| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /** |
| 4 | ******************************************************************************* |
| 5 | * Copyright (C) 2006-2016, International Business Machines Corporation |
| 6 | * and others. All Rights Reserved. |
| 7 | ******************************************************************************* |
| 8 | */ |
| 9 | |
| 10 | #include <utility> |
| 11 | |
| 12 | #include "unicode/utypes.h" |
| 13 | |
| 14 | #if !UCONFIG_NO_BREAK_ITERATION |
| 15 | |
| 16 | #include "brkeng.h" |
| 17 | #include "dictbe.h" |
| 18 | #include "unicode/uniset.h" |
| 19 | #include "unicode/chariter.h" |
| 20 | #include "unicode/ubrk.h" |
| 21 | #include "utracimp.h" |
| 22 | #include "uvectr32.h" |
| 23 | #include "uvector.h" |
| 24 | #include "uassert.h" |
| 25 | #include "unicode/normlzr.h" |
| 26 | #include "cmemory.h" |
| 27 | #include "dictionarydata.h" |
| 28 | |
| 29 | U_NAMESPACE_BEGIN |
| 30 | |
| 31 | /* |
| 32 | ****************************************************************** |
| 33 | */ |
| 34 | |
| 35 | DictionaryBreakEngine::DictionaryBreakEngine() { |
| 36 | } |
| 37 | |
| 38 | DictionaryBreakEngine::~DictionaryBreakEngine() { |
| 39 | } |
| 40 | |
| 41 | UBool |
| 42 | DictionaryBreakEngine::handles(UChar32 c) const { |
| 43 | return fSet.contains(c); |
| 44 | } |
| 45 | |
| 46 | int32_t |
| 47 | DictionaryBreakEngine::findBreaks( UText *text, |
| 48 | int32_t startPos, |
| 49 | int32_t endPos, |
| 50 | UVector32 &foundBreaks ) const { |
| 51 | (void)startPos; // TODO: remove this param? |
| 52 | int32_t result = 0; |
| 53 | |
| 54 | // Find the span of characters included in the set. |
| 55 | // The span to break begins at the current position in the text, and |
| 56 | // extends towards the start or end of the text, depending on 'reverse'. |
| 57 | |
| 58 | int32_t start = (int32_t)utext_getNativeIndex(text); |
| 59 | int32_t current; |
| 60 | int32_t rangeStart; |
| 61 | int32_t rangeEnd; |
| 62 | UChar32 c = utext_current32(text); |
| 63 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
| 64 | utext_next32(text); // TODO: recast loop for postincrement |
| 65 | c = utext_current32(text); |
| 66 | } |
| 67 | rangeStart = start; |
| 68 | rangeEnd = current; |
| 69 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); |
| 70 | utext_setNativeIndex(text, current); |
| 71 | |
| 72 | return result; |
| 73 | } |
| 74 | |
| 75 | void |
| 76 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
| 77 | fSet = set; |
| 78 | // Compact for caching |
| 79 | fSet.compact(); |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | ****************************************************************** |
| 84 | * PossibleWord |
| 85 | */ |
| 86 | |
| 87 | // Helper class for improving readability of the Thai/Lao/Khmer word break |
| 88 | // algorithm. The implementation is completely inline. |
| 89 | |
| 90 | // List size, limited by the maximum number of words in the dictionary |
| 91 | // that form a nested sequence. |
| 92 | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; |
| 93 | |
| 94 | class PossibleWord { |
| 95 | private: |
| 96 | // list of word candidate lengths, in increasing length order |
| 97 | // TODO: bytes would be sufficient for word lengths. |
| 98 | int32_t count; // Count of candidates |
| 99 | int32_t prefix; // The longest match with a dictionary word |
| 100 | int32_t offset; // Offset in the text of these candidates |
| 101 | int32_t mark; // The preferred candidate's offset |
| 102 | int32_t current; // The candidate we're currently looking at |
| 103 | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. |
| 104 | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. |
| 105 | |
| 106 | public: |
| 107 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {} |
| 108 | ~PossibleWord() {} |
| 109 | |
| 110 | // Fill the list of candidates if needed, select the longest, and return the number found |
| 111 | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
| 112 | |
| 113 | // Select the currently marked candidate, point after it in the text, and invalidate self |
| 114 | int32_t acceptMarked( UText *text ); |
| 115 | |
| 116 | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
| 117 | // and point the text after it |
| 118 | UBool backUp( UText *text ); |
| 119 | |
| 120 | // Return the longest prefix this candidate location shares with a dictionary word |
| 121 | // Return value is in code points. |
| 122 | int32_t longestPrefix() { return prefix; } |
| 123 | |
| 124 | // Mark the current candidate as the one we like |
| 125 | void markCurrent() { mark = current; } |
| 126 | |
| 127 | // Get length in code points of the marked word. |
| 128 | int32_t markedCPLength() { return cpLengths[mark]; } |
| 129 | }; |
| 130 | |
| 131 | |
| 132 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
| 133 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
| 134 | int32_t start = (int32_t)utext_getNativeIndex(text); |
| 135 | if (start != offset) { |
| 136 | offset = start; |
| 137 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); |
| 138 | // Dictionary leaves text after longest prefix, not longest word. Back up. |
| 139 | if (count <= 0) { |
| 140 | utext_setNativeIndex(text, start); |
| 141 | } |
| 142 | } |
| 143 | if (count > 0) { |
| 144 | utext_setNativeIndex(text, start+cuLengths[count-1]); |
| 145 | } |
| 146 | current = count-1; |
| 147 | mark = current; |
| 148 | return count; |
| 149 | } |
| 150 | |
| 151 | int32_t |
| 152 | PossibleWord::acceptMarked( UText *text ) { |
| 153 | utext_setNativeIndex(text, offset + cuLengths[mark]); |
| 154 | return cuLengths[mark]; |
| 155 | } |
| 156 | |
| 157 | |
| 158 | UBool |
| 159 | PossibleWord::backUp( UText *text ) { |
| 160 | if (current > 0) { |
| 161 | utext_setNativeIndex(text, offset + cuLengths[--current]); |
| 162 | return TRUE; |
| 163 | } |
| 164 | return FALSE; |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | ****************************************************************** |
| 169 | * ThaiBreakEngine |
| 170 | */ |
| 171 | |
| 172 | // How many words in a row are "good enough"? |
| 173 | static const int32_t THAI_LOOKAHEAD = 3; |
| 174 | |
| 175 | // Will not combine a non-word with a preceding dictionary word longer than this |
| 176 | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; |
| 177 | |
| 178 | // Will not combine a non-word that shares at least this much prefix with a |
| 179 | // dictionary word, with a preceding word |
| 180 | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; |
| 181 | |
| 182 | // Ellision character |
| 183 | static const int32_t THAI_PAIYANNOI = 0x0E2F; |
| 184 | |
| 185 | // Repeat character |
| 186 | static const int32_t THAI_MAIYAMOK = 0x0E46; |
| 187 | |
| 188 | // Minimum word size |
| 189 | static const int32_t THAI_MIN_WORD = 2; |
| 190 | |
| 191 | // Minimum number of characters for two words |
| 192 | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; |
| 193 | |
| 194 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
| 195 | : DictionaryBreakEngine(), |
| 196 | fDictionary(adoptDictionary) |
| 197 | { |
| 198 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
| 199 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Thai" ); |
| 200 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]" ), status); |
| 201 | if (U_SUCCESS(status)) { |
| 202 | setCharacters(fThaiWordSet); |
| 203 | } |
| 204 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]" ), status); |
| 205 | fMarkSet.add(0x0020); |
| 206 | fEndWordSet = fThaiWordSet; |
| 207 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
| 208 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
| 209 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
| 210 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
| 211 | fSuffixSet.add(THAI_PAIYANNOI); |
| 212 | fSuffixSet.add(THAI_MAIYAMOK); |
| 213 | |
| 214 | // Compact for caching. |
| 215 | fMarkSet.compact(); |
| 216 | fEndWordSet.compact(); |
| 217 | fBeginWordSet.compact(); |
| 218 | fSuffixSet.compact(); |
| 219 | UTRACE_EXIT_STATUS(status); |
| 220 | } |
| 221 | |
| 222 | ThaiBreakEngine::~ThaiBreakEngine() { |
| 223 | delete fDictionary; |
| 224 | } |
| 225 | |
| 226 | int32_t |
| 227 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, |
| 228 | int32_t rangeStart, |
| 229 | int32_t rangeEnd, |
| 230 | UVector32 &foundBreaks ) const { |
| 231 | utext_setNativeIndex(text, rangeStart); |
| 232 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); |
| 233 | if (utext_getNativeIndex(text) >= rangeEnd) { |
| 234 | return 0; // Not enough characters for two words |
| 235 | } |
| 236 | utext_setNativeIndex(text, rangeStart); |
| 237 | |
| 238 | |
| 239 | uint32_t wordsFound = 0; |
| 240 | int32_t cpWordLength = 0; // Word Length in Code Points. |
| 241 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) |
| 242 | int32_t current; |
| 243 | UErrorCode status = U_ZERO_ERROR; |
| 244 | PossibleWord words[THAI_LOOKAHEAD]; |
| 245 | |
| 246 | utext_setNativeIndex(text, rangeStart); |
| 247 | |
| 248 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
| 249 | cpWordLength = 0; |
| 250 | cuWordLength = 0; |
| 251 | |
| 252 | // Look for candidate words at the current position |
| 253 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 254 | |
| 255 | // If we found exactly one, use that |
| 256 | if (candidates == 1) { |
| 257 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
| 258 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
| 259 | wordsFound += 1; |
| 260 | } |
| 261 | // If there was more than one, see which one can take us forward the most words |
| 262 | else if (candidates > 1) { |
| 263 | // If we're already at the end of the range, we're done |
| 264 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
| 265 | goto foundBest; |
| 266 | } |
| 267 | do { |
| 268 | int32_t wordsMatched = 1; |
| 269 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
| 270 | if (wordsMatched < 2) { |
| 271 | // Followed by another dictionary word; mark first word as a good candidate |
| 272 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); |
| 273 | wordsMatched = 2; |
| 274 | } |
| 275 | |
| 276 | // If we're already at the end of the range, we're done |
| 277 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
| 278 | goto foundBest; |
| 279 | } |
| 280 | |
| 281 | // See if any of the possible second words is followed by a third word |
| 282 | do { |
| 283 | // If we find a third word, stop right away |
| 284 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
| 285 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); |
| 286 | goto foundBest; |
| 287 | } |
| 288 | } |
| 289 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
| 290 | } |
| 291 | } |
| 292 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
| 293 | foundBest: |
| 294 | // Set UText position to after the accepted word. |
| 295 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
| 296 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
| 297 | wordsFound += 1; |
| 298 | } |
| 299 | |
| 300 | // We come here after having either found a word or not. We look ahead to the |
| 301 | // next word. If it's not a dictionary word, we will combine it with the word we |
| 302 | // just found (if there is one), but only if the preceding word does not exceed |
| 303 | // the threshold. |
| 304 | // The text iterator should now be positioned at the end of the word we found. |
| 305 | |
| 306 | UChar32 uc = 0; |
| 307 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { |
| 308 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
| 309 | // no preceding word, or the non-word shares less than the minimum threshold |
| 310 | // of characters with a dictionary word, then scan to resynchronize |
| 311 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
| 312 | && (cuWordLength == 0 |
| 313 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
| 314 | // Look for a plausible word boundary |
| 315 | int32_t remaining = rangeEnd - (current+cuWordLength); |
| 316 | UChar32 pc; |
| 317 | int32_t chars = 0; |
| 318 | for (;;) { |
| 319 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
| 320 | pc = utext_next32(text); |
| 321 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
| 322 | chars += pcSize; |
| 323 | remaining -= pcSize; |
| 324 | if (remaining <= 0) { |
| 325 | break; |
| 326 | } |
| 327 | uc = utext_current32(text); |
| 328 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
| 329 | // Maybe. See if it's in the dictionary. |
| 330 | // NOTE: In the original Apple code, checked that the next |
| 331 | // two characters after uc were not 0x0E4C THANTHAKHAT before |
| 332 | // checking the dictionary. That is just a performance filter, |
| 333 | // but it's not clear it's faster than checking the trie. |
| 334 | int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 335 | utext_setNativeIndex(text, current + cuWordLength + chars); |
| 336 | if (num_candidates > 0) { |
| 337 | break; |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // Bump the word count if there wasn't already one |
| 343 | if (cuWordLength <= 0) { |
| 344 | wordsFound += 1; |
| 345 | } |
| 346 | |
| 347 | // Update the length with the passed-over characters |
| 348 | cuWordLength += chars; |
| 349 | } |
| 350 | else { |
| 351 | // Back up to where we were for next iteration |
| 352 | utext_setNativeIndex(text, current+cuWordLength); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | // Never stop before a combining mark. |
| 357 | int32_t currPos; |
| 358 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
| 359 | utext_next32(text); |
| 360 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
| 361 | } |
| 362 | |
| 363 | // Look ahead for possible suffixes if a dictionary word does not follow. |
| 364 | // We do this in code rather than using a rule so that the heuristic |
| 365 | // resynch continues to function. For example, one of the suffix characters |
| 366 | // could be a typo in the middle of a word. |
| 367 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { |
| 368 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
| 369 | && fSuffixSet.contains(uc = utext_current32(text))) { |
| 370 | if (uc == THAI_PAIYANNOI) { |
| 371 | if (!fSuffixSet.contains(utext_previous32(text))) { |
| 372 | // Skip over previous end and PAIYANNOI |
| 373 | utext_next32(text); |
| 374 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); |
| 375 | utext_next32(text); |
| 376 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word |
| 377 | uc = utext_current32(text); // Fetch next character |
| 378 | } |
| 379 | else { |
| 380 | // Restore prior position |
| 381 | utext_next32(text); |
| 382 | } |
| 383 | } |
| 384 | if (uc == THAI_MAIYAMOK) { |
| 385 | if (utext_previous32(text) != THAI_MAIYAMOK) { |
| 386 | // Skip over previous end and MAIYAMOK |
| 387 | utext_next32(text); |
| 388 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); |
| 389 | utext_next32(text); |
| 390 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word |
| 391 | } |
| 392 | else { |
| 393 | // Restore prior position |
| 394 | utext_next32(text); |
| 395 | } |
| 396 | } |
| 397 | } |
| 398 | else { |
| 399 | utext_setNativeIndex(text, current+cuWordLength); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | // Did we find a word on this iteration? If so, push it on the break stack |
| 404 | if (cuWordLength > 0) { |
| 405 | foundBreaks.push((current+cuWordLength), status); |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | // Don't return a break for the end of the dictionary range if there is one there. |
| 410 | if (foundBreaks.peeki() >= rangeEnd) { |
| 411 | (void) foundBreaks.popi(); |
| 412 | wordsFound -= 1; |
| 413 | } |
| 414 | |
| 415 | return wordsFound; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | ****************************************************************** |
| 420 | * LaoBreakEngine |
| 421 | */ |
| 422 | |
| 423 | // How many words in a row are "good enough"? |
| 424 | static const int32_t LAO_LOOKAHEAD = 3; |
| 425 | |
| 426 | // Will not combine a non-word with a preceding dictionary word longer than this |
| 427 | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; |
| 428 | |
| 429 | // Will not combine a non-word that shares at least this much prefix with a |
| 430 | // dictionary word, with a preceding word |
| 431 | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; |
| 432 | |
| 433 | // Minimum word size |
| 434 | static const int32_t LAO_MIN_WORD = 2; |
| 435 | |
| 436 | // Minimum number of characters for two words |
| 437 | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; |
| 438 | |
| 439 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
| 440 | : DictionaryBreakEngine(), |
| 441 | fDictionary(adoptDictionary) |
| 442 | { |
| 443 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
| 444 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Laoo" ); |
| 445 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]" ), status); |
| 446 | if (U_SUCCESS(status)) { |
| 447 | setCharacters(fLaoWordSet); |
| 448 | } |
| 449 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]" ), status); |
| 450 | fMarkSet.add(0x0020); |
| 451 | fEndWordSet = fLaoWordSet; |
| 452 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels |
| 453 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) |
| 454 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) |
| 455 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels |
| 456 | |
| 457 | // Compact for caching. |
| 458 | fMarkSet.compact(); |
| 459 | fEndWordSet.compact(); |
| 460 | fBeginWordSet.compact(); |
| 461 | UTRACE_EXIT_STATUS(status); |
| 462 | } |
| 463 | |
| 464 | LaoBreakEngine::~LaoBreakEngine() { |
| 465 | delete fDictionary; |
| 466 | } |
| 467 | |
| 468 | int32_t |
| 469 | LaoBreakEngine::divideUpDictionaryRange( UText *text, |
| 470 | int32_t rangeStart, |
| 471 | int32_t rangeEnd, |
| 472 | UVector32 &foundBreaks ) const { |
| 473 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
| 474 | return 0; // Not enough characters for two words |
| 475 | } |
| 476 | |
| 477 | uint32_t wordsFound = 0; |
| 478 | int32_t cpWordLength = 0; |
| 479 | int32_t cuWordLength = 0; |
| 480 | int32_t current; |
| 481 | UErrorCode status = U_ZERO_ERROR; |
| 482 | PossibleWord words[LAO_LOOKAHEAD]; |
| 483 | |
| 484 | utext_setNativeIndex(text, rangeStart); |
| 485 | |
| 486 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
| 487 | cuWordLength = 0; |
| 488 | cpWordLength = 0; |
| 489 | |
| 490 | // Look for candidate words at the current position |
| 491 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 492 | |
| 493 | // If we found exactly one, use that |
| 494 | if (candidates == 1) { |
| 495 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
| 496 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
| 497 | wordsFound += 1; |
| 498 | } |
| 499 | // If there was more than one, see which one can take us forward the most words |
| 500 | else if (candidates > 1) { |
| 501 | // If we're already at the end of the range, we're done |
| 502 | if (utext_getNativeIndex(text) >= rangeEnd) { |
| 503 | goto foundBest; |
| 504 | } |
| 505 | do { |
| 506 | int32_t wordsMatched = 1; |
| 507 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
| 508 | if (wordsMatched < 2) { |
| 509 | // Followed by another dictionary word; mark first word as a good candidate |
| 510 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); |
| 511 | wordsMatched = 2; |
| 512 | } |
| 513 | |
| 514 | // If we're already at the end of the range, we're done |
| 515 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
| 516 | goto foundBest; |
| 517 | } |
| 518 | |
| 519 | // See if any of the possible second words is followed by a third word |
| 520 | do { |
| 521 | // If we find a third word, stop right away |
| 522 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
| 523 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); |
| 524 | goto foundBest; |
| 525 | } |
| 526 | } |
| 527 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); |
| 528 | } |
| 529 | } |
| 530 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); |
| 531 | foundBest: |
| 532 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
| 533 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
| 534 | wordsFound += 1; |
| 535 | } |
| 536 | |
| 537 | // We come here after having either found a word or not. We look ahead to the |
| 538 | // next word. If it's not a dictionary word, we will combine it withe the word we |
| 539 | // just found (if there is one), but only if the preceding word does not exceed |
| 540 | // the threshold. |
| 541 | // The text iterator should now be positioned at the end of the word we found. |
| 542 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
| 543 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
| 544 | // no preceding word, or the non-word shares less than the minimum threshold |
| 545 | // of characters with a dictionary word, then scan to resynchronize |
| 546 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
| 547 | && (cuWordLength == 0 |
| 548 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
| 549 | // Look for a plausible word boundary |
| 550 | int32_t remaining = rangeEnd - (current + cuWordLength); |
| 551 | UChar32 pc; |
| 552 | UChar32 uc; |
| 553 | int32_t chars = 0; |
| 554 | for (;;) { |
| 555 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
| 556 | pc = utext_next32(text); |
| 557 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
| 558 | chars += pcSize; |
| 559 | remaining -= pcSize; |
| 560 | if (remaining <= 0) { |
| 561 | break; |
| 562 | } |
| 563 | uc = utext_current32(text); |
| 564 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
| 565 | // Maybe. See if it's in the dictionary. |
| 566 | // TODO: this looks iffy; compare with old code. |
| 567 | int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 568 | utext_setNativeIndex(text, current + cuWordLength + chars); |
| 569 | if (num_candidates > 0) { |
| 570 | break; |
| 571 | } |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | // Bump the word count if there wasn't already one |
| 576 | if (cuWordLength <= 0) { |
| 577 | wordsFound += 1; |
| 578 | } |
| 579 | |
| 580 | // Update the length with the passed-over characters |
| 581 | cuWordLength += chars; |
| 582 | } |
| 583 | else { |
| 584 | // Back up to where we were for next iteration |
| 585 | utext_setNativeIndex(text, current + cuWordLength); |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | // Never stop before a combining mark. |
| 590 | int32_t currPos; |
| 591 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
| 592 | utext_next32(text); |
| 593 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
| 594 | } |
| 595 | |
| 596 | // Look ahead for possible suffixes if a dictionary word does not follow. |
| 597 | // We do this in code rather than using a rule so that the heuristic |
| 598 | // resynch continues to function. For example, one of the suffix characters |
| 599 | // could be a typo in the middle of a word. |
| 600 | // NOT CURRENTLY APPLICABLE TO LAO |
| 601 | |
| 602 | // Did we find a word on this iteration? If so, push it on the break stack |
| 603 | if (cuWordLength > 0) { |
| 604 | foundBreaks.push((current+cuWordLength), status); |
| 605 | } |
| 606 | } |
| 607 | |
| 608 | // Don't return a break for the end of the dictionary range if there is one there. |
| 609 | if (foundBreaks.peeki() >= rangeEnd) { |
| 610 | (void) foundBreaks.popi(); |
| 611 | wordsFound -= 1; |
| 612 | } |
| 613 | |
| 614 | return wordsFound; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | ****************************************************************** |
| 619 | * BurmeseBreakEngine |
| 620 | */ |
| 621 | |
| 622 | // How many words in a row are "good enough"? |
| 623 | static const int32_t BURMESE_LOOKAHEAD = 3; |
| 624 | |
| 625 | // Will not combine a non-word with a preceding dictionary word longer than this |
| 626 | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; |
| 627 | |
| 628 | // Will not combine a non-word that shares at least this much prefix with a |
| 629 | // dictionary word, with a preceding word |
| 630 | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; |
| 631 | |
| 632 | // Minimum word size |
| 633 | static const int32_t BURMESE_MIN_WORD = 2; |
| 634 | |
| 635 | // Minimum number of characters for two words |
| 636 | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; |
| 637 | |
| 638 | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
| 639 | : DictionaryBreakEngine(), |
| 640 | fDictionary(adoptDictionary) |
| 641 | { |
| 642 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
| 643 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Mymr" ); |
| 644 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]" ), status); |
| 645 | if (U_SUCCESS(status)) { |
| 646 | setCharacters(fBurmeseWordSet); |
| 647 | } |
| 648 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]" ), status); |
| 649 | fMarkSet.add(0x0020); |
| 650 | fEndWordSet = fBurmeseWordSet; |
| 651 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels |
| 652 | |
| 653 | // Compact for caching. |
| 654 | fMarkSet.compact(); |
| 655 | fEndWordSet.compact(); |
| 656 | fBeginWordSet.compact(); |
| 657 | UTRACE_EXIT_STATUS(status); |
| 658 | } |
| 659 | |
| 660 | BurmeseBreakEngine::~BurmeseBreakEngine() { |
| 661 | delete fDictionary; |
| 662 | } |
| 663 | |
| 664 | int32_t |
| 665 | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, |
| 666 | int32_t rangeStart, |
| 667 | int32_t rangeEnd, |
| 668 | UVector32 &foundBreaks ) const { |
| 669 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { |
| 670 | return 0; // Not enough characters for two words |
| 671 | } |
| 672 | |
| 673 | uint32_t wordsFound = 0; |
| 674 | int32_t cpWordLength = 0; |
| 675 | int32_t cuWordLength = 0; |
| 676 | int32_t current; |
| 677 | UErrorCode status = U_ZERO_ERROR; |
| 678 | PossibleWord words[BURMESE_LOOKAHEAD]; |
| 679 | |
| 680 | utext_setNativeIndex(text, rangeStart); |
| 681 | |
| 682 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
| 683 | cuWordLength = 0; |
| 684 | cpWordLength = 0; |
| 685 | |
| 686 | // Look for candidate words at the current position |
| 687 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 688 | |
| 689 | // If we found exactly one, use that |
| 690 | if (candidates == 1) { |
| 691 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
| 692 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
| 693 | wordsFound += 1; |
| 694 | } |
| 695 | // If there was more than one, see which one can take us forward the most words |
| 696 | else if (candidates > 1) { |
| 697 | // If we're already at the end of the range, we're done |
| 698 | if (utext_getNativeIndex(text) >= rangeEnd) { |
| 699 | goto foundBest; |
| 700 | } |
| 701 | do { |
| 702 | int32_t wordsMatched = 1; |
| 703 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
| 704 | if (wordsMatched < 2) { |
| 705 | // Followed by another dictionary word; mark first word as a good candidate |
| 706 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); |
| 707 | wordsMatched = 2; |
| 708 | } |
| 709 | |
| 710 | // If we're already at the end of the range, we're done |
| 711 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
| 712 | goto foundBest; |
| 713 | } |
| 714 | |
| 715 | // See if any of the possible second words is followed by a third word |
| 716 | do { |
| 717 | // If we find a third word, stop right away |
| 718 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
| 719 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); |
| 720 | goto foundBest; |
| 721 | } |
| 722 | } |
| 723 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); |
| 724 | } |
| 725 | } |
| 726 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); |
| 727 | foundBest: |
| 728 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
| 729 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
| 730 | wordsFound += 1; |
| 731 | } |
| 732 | |
| 733 | // We come here after having either found a word or not. We look ahead to the |
| 734 | // next word. If it's not a dictionary word, we will combine it withe the word we |
| 735 | // just found (if there is one), but only if the preceding word does not exceed |
| 736 | // the threshold. |
| 737 | // The text iterator should now be positioned at the end of the word we found. |
| 738 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { |
| 739 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
| 740 | // no preceding word, or the non-word shares less than the minimum threshold |
| 741 | // of characters with a dictionary word, then scan to resynchronize |
| 742 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
| 743 | && (cuWordLength == 0 |
| 744 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { |
| 745 | // Look for a plausible word boundary |
| 746 | int32_t remaining = rangeEnd - (current + cuWordLength); |
| 747 | UChar32 pc; |
| 748 | UChar32 uc; |
| 749 | int32_t chars = 0; |
| 750 | for (;;) { |
| 751 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
| 752 | pc = utext_next32(text); |
| 753 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
| 754 | chars += pcSize; |
| 755 | remaining -= pcSize; |
| 756 | if (remaining <= 0) { |
| 757 | break; |
| 758 | } |
| 759 | uc = utext_current32(text); |
| 760 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
| 761 | // Maybe. See if it's in the dictionary. |
| 762 | // TODO: this looks iffy; compare with old code. |
| 763 | int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 764 | utext_setNativeIndex(text, current + cuWordLength + chars); |
| 765 | if (num_candidates > 0) { |
| 766 | break; |
| 767 | } |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | // Bump the word count if there wasn't already one |
| 772 | if (cuWordLength <= 0) { |
| 773 | wordsFound += 1; |
| 774 | } |
| 775 | |
| 776 | // Update the length with the passed-over characters |
| 777 | cuWordLength += chars; |
| 778 | } |
| 779 | else { |
| 780 | // Back up to where we were for next iteration |
| 781 | utext_setNativeIndex(text, current + cuWordLength); |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | // Never stop before a combining mark. |
| 786 | int32_t currPos; |
| 787 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
| 788 | utext_next32(text); |
| 789 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
| 790 | } |
| 791 | |
| 792 | // Look ahead for possible suffixes if a dictionary word does not follow. |
| 793 | // We do this in code rather than using a rule so that the heuristic |
| 794 | // resynch continues to function. For example, one of the suffix characters |
| 795 | // could be a typo in the middle of a word. |
| 796 | // NOT CURRENTLY APPLICABLE TO BURMESE |
| 797 | |
| 798 | // Did we find a word on this iteration? If so, push it on the break stack |
| 799 | if (cuWordLength > 0) { |
| 800 | foundBreaks.push((current+cuWordLength), status); |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | // Don't return a break for the end of the dictionary range if there is one there. |
| 805 | if (foundBreaks.peeki() >= rangeEnd) { |
| 806 | (void) foundBreaks.popi(); |
| 807 | wordsFound -= 1; |
| 808 | } |
| 809 | |
| 810 | return wordsFound; |
| 811 | } |
| 812 | |
| 813 | /* |
| 814 | ****************************************************************** |
| 815 | * KhmerBreakEngine |
| 816 | */ |
| 817 | |
| 818 | // How many words in a row are "good enough"? |
| 819 | static const int32_t KHMER_LOOKAHEAD = 3; |
| 820 | |
| 821 | // Will not combine a non-word with a preceding dictionary word longer than this |
| 822 | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 10; |
| 823 | |
| 824 | // Will not combine a non-word that shares at least this much prefix with a |
| 825 | // dictionary word, with a preceding word |
| 826 | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 5; |
| 827 | |
| 828 | // Minimum word size |
| 829 | static const int32_t KHMER_MIN_WORD = 2; |
| 830 | |
| 831 | // Minimum number of characters for two words |
| 832 | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; |
| 833 | |
| 834 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
| 835 | : DictionaryBreakEngine(), |
| 836 | fDictionary(adoptDictionary) |
| 837 | { |
| 838 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
| 839 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Khmr" ); |
| 840 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]" ), status); |
| 841 | if (U_SUCCESS(status)) { |
| 842 | setCharacters(fKhmerWordSet); |
| 843 | } |
| 844 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]" ), status); |
| 845 | fMarkSet.add(0x0020); |
| 846 | fEndWordSet = fKhmerWordSet; |
| 847 | fBeginWordSet.add(0x1780, 0x17B3); |
| 848 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels |
| 849 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word |
| 850 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word |
| 851 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters |
| 852 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels |
| 853 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
| 854 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
| 855 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
| 856 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
| 857 | // fSuffixSet.add(THAI_PAIYANNOI); |
| 858 | // fSuffixSet.add(THAI_MAIYAMOK); |
| 859 | |
| 860 | // Compact for caching. |
| 861 | fMarkSet.compact(); |
| 862 | fEndWordSet.compact(); |
| 863 | fBeginWordSet.compact(); |
| 864 | // fSuffixSet.compact(); |
| 865 | UTRACE_EXIT_STATUS(status); |
| 866 | } |
| 867 | |
| 868 | KhmerBreakEngine::~KhmerBreakEngine() { |
| 869 | delete fDictionary; |
| 870 | } |
| 871 | |
| 872 | int32_t |
| 873 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, |
| 874 | int32_t rangeStart, |
| 875 | int32_t rangeEnd, |
| 876 | UVector32 &foundBreaks ) const { |
| 877 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
| 878 | return 0; // Not enough characters for two words |
| 879 | } |
| 880 | |
| 881 | uint32_t wordsFound = 0; |
| 882 | int32_t cpWordLength = 0; |
| 883 | int32_t cuWordLength = 0; |
| 884 | int32_t current; |
| 885 | UErrorCode status = U_ZERO_ERROR; |
| 886 | PossibleWord words[KHMER_LOOKAHEAD]; |
| 887 | |
| 888 | utext_setNativeIndex(text, rangeStart); |
| 889 | |
| 890 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
| 891 | cuWordLength = 0; |
| 892 | cpWordLength = 0; |
| 893 | |
| 894 | // Look for candidate words at the current position |
| 895 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 896 | |
| 897 | // If we found exactly one, use that |
| 898 | if (candidates == 1) { |
| 899 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
| 900 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
| 901 | wordsFound += 1; |
| 902 | } |
| 903 | |
| 904 | // If there was more than one, see which one can take us forward the most words |
| 905 | else if (candidates > 1) { |
| 906 | // If we're already at the end of the range, we're done |
| 907 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
| 908 | goto foundBest; |
| 909 | } |
| 910 | do { |
| 911 | int32_t wordsMatched = 1; |
| 912 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
| 913 | if (wordsMatched < 2) { |
| 914 | // Followed by another dictionary word; mark first word as a good candidate |
| 915 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
| 916 | wordsMatched = 2; |
| 917 | } |
| 918 | |
| 919 | // If we're already at the end of the range, we're done |
| 920 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
| 921 | goto foundBest; |
| 922 | } |
| 923 | |
| 924 | // See if any of the possible second words is followed by a third word |
| 925 | do { |
| 926 | // If we find a third word, stop right away |
| 927 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
| 928 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
| 929 | goto foundBest; |
| 930 | } |
| 931 | } |
| 932 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
| 933 | } |
| 934 | } |
| 935 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
| 936 | foundBest: |
| 937 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
| 938 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
| 939 | wordsFound += 1; |
| 940 | } |
| 941 | |
| 942 | // We come here after having either found a word or not. We look ahead to the |
| 943 | // next word. If it's not a dictionary word, we will combine it with the word we |
| 944 | // just found (if there is one), but only if the preceding word does not exceed |
| 945 | // the threshold. |
| 946 | // The text iterator should now be positioned at the end of the word we found. |
| 947 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
| 948 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
| 949 | // no preceding word, or the non-word shares less than the minimum threshold |
| 950 | // of characters with a dictionary word, then scan to resynchronize |
| 951 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
| 952 | && (cuWordLength == 0 |
| 953 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
| 954 | // Look for a plausible word boundary |
| 955 | int32_t remaining = rangeEnd - (current+cuWordLength); |
| 956 | UChar32 pc; |
| 957 | UChar32 uc; |
| 958 | int32_t chars = 0; |
| 959 | for (;;) { |
| 960 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
| 961 | pc = utext_next32(text); |
| 962 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
| 963 | chars += pcSize; |
| 964 | remaining -= pcSize; |
| 965 | if (remaining <= 0) { |
| 966 | break; |
| 967 | } |
| 968 | uc = utext_current32(text); |
| 969 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
| 970 | // Maybe. See if it's in the dictionary. |
| 971 | int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
| 972 | utext_setNativeIndex(text, current+cuWordLength+chars); |
| 973 | if (num_candidates > 0) { |
| 974 | break; |
| 975 | } |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | // Bump the word count if there wasn't already one |
| 980 | if (cuWordLength <= 0) { |
| 981 | wordsFound += 1; |
| 982 | } |
| 983 | |
| 984 | // Update the length with the passed-over characters |
| 985 | cuWordLength += chars; |
| 986 | } |
| 987 | else { |
| 988 | // Back up to where we were for next iteration |
| 989 | utext_setNativeIndex(text, current+cuWordLength); |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | // Never stop before a combining mark. |
| 994 | int32_t currPos; |
| 995 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
| 996 | utext_next32(text); |
| 997 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
| 998 | } |
| 999 | |
| 1000 | // Look ahead for possible suffixes if a dictionary word does not follow. |
| 1001 | // We do this in code rather than using a rule so that the heuristic |
| 1002 | // resynch continues to function. For example, one of the suffix characters |
| 1003 | // could be a typo in the middle of a word. |
| 1004 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
| 1005 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
| 1006 | // && fSuffixSet.contains(uc = utext_current32(text))) { |
| 1007 | // if (uc == KHMER_PAIYANNOI) { |
| 1008 | // if (!fSuffixSet.contains(utext_previous32(text))) { |
| 1009 | // // Skip over previous end and PAIYANNOI |
| 1010 | // utext_next32(text); |
| 1011 | // utext_next32(text); |
| 1012 | // wordLength += 1; // Add PAIYANNOI to word |
| 1013 | // uc = utext_current32(text); // Fetch next character |
| 1014 | // } |
| 1015 | // else { |
| 1016 | // // Restore prior position |
| 1017 | // utext_next32(text); |
| 1018 | // } |
| 1019 | // } |
| 1020 | // if (uc == KHMER_MAIYAMOK) { |
| 1021 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { |
| 1022 | // // Skip over previous end and MAIYAMOK |
| 1023 | // utext_next32(text); |
| 1024 | // utext_next32(text); |
| 1025 | // wordLength += 1; // Add MAIYAMOK to word |
| 1026 | // } |
| 1027 | // else { |
| 1028 | // // Restore prior position |
| 1029 | // utext_next32(text); |
| 1030 | // } |
| 1031 | // } |
| 1032 | // } |
| 1033 | // else { |
| 1034 | // utext_setNativeIndex(text, current+wordLength); |
| 1035 | // } |
| 1036 | // } |
| 1037 | |
| 1038 | // Did we find a word on this iteration? If so, push it on the break stack |
| 1039 | if (cuWordLength > 0) { |
| 1040 | foundBreaks.push((current+cuWordLength), status); |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | // Don't return a break for the end of the dictionary range if there is one there. |
| 1045 | if (foundBreaks.peeki() >= rangeEnd) { |
| 1046 | (void) foundBreaks.popi(); |
| 1047 | wordsFound -= 1; |
| 1048 | } |
| 1049 | |
| 1050 | return wordsFound; |
| 1051 | } |
| 1052 | |
| 1053 | #if !UCONFIG_NO_NORMALIZATION |
| 1054 | /* |
| 1055 | ****************************************************************** |
| 1056 | * CjkBreakEngine |
| 1057 | */ |
| 1058 | static const uint32_t kuint32max = 0xFFFFFFFF; |
| 1059 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) |
| 1060 | : DictionaryBreakEngine(), fDictionary(adoptDictionary) { |
| 1061 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
| 1062 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Hani" ); |
| 1063 | // Korean dictionary only includes Hangul syllables |
| 1064 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]" ), status); |
| 1065 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]" ), status); |
| 1066 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]" ), status); |
| 1067 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]" ), status); |
| 1068 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); |
| 1069 | |
| 1070 | if (U_SUCCESS(status)) { |
| 1071 | // handle Korean and Japanese/Chinese using different dictionaries |
| 1072 | if (type == kKorean) { |
| 1073 | setCharacters(fHangulWordSet); |
| 1074 | } else { //Chinese and Japanese |
| 1075 | UnicodeSet cjSet; |
| 1076 | cjSet.addAll(fHanWordSet); |
| 1077 | cjSet.addAll(fKatakanaWordSet); |
| 1078 | cjSet.addAll(fHiraganaWordSet); |
| 1079 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
| 1080 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK |
| 1081 | setCharacters(cjSet); |
| 1082 | } |
| 1083 | } |
| 1084 | UTRACE_EXIT_STATUS(status); |
| 1085 | } |
| 1086 | |
| 1087 | CjkBreakEngine::~CjkBreakEngine(){ |
| 1088 | delete fDictionary; |
| 1089 | } |
| 1090 | |
| 1091 | // The katakanaCost values below are based on the length frequencies of all |
| 1092 | // katakana phrases in the dictionary |
| 1093 | static const int32_t kMaxKatakanaLength = 8; |
| 1094 | static const int32_t kMaxKatakanaGroupLength = 20; |
| 1095 | static const uint32_t maxSnlp = 255; |
| 1096 | |
| 1097 | static inline uint32_t getKatakanaCost(int32_t wordLength){ |
| 1098 | //TODO: fill array with actual values from dictionary! |
| 1099 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] |
| 1100 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; |
| 1101 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; |
| 1102 | } |
| 1103 | |
| 1104 | static inline bool isKatakana(UChar32 value) { |
| 1105 | return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || |
| 1106 | (value >= 0xFF66 && value <= 0xFF9f); |
| 1107 | } |
| 1108 | |
| 1109 | |
| 1110 | // Function for accessing internal utext flags. |
| 1111 | // Replicates an internal UText function. |
| 1112 | |
| 1113 | static inline int32_t utext_i32_flag(int32_t bitIndex) { |
| 1114 | return (int32_t)1 << bitIndex; |
| 1115 | } |
| 1116 | |
| 1117 | |
| 1118 | /* |
| 1119 | * @param text A UText representing the text |
| 1120 | * @param rangeStart The start of the range of dictionary characters |
| 1121 | * @param rangeEnd The end of the range of dictionary characters |
| 1122 | * @param foundBreaks vector<int32> to receive the break positions |
| 1123 | * @return The number of breaks found |
| 1124 | */ |
| 1125 | int32_t |
| 1126 | CjkBreakEngine::divideUpDictionaryRange( UText *inText, |
| 1127 | int32_t rangeStart, |
| 1128 | int32_t rangeEnd, |
| 1129 | UVector32 &foundBreaks ) const { |
| 1130 | if (rangeStart >= rangeEnd) { |
| 1131 | return 0; |
| 1132 | } |
| 1133 | |
| 1134 | // UnicodeString version of input UText, NFKC normalized if necessary. |
| 1135 | UnicodeString inString; |
| 1136 | |
| 1137 | // inputMap[inStringIndex] = corresponding native index from UText inText. |
| 1138 | // If NULL then mapping is 1:1 |
| 1139 | LocalPointer<UVector32> inputMap; |
| 1140 | |
| 1141 | UErrorCode status = U_ZERO_ERROR; |
| 1142 | |
| 1143 | |
| 1144 | // if UText has the input string as one contiguous UTF-16 chunk |
| 1145 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && |
| 1146 | inText->chunkNativeStart <= rangeStart && |
| 1147 | inText->chunkNativeLimit >= rangeEnd && |
| 1148 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { |
| 1149 | |
| 1150 | // Input UText is in one contiguous UTF-16 chunk. |
| 1151 | // Use Read-only aliasing UnicodeString. |
| 1152 | inString.setTo(FALSE, |
| 1153 | inText->chunkContents + rangeStart - inText->chunkNativeStart, |
| 1154 | rangeEnd - rangeStart); |
| 1155 | } else { |
| 1156 | // Copy the text from the original inText (UText) to inString (UnicodeString). |
| 1157 | // Create a map from UnicodeString indices -> UText offsets. |
| 1158 | utext_setNativeIndex(inText, rangeStart); |
| 1159 | int32_t limit = rangeEnd; |
| 1160 | U_ASSERT(limit <= utext_nativeLength(inText)); |
| 1161 | if (limit > utext_nativeLength(inText)) { |
| 1162 | limit = (int32_t)utext_nativeLength(inText); |
| 1163 | } |
| 1164 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
| 1165 | if (U_FAILURE(status)) { |
| 1166 | return 0; |
| 1167 | } |
| 1168 | while (utext_getNativeIndex(inText) < limit) { |
| 1169 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); |
| 1170 | UChar32 c = utext_next32(inText); |
| 1171 | U_ASSERT(c != U_SENTINEL); |
| 1172 | inString.append(c); |
| 1173 | while (inputMap->size() < inString.length()) { |
| 1174 | inputMap->addElement(nativePosition, status); |
| 1175 | } |
| 1176 | } |
| 1177 | inputMap->addElement(limit, status); |
| 1178 | } |
| 1179 | |
| 1180 | |
| 1181 | if (!nfkcNorm2->isNormalized(inString, status)) { |
| 1182 | UnicodeString normalizedInput; |
| 1183 | // normalizedMap[normalizedInput position] == original UText position. |
| 1184 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); |
| 1185 | if (U_FAILURE(status)) { |
| 1186 | return 0; |
| 1187 | } |
| 1188 | |
| 1189 | UnicodeString fragment; |
| 1190 | UnicodeString normalizedFragment; |
| 1191 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk |
| 1192 | fragment.remove(); |
| 1193 | int32_t fragmentStartI = srcI; |
| 1194 | UChar32 c = inString.char32At(srcI); |
| 1195 | for (;;) { |
| 1196 | fragment.append(c); |
| 1197 | srcI = inString.moveIndex32(srcI, 1); |
| 1198 | if (srcI == inString.length()) { |
| 1199 | break; |
| 1200 | } |
| 1201 | c = inString.char32At(srcI); |
| 1202 | if (nfkcNorm2->hasBoundaryBefore(c)) { |
| 1203 | break; |
| 1204 | } |
| 1205 | } |
| 1206 | nfkcNorm2->normalize(fragment, normalizedFragment, status); |
| 1207 | normalizedInput.append(normalizedFragment); |
| 1208 | |
| 1209 | // Map every position in the normalized chunk to the start of the chunk |
| 1210 | // in the original input. |
| 1211 | int32_t fragmentOriginalStart = inputMap.isValid() ? |
| 1212 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; |
| 1213 | while (normalizedMap->size() < normalizedInput.length()) { |
| 1214 | normalizedMap->addElement(fragmentOriginalStart, status); |
| 1215 | if (U_FAILURE(status)) { |
| 1216 | break; |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); |
| 1221 | int32_t nativeEnd = inputMap.isValid() ? |
| 1222 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; |
| 1223 | normalizedMap->addElement(nativeEnd, status); |
| 1224 | |
| 1225 | inputMap = std::move(normalizedMap); |
| 1226 | inString = std::move(normalizedInput); |
| 1227 | } |
| 1228 | |
| 1229 | int32_t numCodePts = inString.countChar32(); |
| 1230 | if (numCodePts != inString.length()) { |
| 1231 | // There are supplementary characters in the input. |
| 1232 | // The dictionary will produce boundary positions in terms of code point indexes, |
| 1233 | // not in terms of code unit string indexes. |
| 1234 | // Use the inputMap mechanism to take care of this in addition to indexing differences |
| 1235 | // from normalization and/or UTF-8 input. |
| 1236 | UBool hadExistingMap = inputMap.isValid(); |
| 1237 | if (!hadExistingMap) { |
| 1238 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
| 1239 | if (U_FAILURE(status)) { |
| 1240 | return 0; |
| 1241 | } |
| 1242 | } |
| 1243 | int32_t cpIdx = 0; |
| 1244 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { |
| 1245 | U_ASSERT(cuIdx >= cpIdx); |
| 1246 | if (hadExistingMap) { |
| 1247 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); |
| 1248 | } else { |
| 1249 | inputMap->addElement(cuIdx+rangeStart, status); |
| 1250 | } |
| 1251 | cpIdx++; |
| 1252 | if (cuIdx == inString.length()) { |
| 1253 | break; |
| 1254 | } |
| 1255 | } |
| 1256 | } |
| 1257 | |
| 1258 | // bestSnlp[i] is the snlp of the best segmentation of the first i |
| 1259 | // code points in the range to be matched. |
| 1260 | UVector32 bestSnlp(numCodePts + 1, status); |
| 1261 | bestSnlp.addElement(0, status); |
| 1262 | for(int32_t i = 1; i <= numCodePts; i++) { |
| 1263 | bestSnlp.addElement(kuint32max, status); |
| 1264 | } |
| 1265 | |
| 1266 | |
| 1267 | // prev[i] is the index of the last CJK code point in the previous word in |
| 1268 | // the best segmentation of the first i characters. |
| 1269 | UVector32 prev(numCodePts + 1, status); |
| 1270 | for(int32_t i = 0; i <= numCodePts; i++){ |
| 1271 | prev.addElement(-1, status); |
| 1272 | } |
| 1273 | |
| 1274 | const int32_t maxWordSize = 20; |
| 1275 | UVector32 values(numCodePts, status); |
| 1276 | values.setSize(numCodePts); |
| 1277 | UVector32 lengths(numCodePts, status); |
| 1278 | lengths.setSize(numCodePts); |
| 1279 | |
| 1280 | UText fu = UTEXT_INITIALIZER; |
| 1281 | utext_openUnicodeString(&fu, &inString, &status); |
| 1282 | |
| 1283 | // Dynamic programming to find the best segmentation. |
| 1284 | |
| 1285 | // In outer loop, i is the code point index, |
| 1286 | // ix is the corresponding string (code unit) index. |
| 1287 | // They differ when the string contains supplementary characters. |
| 1288 | int32_t ix = 0; |
| 1289 | bool is_prev_katakana = false; |
| 1290 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { |
| 1291 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { |
| 1292 | continue; |
| 1293 | } |
| 1294 | |
| 1295 | int32_t count; |
| 1296 | utext_setNativeIndex(&fu, ix); |
| 1297 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, |
| 1298 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); |
| 1299 | // Note: lengths is filled with code point lengths |
| 1300 | // The NULL parameter is the ignored code unit lengths. |
| 1301 | |
| 1302 | // if there are no single character matches found in the dictionary |
| 1303 | // starting with this character, treat character as a 1-character word |
| 1304 | // with the highest value possible, i.e. the least likely to occur. |
| 1305 | // Exclude Korean characters from this treatment, as they should be left |
| 1306 | // together by default. |
| 1307 | if ((count == 0 || lengths.elementAti(0) != 1) && |
| 1308 | !fHangulWordSet.contains(inString.char32At(ix))) { |
| 1309 | values.setElementAt(maxSnlp, count); // 255 |
| 1310 | lengths.setElementAt(1, count++); |
| 1311 | } |
| 1312 | |
| 1313 | for (int32_t j = 0; j < count; j++) { |
| 1314 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); |
| 1315 | int32_t ln_j_i = lengths.elementAti(j) + i; |
| 1316 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { |
| 1317 | bestSnlp.setElementAt(newSnlp, ln_j_i); |
| 1318 | prev.setElementAt(i, ln_j_i); |
| 1319 | } |
| 1320 | } |
| 1321 | |
| 1322 | // In Japanese, |
| 1323 | // Katakana word in single character is pretty rare. So we apply |
| 1324 | // the following heuristic to Katakana: any continuous run of Katakana |
| 1325 | // characters is considered a candidate word with a default cost |
| 1326 | // specified in the katakanaCost table according to its length. |
| 1327 | |
| 1328 | bool is_katakana = isKatakana(inString.char32At(ix)); |
| 1329 | int32_t katakanaRunLength = 1; |
| 1330 | if (!is_prev_katakana && is_katakana) { |
| 1331 | int32_t j = inString.moveIndex32(ix, 1); |
| 1332 | // Find the end of the continuous run of Katakana characters |
| 1333 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && |
| 1334 | isKatakana(inString.char32At(j))) { |
| 1335 | j = inString.moveIndex32(j, 1); |
| 1336 | katakanaRunLength++; |
| 1337 | } |
| 1338 | if (katakanaRunLength < kMaxKatakanaGroupLength) { |
| 1339 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); |
| 1340 | if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { |
| 1341 | bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); |
| 1342 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; |
| 1343 | } |
| 1344 | } |
| 1345 | } |
| 1346 | is_prev_katakana = is_katakana; |
| 1347 | } |
| 1348 | utext_close(&fu); |
| 1349 | |
| 1350 | // Start pushing the optimal offset index into t_boundary (t for tentative). |
| 1351 | // prev[numCodePts] is guaranteed to be meaningful. |
| 1352 | // We'll first push in the reverse order, i.e., |
| 1353 | // t_boundary[0] = numCodePts, and afterwards do a swap. |
| 1354 | UVector32 t_boundary(numCodePts+1, status); |
| 1355 | |
| 1356 | int32_t numBreaks = 0; |
| 1357 | // No segmentation found, set boundary to end of range |
| 1358 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { |
| 1359 | t_boundary.addElement(numCodePts, status); |
| 1360 | numBreaks++; |
| 1361 | } else { |
| 1362 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { |
| 1363 | t_boundary.addElement(i, status); |
| 1364 | numBreaks++; |
| 1365 | } |
| 1366 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); |
| 1367 | } |
| 1368 | |
| 1369 | // Add a break for the start of the dictionary range if there is not one |
| 1370 | // there already. |
| 1371 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { |
| 1372 | t_boundary.addElement(0, status); |
| 1373 | numBreaks++; |
| 1374 | } |
| 1375 | |
| 1376 | // Now that we're done, convert positions in t_boundary[] (indices in |
| 1377 | // the normalized input string) back to indices in the original input UText |
| 1378 | // while reversing t_boundary and pushing values to foundBreaks. |
| 1379 | int32_t prevCPPos = -1; |
| 1380 | int32_t prevUTextPos = -1; |
| 1381 | for (int32_t i = numBreaks-1; i >= 0; i--) { |
| 1382 | int32_t cpPos = t_boundary.elementAti(i); |
| 1383 | U_ASSERT(cpPos > prevCPPos); |
| 1384 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; |
| 1385 | U_ASSERT(utextPos >= prevUTextPos); |
| 1386 | if (utextPos > prevUTextPos) { |
| 1387 | // Boundaries are added to foundBreaks output in ascending order. |
| 1388 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); |
| 1389 | foundBreaks.push(utextPos, status); |
| 1390 | } else { |
| 1391 | // Normalization expanded the input text, the dictionary found a boundary |
| 1392 | // within the expansion, giving two boundaries with the same index in the |
| 1393 | // original text. Ignore the second. See ticket #12918. |
| 1394 | --numBreaks; |
| 1395 | } |
| 1396 | prevCPPos = cpPos; |
| 1397 | prevUTextPos = utextPos; |
| 1398 | } |
| 1399 | (void)prevCPPos; // suppress compiler warnings about unused variable |
| 1400 | |
| 1401 | // inString goes out of scope |
| 1402 | // inputMap goes out of scope |
| 1403 | return numBreaks; |
| 1404 | } |
| 1405 | #endif |
| 1406 | |
| 1407 | U_NAMESPACE_END |
| 1408 | |
| 1409 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
| 1410 | |
| 1411 | |