 | // The IEEE standard says that any comparison operation involving |
336 | // a NAN must return false. |
337 | if (is_nan() || rhs.is_nan()) return false; |
338 | |
339 | return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_) |
340 | <= kMaxUlps; |
341 | } |
342 | |
343 | private: |
344 | // The data type used to store the actual floating-point number. |
345 | union FloatingPointUnion { |
346 | RawType value_; // The raw floating-point number. |
347 | Bits bits_; // The bits that represent the number. |
348 | }; |
349 | |
350 | // Converts an integer from the sign-and-magnitude representation to |
351 | // the biased representation. More precisely, let N be 2 to the |
352 | // power of (kBitCount - 1), an integer x is represented by the |
353 | // unsigned number x + N. |
354 | // |
355 | // For instance, |
356 | // |
357 | // -N + 1 (the most negative number representable using |
358 | // sign-and-magnitude) is represented by 1; |
359 | // 0 is represented by N; and |
360 | // N - 1 (the biggest number representable using |
361 | // sign-and-magnitude) is represented by 2N - 1. |
362 | // |
363 | // Read http://en.wikipedia.org/wiki/Signed_number_representations |
364 | // for more details on signed number representations. |
365 | static Bits SignAndMagnitudeToBiased(const Bits &sam) { |
366 | if (kSignBitMask & sam) { |
367 | // sam represents a negative number. |
368 | return ~sam + 1; |
369 | } else { |
370 | // sam represents a positive number. |
371 | return kSignBitMask | sam; |
372 | } |
373 | } |
374 | |
375 | // Given two numbers in the sign-and-magnitude representation, |
376 | // returns the distance between them as an unsigned number. |
377 | static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, |
378 | const Bits &sam2) { |
379 | const Bits biased1 = SignAndMagnitudeToBiased(sam1); |
380 | const Bits biased2 = SignAndMagnitudeToBiased(sam2); |
381 | return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); |
382 | } |
383 | |
384 | FloatingPointUnion u_; |
385 | }; |
386 | |
387 | // We cannot use std::numeric_limits<T>::max() as it clashes with the max() |
388 | // macro defined by <windows.h>. |
389 | template <> |
390 | inline float FloatingPoint<float>::Max() { return FLT_MAX; } |
391 | template <> |
392 | inline double FloatingPoint<double>::Max() { return DBL_MAX; } |
393 | |
394 | // Typedefs the instances of the FloatingPoint template class that we |
395 | // care to use. |
396 | typedef FloatingPoint<float> Float; |
397 | typedef FloatingPoint<double> Double; |
398 | |
399 | // In order to catch the mistake of putting tests that use different |
400 | // test fixture classes in the same test suite, we need to assign |
401 | // unique IDs to fixture classes and compare them. The TypeId type is |
402 | // used to hold such IDs. The user should treat TypeId as an opaque |
403 | // type: the only operation allowed on TypeId values is to compare |
404 | // them for equality using the == operator. |
405 | typedef const void* TypeId; |
406 | |
407 | template <typename T> |
408 | class TypeIdHelper { |
409 | public: |
410 | // dummy_ must not have a const type. Otherwise an overly eager |
411 | // compiler (e.g. MSVC 7.1 & 8.0) may try to merge |
412 | // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". |
413 | static bool dummy_; |
414 | }; |
415 | |
416 | template <typename T> |
417 | bool TypeIdHelper<T>::dummy_ = false; |
418 | |
419 | // GetTypeId<T>() returns the ID of type T. Different values will be |
420 | // returned for different types. Calling the function twice with the |
421 | // same type argument is guaranteed to return the same ID. |
422 | template <typename T> |
423 | TypeId GetTypeId() { |
424 | // The compiler is required to allocate a different |
425 | // TypeIdHelper<T>::dummy_ variable for each T used to instantiate |
426 | // the template. Therefore, the address of dummy_ is guaranteed to |
427 | // be unique. |
428 | return &(TypeIdHelper<T>::dummy_); |
429 | } |
430 | |
431 | // Returns the type ID of ::testing::Test. Always call this instead |
432 | // of GetTypeId< ::testing::Test>() to get the type ID of |
433 | // ::testing::Test, as the latter may give the wrong result due to a |
434 | // suspected linker bug when compiling Google Test as a Mac OS X |
435 | // framework. |
436 | GTEST_API_ TypeId GetTestTypeId(); |
437 | |
438 | // Defines the abstract factory interface that creates instances |
439 | // of a Test object. |
440 | class TestFactoryBase { |
441 | public: |
442 | virtual ~TestFactoryBase() {} |
443 | |
444 | // Creates a test instance to run. The instance is both created and destroyed |
445 | // within TestInfoImpl::Run() |
446 | virtual Test* CreateTest() = 0; |
447 | |
448 | protected: |
449 | TestFactoryBase() {} |
450 | |
451 | private: |
452 | GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase); |
453 | }; |
454 | |
455 | // This class provides implementation of TeastFactoryBase interface. |
456 | // It is used in TEST and TEST_F macros. |
457 | template <class TestClass> |
458 | class TestFactoryImpl : public TestFactoryBase { |
459 | public: |
460 | Test* CreateTest() override { return new TestClass; } |
461 | }; |
462 | |
463 | #if GTEST_OS_WINDOWS |
464 | |
465 | // Predicate-formatters for implementing the HRESULT checking macros |
466 | // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED} |
467 | // We pass a long instead of HRESULT to avoid causing an |
468 | // include dependency for the HRESULT type. |
469 | GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr, |
470 | long hr); // NOLINT |
471 | GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr, |
472 | long hr); // NOLINT |
473 | |
474 | #endif // GTEST_OS_WINDOWS |
475 | |
476 | // Types of SetUpTestSuite() and TearDownTestSuite() functions. |
477 | using SetUpTestSuiteFunc = void (*)(); |
478 | using TearDownTestSuiteFunc = void (*)(); |
479 | |
480 | struct CodeLocation { |
481 | CodeLocation(const std::string& a_file, int a_line) |
482 | : file(a_file), line(a_line) {} |
483 | |
484 | std::string file; |
485 | int line; |
486 | }; |
487 | |
488 | // Helper to identify which setup function for TestCase / TestSuite to call. |
489 | // Only one function is allowed, either TestCase or TestSute but not both. |
490 | |
491 | // Utility functions to help SuiteApiResolver |
492 | using SetUpTearDownSuiteFuncType = void (*)(); |
493 | |
494 | inline SetUpTearDownSuiteFuncType GetNotDefaultOrNull( |
495 | SetUpTearDownSuiteFuncType a, SetUpTearDownSuiteFuncType def) { |
496 | return a == def ? nullptr : a; |
497 | } |
498 | |
499 | template <typename T> |
500 | // Note that SuiteApiResolver inherits from T because |
501 | // SetUpTestSuite()/TearDownTestSuite() could be protected. Ths way |
502 | // SuiteApiResolver can access them. |
503 | struct SuiteApiResolver : T { |
504 | // testing::Test is only forward declared at this point. So we make it a |
505 | // dependend class for the compiler to be OK with it. |
506 | using Test = |
507 | typename std::conditional<sizeof(T) != 0, ::testing::Test, void>::type; |
508 | |
509 | static SetUpTearDownSuiteFuncType GetSetUpCaseOrSuite(const char* filename, |
510 | int line_num) { |
511 | SetUpTearDownSuiteFuncType test_case_fp = |
512 | GetNotDefaultOrNull(&T::SetUpTestCase, &Test::SetUpTestCase); |
513 | SetUpTearDownSuiteFuncType test_suite_fp = |
514 | GetNotDefaultOrNull(&T::SetUpTestSuite, &Test::SetUpTestSuite); |
515 | |
516 | GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
517 | << "Test can not provide both SetUpTestSuite and SetUpTestCase, please " |
518 | "make sure there is only one present at " |
519 | << filename << ":" << line_num; |
520 | |
521 | return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
522 | } |
523 | |
524 | static SetUpTearDownSuiteFuncType GetTearDownCaseOrSuite(const char* filename, |
525 | int line_num) { |
526 | SetUpTearDownSuiteFuncType test_case_fp = |
527 | GetNotDefaultOrNull(&T::TearDownTestCase, &Test::TearDownTestCase); |
528 | SetUpTearDownSuiteFuncType test_suite_fp = |
529 | GetNotDefaultOrNull(&T::TearDownTestSuite, &Test::TearDownTestSuite); |
530 | |
531 | GTEST_CHECK_(!test_case_fp || !test_suite_fp) |
532 | << "Test can not provide both TearDownTestSuite and TearDownTestCase," |
533 | " please make sure there is only one present at" |
534 | << filename << ":" << line_num; |
535 | |
536 | return test_case_fp != nullptr ? test_case_fp : test_suite_fp; |
537 | } |
538 | }; |
539 | |
540 | // Creates a new TestInfo object and registers it with Google Test; |
541 | // returns the created object. |
542 | // |
543 | // Arguments: |
544 | // |
545 | // test_suite_name: name of the test suite |
546 | // name: name of the test |
547 | // type_param the name of the test's type parameter, or NULL if |
548 | // this is not a typed or a type-parameterized test. |
549 | // value_param text representation of the test's value parameter, |
550 | // or NULL if this is not a type-parameterized test. |
551 | // code_location: code location where the test is defined |
552 | // fixture_class_id: ID of the test fixture class |
553 | // set_up_tc: pointer to the function that sets up the test suite |
554 | // tear_down_tc: pointer to the function that tears down the test suite |
555 | // factory: pointer to the factory that creates a test object. |
556 | // The newly created TestInfo instance will assume |
557 | // ownership of the factory object. |
558 | GTEST_API_ TestInfo* MakeAndRegisterTestInfo( |
559 | const char* test_suite_name, const char* name, const char* type_param, |
560 | const char* value_param, CodeLocation code_location, |
561 | TypeId fixture_class_id, SetUpTestSuiteFunc set_up_tc, |
562 | TearDownTestSuiteFunc tear_down_tc, TestFactoryBase* factory); |
563 | |
564 | // If *pstr starts with the given prefix, modifies *pstr to be right |
565 | // past the prefix and returns true; otherwise leaves *pstr unchanged |
566 | // and returns false. None of pstr, *pstr, and prefix can be NULL. |
567 | GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr); |
568 | |
569 | #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
570 | |
571 | GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \ |
572 | /* class A needs to have dll-interface to be used by clients of class B */) |
573 | |
574 | // State of the definition of a type-parameterized test suite. |
575 | class GTEST_API_ TypedTestSuitePState { |
576 | public: |
577 | TypedTestSuitePState() : registered_(false) {} |
578 | |
579 | // Adds the given test name to defined_test_names_ and return true |
580 | // if the test suite hasn't been registered; otherwise aborts the |
581 | // program. |
582 | bool AddTestName(const char* file, int line, const char* case_name, |
583 | const char* test_name) { |
584 | if (registered_) { |
585 | fprintf(stderr, |
586 | "%s Test %s must be defined before " |
587 | "REGISTER_TYPED_TEST_SUITE_P(%s, ...).\n" , |
588 | FormatFileLocation(file, line).c_str(), test_name, case_name); |
589 | fflush(stderr); |
590 | posix::Abort(); |
591 | } |
592 | registered_tests_.insert( |
593 | ::std::make_pair(test_name, CodeLocation(file, line))); |
594 | return true; |
595 | } |
596 | |
597 | bool TestExists(const std::string& test_name) const { |
598 | return registered_tests_.count(test_name) > 0; |
599 | } |
600 | |
601 | const CodeLocation& GetCodeLocation(const std::string& test_name) const { |
602 | RegisteredTestsMap::const_iterator it = registered_tests_.find(test_name); |
603 | GTEST_CHECK_(it != registered_tests_.end()); |
604 | return it->second; |
605 | } |
606 | |
607 | // Verifies that registered_tests match the test names in |
608 | // defined_test_names_; returns registered_tests if successful, or |
609 | // aborts the program otherwise. |
610 | const char* VerifyRegisteredTestNames( |
611 | const char* file, int line, const char* registered_tests); |
612 | |
613 | private: |
614 | typedef ::std::map<std::string, CodeLocation> RegisteredTestsMap; |
615 | |
616 | bool registered_; |
617 | RegisteredTestsMap registered_tests_; |
618 | }; |
619 | |
620 | // Legacy API is deprecated but still available |
621 | #ifndef GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
622 | using TypedTestCasePState = TypedTestSuitePState; |
623 | #endif // GTEST_REMOVE_LEGACY_TEST_CASEAPI_ |
624 | |
625 | GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 |
626 | |
627 | // Skips to the first non-space char after the first comma in 'str'; |
628 | // returns NULL if no comma is found in 'str'. |
629 | inline const char* SkipComma(const char* str) { |
630 | const char* comma = strchr(str, ','); |
631 | if (comma == nullptr) { |
632 | return nullptr; |
633 | } |
634 | while (IsSpace(*(++comma))) {} |
635 | return comma; |
636 | } |
637 | |
638 | // Returns the prefix of 'str' before the first comma in it; returns |
639 | // the entire string if it contains no comma. |
640 | inline std::string GetPrefixUntilComma(const char* str) { |
641 | const char* comma = strchr(str, ','); |
642 | return comma == nullptr ? str : std::string(str, comma); |
643 | } |
644 | |
645 | // Splits a given string on a given delimiter, populating a given |
646 | // vector with the fields. |
647 | void SplitString(const ::std::string& str, char delimiter, |
648 | ::std::vector< ::std::string>* dest); |
649 | |
650 | // The default argument to the template below for the case when the user does |
651 | // not provide a name generator. |
652 | struct DefaultNameGenerator { |
653 | template <typename T> |
654 | static std::string GetName(int i) { |
655 | return StreamableToString(i); |
656 | } |
657 | }; |
658 | |
659 | template <typename Provided = DefaultNameGenerator> |
660 | struct NameGeneratorSelector { |
661 | typedef Provided type; |
662 | }; |
663 | |
664 | template <typename NameGenerator> |
665 | void GenerateNamesRecursively(Types0, std::vector<std::string>*, int) {} |
666 | |
667 | template <typename NameGenerator, typename Types> |
668 | void GenerateNamesRecursively(Types, std::vector<std::string>* result, int i) { |
669 | result->push_back(NameGenerator::template GetName<typename Types::Head>(i)); |
670 | GenerateNamesRecursively<NameGenerator>(typename Types::Tail(), result, |
671 | i + 1); |
672 | } |
673 | |
674 | template <typename NameGenerator, typename Types> |
675 | std::vector<std::string> GenerateNames() { |
676 | std::vector<std::string> result; |
677 | GenerateNamesRecursively<NameGenerator>(Types(), &result, 0); |
678 | return result; |
679 | } |
680 | |
681 | // TypeParameterizedTest<Fixture, TestSel, Types>::Register() |
682 | // registers a list of type-parameterized tests with Google Test. The |
683 | // return value is insignificant - we just need to return something |
684 | // such that we can call this function in a namespace scope. |
685 | // |
686 | // Implementation note: The GTEST_TEMPLATE_ macro declares a template |
687 | // template parameter. It's defined in gtest-type-util.h. |
688 | template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types> |
689 | class TypeParameterizedTest { |
690 | public: |
691 | // 'index' is the index of the test in the type list 'Types' |
692 | // specified in INSTANTIATE_TYPED_TEST_SUITE_P(Prefix, TestSuite, |
693 | // Types). Valid values for 'index' are [0, N - 1] where N is the |
694 | // length of Types. |
695 | static bool Register(const char* prefix, const CodeLocation& code_location, |
696 | const char* case_name, const char* test_names, int index, |
697 | const std::vector<std::string>& type_names = |
698 | GenerateNames<DefaultNameGenerator, Types>()) { |
699 | typedef typename Types::Head Type; |
700 | typedef Fixture<Type> FixtureClass; |
701 | typedef typename GTEST_BIND_(TestSel, Type) TestClass; |
702 | |
703 | // First, registers the first type-parameterized test in the type |
704 | // list. |
705 | MakeAndRegisterTestInfo( |
706 | (std::string(prefix) + (prefix[0] == '\0' ? "" : "/" ) + case_name + |
707 | "/" + type_names[static_cast<size_t>(index)]) |
708 | .c_str(), |
709 | StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(), |
710 | GetTypeName<Type>().c_str(), |
711 | nullptr, // No value parameter. |
712 | code_location, GetTypeId<FixtureClass>(), |
713 | SuiteApiResolver<TestClass>::GetSetUpCaseOrSuite( |
714 | code_location.file.c_str(), code_location.line), |
715 | SuiteApiResolver<TestClass>::GetTearDownCaseOrSuite( |
716 | code_location.file.c_str(), code_location.line), |
717 | new TestFactoryImpl<TestClass>); |
718 | |
719 | // Next, recurses (at compile time) with the tail of the type list. |
720 | return TypeParameterizedTest<Fixture, TestSel, |
721 | typename Types::Tail>::Register(prefix, |
722 | code_location, |
723 | case_name, |
724 | test_names, |
725 | index + 1, |
726 | type_names); |
727 | } |
728 | }; |
729 | |
730 | // The base case for the compile time recursion. |
731 | template <GTEST_TEMPLATE_ Fixture, class TestSel> |
732 | class TypeParameterizedTest<Fixture, TestSel, Types0> { |
733 | public: |
734 | static bool Register(const char* /*prefix*/, const CodeLocation&, |
735 | const char* /*case_name*/, const char* /*test_names*/, |
736 | int /*index*/, |
737 | const std::vector<std::string>& = |
738 | std::vector<std::string>() /*type_names*/) { |
739 | return true; |
740 | } |
741 | }; |
742 | |
743 | // TypeParameterizedTestSuite<Fixture, Tests, Types>::Register() |
744 | // registers *all combinations* of 'Tests' and 'Types' with Google |
745 | // Test. The return value is insignificant - we just need to return |
746 | // something such that we can call this function in a namespace scope. |
747 | template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types> |
748 | class TypeParameterizedTestSuite { |
749 | public: |
750 | static bool Register(const char* prefix, CodeLocation code_location, |
751 | const TypedTestSuitePState* state, const char* case_name, |
752 | const char* test_names, |
753 | const std::vector<std::string>& type_names = |
754 | GenerateNames<DefaultNameGenerator, Types>()) { |
755 | std::string test_name = StripTrailingSpaces( |
756 | GetPrefixUntilComma(test_names)); |
757 | if (!state->TestExists(test_name)) { |
758 | fprintf(stderr, "Failed to get code location for test %s.%s at %s." , |
759 | case_name, test_name.c_str(), |
760 | FormatFileLocation(code_location.file.c_str(), |
761 | code_location.line).c_str()); |
762 | fflush(stderr); |
763 | posix::Abort(); |
764 | } |
765 | const CodeLocation& test_location = state->GetCodeLocation(test_name); |
766 | |
767 | typedef typename Tests::Head Head; |
768 | |
769 | // First, register the first test in 'Test' for each type in 'Types'. |
770 | TypeParameterizedTest<Fixture, Head, Types>::Register( |
771 | prefix, test_location, case_name, test_names, 0, type_names); |
772 | |
773 | // Next, recurses (at compile time) with the tail of the test list. |
774 | return TypeParameterizedTestSuite<Fixture, typename Tests::Tail, |
775 | Types>::Register(prefix, code_location, |
776 | state, case_name, |
777 | SkipComma(test_names), |
778 | type_names); |
779 | } |
780 | }; |
781 | |
782 | // The base case for the compile time recursion. |
783 | template <GTEST_TEMPLATE_ Fixture, typename Types> |
784 | class TypeParameterizedTestSuite<Fixture, Templates0, Types> { |
785 | public: |
786 | static bool Register(const char* /*prefix*/, const CodeLocation&, |
787 | const TypedTestSuitePState* /*state*/, |
788 | const char* /*case_name*/, const char* /*test_names*/, |
789 | const std::vector<std::string>& = |
790 | std::vector<std::string>() /*type_names*/) { |
791 | return true; |
792 | } |
793 | }; |
794 | |
795 | #endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P |
796 | |
797 | // Returns the current OS stack trace as an std::string. |
798 | // |
799 | // The maximum number of stack frames to be included is specified by |
800 | // the gtest_stack_trace_depth flag. The skip_count parameter |
801 | // specifies the number of top frames to be skipped, which doesn't |
802 | // count against the number of frames to be included. |
803 | // |
804 | // For example, if Foo() calls Bar(), which in turn calls |
805 | // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in |
806 | // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't. |
807 | GTEST_API_ std::string GetCurrentOsStackTraceExceptTop( |
808 | UnitTest* unit_test, int skip_count); |
809 | |
810 | // Helpers for suppressing warnings on unreachable code or constant |
811 | // condition. |
812 | |
813 | // Always returns true. |
814 | GTEST_API_ bool AlwaysTrue(); |
815 | |
816 | // Always returns false. |
817 | inline bool AlwaysFalse() { return !AlwaysTrue(); } |
818 | |
819 | // Helper for suppressing false warning from Clang on a const char* |
820 | // variable declared in a conditional expression always being NULL in |
821 | // the else branch. |
822 | struct GTEST_API_ ConstCharPtr { |
823 | ConstCharPtr(const char* str) : value(str) {} |
824 | operator bool() const { return true; } |
825 | const char* value; |
826 | }; |
827 | |
828 | // A simple Linear Congruential Generator for generating random |
829 | // numbers with a uniform distribution. Unlike rand() and srand(), it |
830 | // doesn't use global state (and therefore can't interfere with user |
831 | // code). Unlike rand_r(), it's portable. An LCG isn't very random, |
832 | // but it's good enough for our purposes. |
833 | class GTEST_API_ Random { |
834 | public: |
835 | static const UInt32 kMaxRange = 1u << 31; |
836 | |
837 | explicit Random(UInt32 seed) : state_(seed) {} |
838 | |
839 | void Reseed(UInt32 seed) { state_ = seed; } |
840 | |
841 | // Generates a random number from [0, range). Crashes if 'range' is |
842 | // 0 or greater than kMaxRange. |
843 | UInt32 Generate(UInt32 range); |
844 | |
845 | private: |
846 | UInt32 state_; |
847 | GTEST_DISALLOW_COPY_AND_ASSIGN_(Random); |
848 | }; |
849 | |
850 | // Turns const U&, U&, const U, and U all into U. |
851 | #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \ |
852 | typename std::remove_const<typename std::remove_reference<T>::type>::type |
853 | |
854 | // IsAProtocolMessage<T>::value is a compile-time bool constant that's |
855 | // true if and only if T is type proto2::Message or a subclass of it. |
856 | template <typename T> |
857 | struct IsAProtocolMessage |
858 | : public bool_constant< |
859 | std::is_convertible<const T*, const ::proto2::Message*>::value> {}; |
860 | |
861 | // When the compiler sees expression IsContainerTest<C>(0), if C is an |
862 | // STL-style container class, the first overload of IsContainerTest |
863 | // will be viable (since both C::iterator* and C::const_iterator* are |
864 | // valid types and NULL can be implicitly converted to them). It will |
865 | // be picked over the second overload as 'int' is a perfect match for |
866 | // the type of argument 0. If C::iterator or C::const_iterator is not |
867 | // a valid type, the first overload is not viable, and the second |
868 | // overload will be picked. Therefore, we can determine whether C is |
869 | // a container class by checking the type of IsContainerTest<C>(0). |
870 | // The value of the expression is insignificant. |
871 | // |
872 | // In C++11 mode we check the existence of a const_iterator and that an |
873 | // iterator is properly implemented for the container. |
874 | // |
875 | // For pre-C++11 that we look for both C::iterator and C::const_iterator. |
876 | // The reason is that C++ injects the name of a class as a member of the |
877 | // class itself (e.g. you can refer to class iterator as either |
878 | // 'iterator' or 'iterator::iterator'). If we look for C::iterator |
879 | // only, for example, we would mistakenly think that a class named |
880 | // iterator is an STL container. |
881 | // |
882 | // Also note that the simpler approach of overloading |
883 | // IsContainerTest(typename C::const_iterator*) and |
884 | // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++. |
885 | typedef int IsContainer; |
886 | template <class C, |
887 | class Iterator = decltype(::std::declval<const C&>().begin()), |
888 | class = decltype(::std::declval<const C&>().end()), |
889 | class = decltype(++::std::declval<Iterator&>()), |
890 | class = decltype(*::std::declval<Iterator>()), |
891 | class = typename C::const_iterator> |
892 | IsContainer IsContainerTest(int /* dummy */) { |
893 | return 0; |
894 | } |
895 | |
896 | typedef char IsNotContainer; |
897 | template <class C> |
898 | IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; } |
899 | |
900 | // Trait to detect whether a type T is a hash table. |
901 | // The heuristic used is that the type contains an inner type `hasher` and does |
902 | // not contain an inner type `reverse_iterator`. |
903 | // If the container is iterable in reverse, then order might actually matter. |
904 | template <typename T> |
905 | struct IsHashTable { |
906 | private: |
907 | template <typename U> |
908 | static char test(typename U::hasher*, typename U::reverse_iterator*); |
909 | template <typename U> |
910 | static int test(typename U::hasher*, ...); |
911 | template <typename U> |
912 | static char test(...); |
913 | |
914 | public: |
915 | static const bool value = sizeof(test<T>(nullptr, nullptr)) == sizeof(int); |
916 | }; |
917 | |
918 | template <typename T> |
919 | const bool IsHashTable<T>::value; |
920 | |
921 | template <typename C, |
922 | bool = sizeof(IsContainerTest<C>(0)) == sizeof(IsContainer)> |
923 | struct IsRecursiveContainerImpl; |
924 | |
925 | template <typename C> |
926 | struct IsRecursiveContainerImpl<C, false> : public std::false_type {}; |
927 | |
928 | // Since the IsRecursiveContainerImpl depends on the IsContainerTest we need to |
929 | // obey the same inconsistencies as the IsContainerTest, namely check if |
930 | // something is a container is relying on only const_iterator in C++11 and |
931 | // is relying on both const_iterator and iterator otherwise |
932 | template <typename C> |
933 | struct IsRecursiveContainerImpl<C, true> { |
934 | using value_type = decltype(*std::declval<typename C::const_iterator>()); |
935 | using type = |
936 | std::is_same<typename std::remove_const< |
937 | typename std::remove_reference<value_type>::type>::type, |
938 | C>; |
939 | }; |
940 | |
941 | // IsRecursiveContainer<Type> is a unary compile-time predicate that |
942 | // evaluates whether C is a recursive container type. A recursive container |
943 | // type is a container type whose value_type is equal to the container type |
944 | // itself. An example for a recursive container type is |
945 | // boost::filesystem::path, whose iterator has a value_type that is equal to |
946 | // boost::filesystem::path. |
947 | template <typename C> |
948 | struct IsRecursiveContainer : public IsRecursiveContainerImpl<C>::type {}; |
949 | |
950 | // Utilities for native arrays. |
951 | |
952 | // ArrayEq() compares two k-dimensional native arrays using the |
953 | // elements' operator==, where k can be any integer >= 0. When k is |
954 | // 0, ArrayEq() degenerates into comparing a single pair of values. |
955 | |
956 | template <typename T, typename U> |
957 | bool ArrayEq(const T* lhs, size_t size, const U* rhs); |
958 | |
959 | // This generic version is used when k is 0. |
960 | template <typename T, typename U> |
961 | inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; } |
962 | |
963 | // This overload is used when k >= 1. |
964 | template <typename T, typename U, size_t N> |
965 | inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) { |
966 | return internal::ArrayEq(lhs, N, rhs); |
967 | } |
968 | |
969 | // This helper reduces code bloat. If we instead put its logic inside |
970 | // the previous ArrayEq() function, arrays with different sizes would |
971 | // lead to different copies of the template code. |
972 | template <typename T, typename U> |
973 | bool ArrayEq(const T* lhs, size_t size, const U* rhs) { |
974 | for (size_t i = 0; i != size; i++) { |
975 | if (!internal::ArrayEq(lhs[i], rhs[i])) |
976 | return false; |
977 | } |
978 | return true; |
979 | } |
980 | |
981 | // Finds the first element in the iterator range [begin, end) that |
982 | // equals elem. Element may be a native array type itself. |
983 | template <typename Iter, typename Element> |
984 | Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) { |
985 | for (Iter it = begin; it != end; ++it) { |
986 | if (internal::ArrayEq(*it, elem)) |
987 | return it; |
988 | } |
989 | return end; |
990 | } |
991 | |
992 | // CopyArray() copies a k-dimensional native array using the elements' |
993 | // operator=, where k can be any integer >= 0. When k is 0, |
994 | // CopyArray() degenerates into copying a single value. |
995 | |
996 | template <typename T, typename U> |
997 | void CopyArray(const T* from, size_t size, U* to); |
998 | |
999 | // This generic version is used when k is 0. |
1000 | template <typename T, typename U> |
1001 | inline void CopyArray(const T& from, U* to) { *to = from; } |
1002 | |
1003 | // This overload is used when k >= 1. |
1004 | template <typename T, typename U, size_t N> |
1005 | inline void CopyArray(const T(&from)[N], U(*to)[N]) { |
1006 | internal::CopyArray(from, N, *to); |
1007 | } |
1008 | |
1009 | // This helper reduces code bloat. If we instead put its logic inside |
1010 | // the previous CopyArray() function, arrays with different sizes |
1011 | // would lead to different copies of the template code. |
1012 | template <typename T, typename U> |
1013 | void CopyArray(const T* from, size_t size, U* to) { |
1014 | for (size_t i = 0; i != size; i++) { |
1015 | internal::CopyArray(from[i], to + i); |
1016 | } |
1017 | } |
1018 | |
1019 | // The relation between an NativeArray object (see below) and the |
1020 | // native array it represents. |
1021 | // We use 2 different structs to allow non-copyable types to be used, as long |
1022 | // as RelationToSourceReference() is passed. |
1023 | struct RelationToSourceReference {}; |
1024 | struct RelationToSourceCopy {}; |
1025 | |
1026 | // Adapts a native array to a read-only STL-style container. Instead |
1027 | // of the complete STL container concept, this adaptor only implements |
1028 | // members useful for Google Mock's container matchers. New members |
1029 | // should be added as needed. To simplify the implementation, we only |
1030 | // support Element being a raw type (i.e. having no top-level const or |
1031 | // reference modifier). It's the client's responsibility to satisfy |
1032 | // this requirement. Element can be an array type itself (hence |
1033 | // multi-dimensional arrays are supported). |
1034 | template <typename Element> |
1035 | class NativeArray { |
1036 | public: |
1037 | // STL-style container typedefs. |
1038 | typedef Element value_type; |
1039 | typedef Element* iterator; |
1040 | typedef const Element* const_iterator; |
1041 | |
1042 | // Constructs from a native array. References the source. |
1043 | NativeArray(const Element* array, size_t count, RelationToSourceReference) { |
1044 | InitRef(array, count); |
1045 | } |
1046 | |
1047 | // Constructs from a native array. Copies the source. |
1048 | NativeArray(const Element* array, size_t count, RelationToSourceCopy) { |
1049 | InitCopy(array, count); |
1050 | } |
1051 | |
1052 | // Copy constructor. |
1053 | NativeArray(const NativeArray& rhs) { |
1054 | (this->*rhs.clone_)(rhs.array_, rhs.size_); |
1055 | } |
1056 | |
1057 | ~NativeArray() { |
1058 | if (clone_ != &NativeArray::InitRef) |
1059 | delete[] array_; |
1060 | } |
1061 | |
1062 | // STL-style container methods. |
1063 | size_t size() const { return size_; } |
1064 | const_iterator begin() const { return array_; } |
1065 | const_iterator end() const { return array_ + size_; } |
1066 | bool operator==(const NativeArray& rhs) const { |
1067 | return size() == rhs.size() && |
1068 | ArrayEq(begin(), size(), rhs.begin()); |
1069 | } |
1070 | |
1071 | private: |
1072 | static_assert(!std::is_const<Element>::value, "Type must not be const" ); |
1073 | static_assert(!std::is_reference<Element>::value, |
1074 | "Type must not be a reference" ); |
1075 | |
1076 | // Initializes this object with a copy of the input. |
1077 | void InitCopy(const Element* array, size_t a_size) { |
1078 | Element* const copy = new Element[a_size]; |
1079 | CopyArray(array, a_size, copy); |
1080 | array_ = copy; |
1081 | size_ = a_size; |
1082 | clone_ = &NativeArray::InitCopy; |
1083 | } |
1084 | |
1085 | // Initializes this object with a reference of the input. |
1086 | void InitRef(const Element* array, size_t a_size) { |
1087 | array_ = array; |
1088 | size_ = a_size; |
1089 | clone_ = &NativeArray::InitRef; |
1090 | } |
1091 | |
1092 | const Element* array_; |
1093 | size_t size_; |
1094 | void (NativeArray::*clone_)(const Element*, size_t); |
1095 | |
1096 | GTEST_DISALLOW_ASSIGN_(NativeArray); |
1097 | }; |
1098 | |
1099 | // Backport of std::index_sequence. |
1100 | template <size_t... Is> |
1101 | struct IndexSequence { |
1102 | using type = IndexSequence; |
1103 | }; |
1104 | |
1105 | // Double the IndexSequence, and one if plus_one is true. |
1106 | template <bool plus_one, typename T, size_t sizeofT> |
1107 | struct DoubleSequence; |
1108 | template <size_t... I, size_t sizeofT> |
1109 | struct DoubleSequence<true, IndexSequence<I...>, sizeofT> { |
1110 | using type = IndexSequence<I..., (sizeofT + I)..., 2 * sizeofT>; |
1111 | }; |
1112 | template <size_t... I, size_t sizeofT> |
1113 | struct DoubleSequence<false, IndexSequence<I...>, sizeofT> { |
1114 | using type = IndexSequence<I..., (sizeofT + I)...>; |
1115 | }; |
1116 | |
1117 | // Backport of std::make_index_sequence. |
1118 | // It uses O(ln(N)) instantiation depth. |
1119 | template <size_t N> |
1120 | struct MakeIndexSequence |
1121 | : DoubleSequence<N % 2 == 1, typename MakeIndexSequence<N / 2>::type, |
1122 | N / 2>::type {}; |
1123 | |
1124 | template <> |
1125 | struct MakeIndexSequence<0> : IndexSequence<> {}; |
1126 | |
1127 | // FIXME: This implementation of ElemFromList is O(1) in instantiation depth, |
1128 | // but it is O(N^2) in total instantiations. Not sure if this is the best |
1129 | // tradeoff, as it will make it somewhat slow to compile. |
1130 | template <typename T, size_t, size_t> |
1131 | struct ElemFromListImpl {}; |
1132 | |
1133 | template <typename T, size_t I> |
1134 | struct ElemFromListImpl<T, I, I> { |
1135 | using type = T; |
1136 | }; |
1137 | |
1138 | // Get the Nth element from T... |
1139 | // It uses O(1) instantiation depth. |
1140 | template <size_t N, typename I, typename... T> |
1141 | struct ElemFromList; |
1142 | |
1143 | template <size_t N, size_t... I, typename... T> |
1144 | struct ElemFromList<N, IndexSequence<I...>, T...> |
1145 | : ElemFromListImpl<T, N, I>... {}; |
1146 | |
1147 | template <typename... T> |
1148 | class FlatTuple; |
1149 | |
1150 | template <typename Derived, size_t I> |
1151 | struct FlatTupleElemBase; |
1152 | |
1153 | template <typename... T, size_t I> |
1154 | struct FlatTupleElemBase<FlatTuple<T...>, I> { |
1155 | using value_type = |
1156 | typename ElemFromList<I, typename MakeIndexSequence<sizeof...(T)>::type, |
1157 | T...>::type; |
1158 | FlatTupleElemBase() = default; |
1159 | explicit FlatTupleElemBase(value_type t) : value(std::move(t)) {} |
1160 | value_type value; |
1161 | }; |
1162 | |
1163 | template <typename Derived, typename Idx> |
1164 | struct FlatTupleBase; |
1165 | |
1166 | template <size_t... Idx, typename... T> |
1167 | struct FlatTupleBase<FlatTuple<T...>, IndexSequence<Idx...>> |
1168 | : FlatTupleElemBase<FlatTuple<T...>, Idx>... { |
1169 | using Indices = IndexSequence<Idx...>; |
1170 | FlatTupleBase() = default; |
1171 | explicit FlatTupleBase(T... t) |
1172 | : FlatTupleElemBase<FlatTuple<T...>, Idx>(std::move(t))... {} |
1173 | }; |
1174 | |
1175 | // Analog to std::tuple but with different tradeoffs. |
1176 | // This class minimizes the template instantiation depth, thus allowing more |
1177 | // elements that std::tuple would. std::tuple has been seen to require an |
1178 | // instantiation depth of more than 10x the number of elements in some |
1179 | // implementations. |
1180 | // FlatTuple and ElemFromList are not recursive and have a fixed depth |
1181 | // regardless of T... |
1182 | // MakeIndexSequence, on the other hand, it is recursive but with an |
1183 | // instantiation depth of O(ln(N)). |
1184 | template <typename... T> |
1185 | class FlatTuple |
1186 | : private FlatTupleBase<FlatTuple<T...>, |
1187 | typename MakeIndexSequence<sizeof...(T)>::type> { |
1188 | using Indices = typename FlatTuple::FlatTupleBase::Indices; |
1189 | |
1190 | public: |
1191 | FlatTuple() = default; |
1192 | explicit FlatTuple(T... t) : FlatTuple::FlatTupleBase(std::move(t)...) {} |
1193 | |
1194 | template <size_t I> |
1195 | const typename ElemFromList<I, Indices, T...>::type& Get() const { |
1196 | return static_cast<const FlatTupleElemBase<FlatTuple, I>*>(this)->value; |
1197 | } |
1198 | |
1199 | template <size_t I> |
1200 | typename ElemFromList<I, Indices, T...>::type& Get() { |
1201 | return static_cast<FlatTupleElemBase<FlatTuple, I>*>(this)->value; |
1202 | } |
1203 | }; |
1204 | |
1205 | // Utility functions to be called with static_assert to induce deprecation |
1206 | // warnings. |
1207 | GTEST_INTERNAL_DEPRECATED( |
1208 | "INSTANTIATE_TEST_CASE_P is deprecated, please use " |
1209 | "INSTANTIATE_TEST_SUITE_P" ) |
1210 | constexpr bool InstantiateTestCase_P_IsDeprecated() { return true; } |
1211 | |
1212 | GTEST_INTERNAL_DEPRECATED( |
1213 | "TYPED_TEST_CASE_P is deprecated, please use " |
1214 | "TYPED_TEST_SUITE_P" ) |
1215 | constexpr bool TypedTestCase_P_IsDeprecated() { return true; } |
1216 | |
1217 | GTEST_INTERNAL_DEPRECATED( |
1218 | "TYPED_TEST_CASE is deprecated, please use " |
1219 | "TYPED_TEST_SUITE" ) |
1220 | constexpr bool TypedTestCaseIsDeprecated() { return true; } |
1221 | |
1222 | GTEST_INTERNAL_DEPRECATED( |
1223 | "REGISTER_TYPED_TEST_CASE_P is deprecated, please use " |
1224 | "REGISTER_TYPED_TEST_SUITE_P" ) |
1225 | constexpr bool RegisterTypedTestCase_P_IsDeprecated() { return true; } |
1226 | |
1227 | GTEST_INTERNAL_DEPRECATED( |
1228 | "INSTANTIATE_TYPED_TEST_CASE_P is deprecated, please use " |
1229 | "INSTANTIATE_TYPED_TEST_SUITE_P" ) |
1230 | constexpr bool InstantiateTypedTestCase_P_IsDeprecated() { return true; } |
1231 | |
1232 | } // namespace internal |
1233 | } // namespace testing |
1234 | |
1235 | #define GTEST_MESSAGE_AT_(file, line, message, result_type) \ |
1236 | ::testing::internal::AssertHelper(result_type, file, line, message) \ |
1237 | = ::testing::Message() |
1238 | |
1239 | #define GTEST_MESSAGE_(message, result_type) \ |
1240 | GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type) |
1241 | |
1242 | #define GTEST_FATAL_FAILURE_(message) \ |
1243 | return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure) |
1244 | |
1245 | #define GTEST_NONFATAL_FAILURE_(message) \ |
1246 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure) |
1247 | |
1248 | #define GTEST_SUCCESS_(message) \ |
1249 | GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess) |
1250 | |
1251 | #define GTEST_SKIP_(message) \ |
1252 | return GTEST_MESSAGE_(message, ::testing::TestPartResult::kSkip) |
1253 | |
1254 | // Suppress MSVC warning 4072 (unreachable code) for the code following |
1255 | // statement if it returns or throws (or doesn't return or throw in some |
1256 | // situations). |
1257 | #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \ |
1258 | if (::testing::internal::AlwaysTrue()) { statement; } |
1259 | |
1260 | #define GTEST_TEST_THROW_(statement, expected_exception, fail) \ |
1261 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1262 | if (::testing::internal::ConstCharPtr gtest_msg = "") { \ |
1263 | bool gtest_caught_expected = false; \ |
1264 | try { \ |
1265 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1266 | } \ |
1267 | catch (expected_exception const&) { \ |
1268 | gtest_caught_expected = true; \ |
1269 | } \ |
1270 | catch (...) { \ |
1271 | gtest_msg.value = \ |
1272 | "Expected: " #statement " throws an exception of type " \ |
1273 | #expected_exception ".\n Actual: it throws a different type."; \ |
1274 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1275 | } \ |
1276 | if (!gtest_caught_expected) { \ |
1277 | gtest_msg.value = \ |
1278 | "Expected: " #statement " throws an exception of type " \ |
1279 | #expected_exception ".\n Actual: it throws nothing."; \ |
1280 | goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \ |
1281 | } \ |
1282 | } else \ |
1283 | GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \ |
1284 | fail(gtest_msg.value) |
1285 | |
1286 | #define GTEST_TEST_NO_THROW_(statement, fail) \ |
1287 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1288 | if (::testing::internal::AlwaysTrue()) { \ |
1289 | try { \ |
1290 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1291 | } \ |
1292 | catch (...) { \ |
1293 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \ |
1294 | } \ |
1295 | } else \ |
1296 | GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \ |
1297 | fail("Expected: " #statement " doesn't throw an exception.\n" \ |
1298 | " Actual: it throws.") |
1299 | |
1300 | #define GTEST_TEST_ANY_THROW_(statement, fail) \ |
1301 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1302 | if (::testing::internal::AlwaysTrue()) { \ |
1303 | bool gtest_caught_any = false; \ |
1304 | try { \ |
1305 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1306 | } \ |
1307 | catch (...) { \ |
1308 | gtest_caught_any = true; \ |
1309 | } \ |
1310 | if (!gtest_caught_any) { \ |
1311 | goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \ |
1312 | } \ |
1313 | } else \ |
1314 | GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \ |
1315 | fail("Expected: " #statement " throws an exception.\n" \ |
1316 | " Actual: it doesn't.") |
1317 | |
1318 | |
1319 | // Implements Boolean test assertions such as EXPECT_TRUE. expression can be |
1320 | // either a boolean expression or an AssertionResult. text is a textual |
1321 | // represenation of expression as it was passed into the EXPECT_TRUE. |
1322 | #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \ |
1323 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1324 | if (const ::testing::AssertionResult gtest_ar_ = \ |
1325 | ::testing::AssertionResult(expression)) \ |
1326 | ; \ |
1327 | else \ |
1328 | fail(::testing::internal::GetBoolAssertionFailureMessage(\ |
1329 | gtest_ar_, text, #actual, #expected).c_str()) |
1330 | |
1331 | #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \ |
1332 | GTEST_AMBIGUOUS_ELSE_BLOCKER_ \ |
1333 | if (::testing::internal::AlwaysTrue()) { \ |
1334 | ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \ |
1335 | GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \ |
1336 | if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \ |
1337 | goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \ |
1338 | } \ |
1339 | } else \ |
1340 | GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \ |
1341 | fail("Expected: " #statement " doesn't generate new fatal " \ |
1342 | "failures in the current thread.\n" \ |
1343 | " Actual: it does.") |
1344 | |
1345 | // Expands to the name of the class that implements the given test. |
1346 | #define GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
1347 | test_suite_name##_##test_name##_Test |
1348 | |
1349 | // Helper macro for defining tests. |
1350 | #define GTEST_TEST_(test_suite_name, test_name, parent_class, parent_id) \ |
1351 | class GTEST_TEST_CLASS_NAME_(test_suite_name, test_name) \ |
1352 | : public parent_class { \ |
1353 | public: \ |
1354 | GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)() {} \ |
1355 | \ |
1356 | private: \ |
1357 | virtual void TestBody(); \ |
1358 | static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_; \ |
1359 | GTEST_DISALLOW_COPY_AND_ASSIGN_(GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
1360 | test_name)); \ |
1361 | }; \ |
1362 | \ |
1363 | ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_suite_name, \ |
1364 | test_name)::test_info_ = \ |
1365 | ::testing::internal::MakeAndRegisterTestInfo( \ |
1366 | #test_suite_name, #test_name, nullptr, nullptr, \ |
1367 | ::testing::internal::CodeLocation(__FILE__, __LINE__), (parent_id), \ |
1368 | ::testing::internal::SuiteApiResolver< \ |
1369 | parent_class>::GetSetUpCaseOrSuite(__FILE__, __LINE__), \ |
1370 | ::testing::internal::SuiteApiResolver< \ |
1371 | parent_class>::GetTearDownCaseOrSuite(__FILE__, __LINE__), \ |
1372 | new ::testing::internal::TestFactoryImpl<GTEST_TEST_CLASS_NAME_( \ |
1373 | test_suite_name, test_name)>); \ |
1374 | void GTEST_TEST_CLASS_NAME_(test_suite_name, test_name)::TestBody() |
1375 | |
1376 | #endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_ |
1377 | |