1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | /** |
4 | ******************************************************************************* |
5 | * Copyright (C) 2006-2016, International Business Machines Corporation |
6 | * and others. All Rights Reserved. |
7 | ******************************************************************************* |
8 | */ |
9 | |
10 | #include <utility> |
11 | |
12 | #include "unicode/utypes.h" |
13 | |
14 | #if !UCONFIG_NO_BREAK_ITERATION |
15 | |
16 | #include "brkeng.h" |
17 | #include "dictbe.h" |
18 | #include "unicode/uniset.h" |
19 | #include "unicode/chariter.h" |
20 | #include "unicode/ubrk.h" |
21 | #include "utracimp.h" |
22 | #include "uvectr32.h" |
23 | #include "uvector.h" |
24 | #include "uassert.h" |
25 | #include "unicode/normlzr.h" |
26 | #include "cmemory.h" |
27 | #include "dictionarydata.h" |
28 | |
29 | U_NAMESPACE_BEGIN |
30 | |
31 | /* |
32 | ****************************************************************** |
33 | */ |
34 | |
35 | DictionaryBreakEngine::DictionaryBreakEngine() { |
36 | } |
37 | |
38 | DictionaryBreakEngine::~DictionaryBreakEngine() { |
39 | } |
40 | |
41 | UBool |
42 | DictionaryBreakEngine::handles(UChar32 c) const { |
43 | return fSet.contains(c); |
44 | } |
45 | |
46 | int32_t |
47 | DictionaryBreakEngine::findBreaks( UText *text, |
48 | int32_t startPos, |
49 | int32_t endPos, |
50 | UVector32 &foundBreaks ) const { |
51 | (void)startPos; // TODO: remove this param? |
52 | int32_t result = 0; |
53 | |
54 | // Find the span of characters included in the set. |
55 | // The span to break begins at the current position in the text, and |
56 | // extends towards the start or end of the text, depending on 'reverse'. |
57 | |
58 | int32_t start = (int32_t)utext_getNativeIndex(text); |
59 | int32_t current; |
60 | int32_t rangeStart; |
61 | int32_t rangeEnd; |
62 | UChar32 c = utext_current32(text); |
63 | while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) { |
64 | utext_next32(text); // TODO: recast loop for postincrement |
65 | c = utext_current32(text); |
66 | } |
67 | rangeStart = start; |
68 | rangeEnd = current; |
69 | result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks); |
70 | utext_setNativeIndex(text, current); |
71 | |
72 | return result; |
73 | } |
74 | |
75 | void |
76 | DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) { |
77 | fSet = set; |
78 | // Compact for caching |
79 | fSet.compact(); |
80 | } |
81 | |
82 | /* |
83 | ****************************************************************** |
84 | * PossibleWord |
85 | */ |
86 | |
87 | // Helper class for improving readability of the Thai/Lao/Khmer word break |
88 | // algorithm. The implementation is completely inline. |
89 | |
90 | // List size, limited by the maximum number of words in the dictionary |
91 | // that form a nested sequence. |
92 | static const int32_t POSSIBLE_WORD_LIST_MAX = 20; |
93 | |
94 | class PossibleWord { |
95 | private: |
96 | // list of word candidate lengths, in increasing length order |
97 | // TODO: bytes would be sufficient for word lengths. |
98 | int32_t count; // Count of candidates |
99 | int32_t prefix; // The longest match with a dictionary word |
100 | int32_t offset; // Offset in the text of these candidates |
101 | int32_t mark; // The preferred candidate's offset |
102 | int32_t current; // The candidate we're currently looking at |
103 | int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units. |
104 | int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points. |
105 | |
106 | public: |
107 | PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {} |
108 | ~PossibleWord() {} |
109 | |
110 | // Fill the list of candidates if needed, select the longest, and return the number found |
111 | int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ); |
112 | |
113 | // Select the currently marked candidate, point after it in the text, and invalidate self |
114 | int32_t acceptMarked( UText *text ); |
115 | |
116 | // Back up from the current candidate to the next shorter one; return TRUE if that exists |
117 | // and point the text after it |
118 | UBool backUp( UText *text ); |
119 | |
120 | // Return the longest prefix this candidate location shares with a dictionary word |
121 | // Return value is in code points. |
122 | int32_t longestPrefix() { return prefix; } |
123 | |
124 | // Mark the current candidate as the one we like |
125 | void markCurrent() { mark = current; } |
126 | |
127 | // Get length in code points of the marked word. |
128 | int32_t markedCPLength() { return cpLengths[mark]; } |
129 | }; |
130 | |
131 | |
132 | int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) { |
133 | // TODO: If getIndex is too slow, use offset < 0 and add discardAll() |
134 | int32_t start = (int32_t)utext_getNativeIndex(text); |
135 | if (start != offset) { |
136 | offset = start; |
137 | count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix); |
138 | // Dictionary leaves text after longest prefix, not longest word. Back up. |
139 | if (count <= 0) { |
140 | utext_setNativeIndex(text, start); |
141 | } |
142 | } |
143 | if (count > 0) { |
144 | utext_setNativeIndex(text, start+cuLengths[count-1]); |
145 | } |
146 | current = count-1; |
147 | mark = current; |
148 | return count; |
149 | } |
150 | |
151 | int32_t |
152 | PossibleWord::acceptMarked( UText *text ) { |
153 | utext_setNativeIndex(text, offset + cuLengths[mark]); |
154 | return cuLengths[mark]; |
155 | } |
156 | |
157 | |
158 | UBool |
159 | PossibleWord::backUp( UText *text ) { |
160 | if (current > 0) { |
161 | utext_setNativeIndex(text, offset + cuLengths[--current]); |
162 | return TRUE; |
163 | } |
164 | return FALSE; |
165 | } |
166 | |
167 | /* |
168 | ****************************************************************** |
169 | * ThaiBreakEngine |
170 | */ |
171 | |
172 | // How many words in a row are "good enough"? |
173 | static const int32_t THAI_LOOKAHEAD = 3; |
174 | |
175 | // Will not combine a non-word with a preceding dictionary word longer than this |
176 | static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3; |
177 | |
178 | // Will not combine a non-word that shares at least this much prefix with a |
179 | // dictionary word, with a preceding word |
180 | static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3; |
181 | |
182 | // Ellision character |
183 | static const int32_t THAI_PAIYANNOI = 0x0E2F; |
184 | |
185 | // Repeat character |
186 | static const int32_t THAI_MAIYAMOK = 0x0E46; |
187 | |
188 | // Minimum word size |
189 | static const int32_t THAI_MIN_WORD = 2; |
190 | |
191 | // Minimum number of characters for two words |
192 | static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2; |
193 | |
194 | ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
195 | : DictionaryBreakEngine(), |
196 | fDictionary(adoptDictionary) |
197 | { |
198 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
199 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Thai" ); |
200 | fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]" ), status); |
201 | if (U_SUCCESS(status)) { |
202 | setCharacters(fThaiWordSet); |
203 | } |
204 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]" ), status); |
205 | fMarkSet.add(0x0020); |
206 | fEndWordSet = fThaiWordSet; |
207 | fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
208 | fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
209 | fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
210 | fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
211 | fSuffixSet.add(THAI_PAIYANNOI); |
212 | fSuffixSet.add(THAI_MAIYAMOK); |
213 | |
214 | // Compact for caching. |
215 | fMarkSet.compact(); |
216 | fEndWordSet.compact(); |
217 | fBeginWordSet.compact(); |
218 | fSuffixSet.compact(); |
219 | UTRACE_EXIT_STATUS(status); |
220 | } |
221 | |
222 | ThaiBreakEngine::~ThaiBreakEngine() { |
223 | delete fDictionary; |
224 | } |
225 | |
226 | int32_t |
227 | ThaiBreakEngine::divideUpDictionaryRange( UText *text, |
228 | int32_t rangeStart, |
229 | int32_t rangeEnd, |
230 | UVector32 &foundBreaks ) const { |
231 | utext_setNativeIndex(text, rangeStart); |
232 | utext_moveIndex32(text, THAI_MIN_WORD_SPAN); |
233 | if (utext_getNativeIndex(text) >= rangeEnd) { |
234 | return 0; // Not enough characters for two words |
235 | } |
236 | utext_setNativeIndex(text, rangeStart); |
237 | |
238 | |
239 | uint32_t wordsFound = 0; |
240 | int32_t cpWordLength = 0; // Word Length in Code Points. |
241 | int32_t cuWordLength = 0; // Word length in code units (UText native indexing) |
242 | int32_t current; |
243 | UErrorCode status = U_ZERO_ERROR; |
244 | PossibleWord words[THAI_LOOKAHEAD]; |
245 | |
246 | utext_setNativeIndex(text, rangeStart); |
247 | |
248 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
249 | cpWordLength = 0; |
250 | cuWordLength = 0; |
251 | |
252 | // Look for candidate words at the current position |
253 | int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
254 | |
255 | // If we found exactly one, use that |
256 | if (candidates == 1) { |
257 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
258 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
259 | wordsFound += 1; |
260 | } |
261 | // If there was more than one, see which one can take us forward the most words |
262 | else if (candidates > 1) { |
263 | // If we're already at the end of the range, we're done |
264 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
265 | goto foundBest; |
266 | } |
267 | do { |
268 | int32_t wordsMatched = 1; |
269 | if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
270 | if (wordsMatched < 2) { |
271 | // Followed by another dictionary word; mark first word as a good candidate |
272 | words[wordsFound%THAI_LOOKAHEAD].markCurrent(); |
273 | wordsMatched = 2; |
274 | } |
275 | |
276 | // If we're already at the end of the range, we're done |
277 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
278 | goto foundBest; |
279 | } |
280 | |
281 | // See if any of the possible second words is followed by a third word |
282 | do { |
283 | // If we find a third word, stop right away |
284 | if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
285 | words[wordsFound % THAI_LOOKAHEAD].markCurrent(); |
286 | goto foundBest; |
287 | } |
288 | } |
289 | while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text)); |
290 | } |
291 | } |
292 | while (words[wordsFound % THAI_LOOKAHEAD].backUp(text)); |
293 | foundBest: |
294 | // Set UText position to after the accepted word. |
295 | cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text); |
296 | cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength(); |
297 | wordsFound += 1; |
298 | } |
299 | |
300 | // We come here after having either found a word or not. We look ahead to the |
301 | // next word. If it's not a dictionary word, we will combine it with the word we |
302 | // just found (if there is one), but only if the preceding word does not exceed |
303 | // the threshold. |
304 | // The text iterator should now be positioned at the end of the word we found. |
305 | |
306 | UChar32 uc = 0; |
307 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) { |
308 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
309 | // no preceding word, or the non-word shares less than the minimum threshold |
310 | // of characters with a dictionary word, then scan to resynchronize |
311 | if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
312 | && (cuWordLength == 0 |
313 | || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) { |
314 | // Look for a plausible word boundary |
315 | int32_t remaining = rangeEnd - (current+cuWordLength); |
316 | UChar32 pc; |
317 | int32_t chars = 0; |
318 | for (;;) { |
319 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
320 | pc = utext_next32(text); |
321 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
322 | chars += pcSize; |
323 | remaining -= pcSize; |
324 | if (remaining <= 0) { |
325 | break; |
326 | } |
327 | uc = utext_current32(text); |
328 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
329 | // Maybe. See if it's in the dictionary. |
330 | // NOTE: In the original Apple code, checked that the next |
331 | // two characters after uc were not 0x0E4C THANTHAKHAT before |
332 | // checking the dictionary. That is just a performance filter, |
333 | // but it's not clear it's faster than checking the trie. |
334 | int32_t num_candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
335 | utext_setNativeIndex(text, current + cuWordLength + chars); |
336 | if (num_candidates > 0) { |
337 | break; |
338 | } |
339 | } |
340 | } |
341 | |
342 | // Bump the word count if there wasn't already one |
343 | if (cuWordLength <= 0) { |
344 | wordsFound += 1; |
345 | } |
346 | |
347 | // Update the length with the passed-over characters |
348 | cuWordLength += chars; |
349 | } |
350 | else { |
351 | // Back up to where we were for next iteration |
352 | utext_setNativeIndex(text, current+cuWordLength); |
353 | } |
354 | } |
355 | |
356 | // Never stop before a combining mark. |
357 | int32_t currPos; |
358 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
359 | utext_next32(text); |
360 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
361 | } |
362 | |
363 | // Look ahead for possible suffixes if a dictionary word does not follow. |
364 | // We do this in code rather than using a rule so that the heuristic |
365 | // resynch continues to function. For example, one of the suffix characters |
366 | // could be a typo in the middle of a word. |
367 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) { |
368 | if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
369 | && fSuffixSet.contains(uc = utext_current32(text))) { |
370 | if (uc == THAI_PAIYANNOI) { |
371 | if (!fSuffixSet.contains(utext_previous32(text))) { |
372 | // Skip over previous end and PAIYANNOI |
373 | utext_next32(text); |
374 | int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text); |
375 | utext_next32(text); |
376 | cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word |
377 | uc = utext_current32(text); // Fetch next character |
378 | } |
379 | else { |
380 | // Restore prior position |
381 | utext_next32(text); |
382 | } |
383 | } |
384 | if (uc == THAI_MAIYAMOK) { |
385 | if (utext_previous32(text) != THAI_MAIYAMOK) { |
386 | // Skip over previous end and MAIYAMOK |
387 | utext_next32(text); |
388 | int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text); |
389 | utext_next32(text); |
390 | cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word |
391 | } |
392 | else { |
393 | // Restore prior position |
394 | utext_next32(text); |
395 | } |
396 | } |
397 | } |
398 | else { |
399 | utext_setNativeIndex(text, current+cuWordLength); |
400 | } |
401 | } |
402 | |
403 | // Did we find a word on this iteration? If so, push it on the break stack |
404 | if (cuWordLength > 0) { |
405 | foundBreaks.push((current+cuWordLength), status); |
406 | } |
407 | } |
408 | |
409 | // Don't return a break for the end of the dictionary range if there is one there. |
410 | if (foundBreaks.peeki() >= rangeEnd) { |
411 | (void) foundBreaks.popi(); |
412 | wordsFound -= 1; |
413 | } |
414 | |
415 | return wordsFound; |
416 | } |
417 | |
418 | /* |
419 | ****************************************************************** |
420 | * LaoBreakEngine |
421 | */ |
422 | |
423 | // How many words in a row are "good enough"? |
424 | static const int32_t LAO_LOOKAHEAD = 3; |
425 | |
426 | // Will not combine a non-word with a preceding dictionary word longer than this |
427 | static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3; |
428 | |
429 | // Will not combine a non-word that shares at least this much prefix with a |
430 | // dictionary word, with a preceding word |
431 | static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3; |
432 | |
433 | // Minimum word size |
434 | static const int32_t LAO_MIN_WORD = 2; |
435 | |
436 | // Minimum number of characters for two words |
437 | static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2; |
438 | |
439 | LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
440 | : DictionaryBreakEngine(), |
441 | fDictionary(adoptDictionary) |
442 | { |
443 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
444 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Laoo" ); |
445 | fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]" ), status); |
446 | if (U_SUCCESS(status)) { |
447 | setCharacters(fLaoWordSet); |
448 | } |
449 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]" ), status); |
450 | fMarkSet.add(0x0020); |
451 | fEndWordSet = fLaoWordSet; |
452 | fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels |
453 | fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters) |
454 | fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent) |
455 | fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels |
456 | |
457 | // Compact for caching. |
458 | fMarkSet.compact(); |
459 | fEndWordSet.compact(); |
460 | fBeginWordSet.compact(); |
461 | UTRACE_EXIT_STATUS(status); |
462 | } |
463 | |
464 | LaoBreakEngine::~LaoBreakEngine() { |
465 | delete fDictionary; |
466 | } |
467 | |
468 | int32_t |
469 | LaoBreakEngine::divideUpDictionaryRange( UText *text, |
470 | int32_t rangeStart, |
471 | int32_t rangeEnd, |
472 | UVector32 &foundBreaks ) const { |
473 | if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) { |
474 | return 0; // Not enough characters for two words |
475 | } |
476 | |
477 | uint32_t wordsFound = 0; |
478 | int32_t cpWordLength = 0; |
479 | int32_t cuWordLength = 0; |
480 | int32_t current; |
481 | UErrorCode status = U_ZERO_ERROR; |
482 | PossibleWord words[LAO_LOOKAHEAD]; |
483 | |
484 | utext_setNativeIndex(text, rangeStart); |
485 | |
486 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
487 | cuWordLength = 0; |
488 | cpWordLength = 0; |
489 | |
490 | // Look for candidate words at the current position |
491 | int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
492 | |
493 | // If we found exactly one, use that |
494 | if (candidates == 1) { |
495 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
496 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
497 | wordsFound += 1; |
498 | } |
499 | // If there was more than one, see which one can take us forward the most words |
500 | else if (candidates > 1) { |
501 | // If we're already at the end of the range, we're done |
502 | if (utext_getNativeIndex(text) >= rangeEnd) { |
503 | goto foundBest; |
504 | } |
505 | do { |
506 | int32_t wordsMatched = 1; |
507 | if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
508 | if (wordsMatched < 2) { |
509 | // Followed by another dictionary word; mark first word as a good candidate |
510 | words[wordsFound%LAO_LOOKAHEAD].markCurrent(); |
511 | wordsMatched = 2; |
512 | } |
513 | |
514 | // If we're already at the end of the range, we're done |
515 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
516 | goto foundBest; |
517 | } |
518 | |
519 | // See if any of the possible second words is followed by a third word |
520 | do { |
521 | // If we find a third word, stop right away |
522 | if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
523 | words[wordsFound % LAO_LOOKAHEAD].markCurrent(); |
524 | goto foundBest; |
525 | } |
526 | } |
527 | while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text)); |
528 | } |
529 | } |
530 | while (words[wordsFound % LAO_LOOKAHEAD].backUp(text)); |
531 | foundBest: |
532 | cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text); |
533 | cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength(); |
534 | wordsFound += 1; |
535 | } |
536 | |
537 | // We come here after having either found a word or not. We look ahead to the |
538 | // next word. If it's not a dictionary word, we will combine it withe the word we |
539 | // just found (if there is one), but only if the preceding word does not exceed |
540 | // the threshold. |
541 | // The text iterator should now be positioned at the end of the word we found. |
542 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) { |
543 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
544 | // no preceding word, or the non-word shares less than the minimum threshold |
545 | // of characters with a dictionary word, then scan to resynchronize |
546 | if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
547 | && (cuWordLength == 0 |
548 | || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) { |
549 | // Look for a plausible word boundary |
550 | int32_t remaining = rangeEnd - (current + cuWordLength); |
551 | UChar32 pc; |
552 | UChar32 uc; |
553 | int32_t chars = 0; |
554 | for (;;) { |
555 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
556 | pc = utext_next32(text); |
557 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
558 | chars += pcSize; |
559 | remaining -= pcSize; |
560 | if (remaining <= 0) { |
561 | break; |
562 | } |
563 | uc = utext_current32(text); |
564 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
565 | // Maybe. See if it's in the dictionary. |
566 | // TODO: this looks iffy; compare with old code. |
567 | int32_t num_candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
568 | utext_setNativeIndex(text, current + cuWordLength + chars); |
569 | if (num_candidates > 0) { |
570 | break; |
571 | } |
572 | } |
573 | } |
574 | |
575 | // Bump the word count if there wasn't already one |
576 | if (cuWordLength <= 0) { |
577 | wordsFound += 1; |
578 | } |
579 | |
580 | // Update the length with the passed-over characters |
581 | cuWordLength += chars; |
582 | } |
583 | else { |
584 | // Back up to where we were for next iteration |
585 | utext_setNativeIndex(text, current + cuWordLength); |
586 | } |
587 | } |
588 | |
589 | // Never stop before a combining mark. |
590 | int32_t currPos; |
591 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
592 | utext_next32(text); |
593 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
594 | } |
595 | |
596 | // Look ahead for possible suffixes if a dictionary word does not follow. |
597 | // We do this in code rather than using a rule so that the heuristic |
598 | // resynch continues to function. For example, one of the suffix characters |
599 | // could be a typo in the middle of a word. |
600 | // NOT CURRENTLY APPLICABLE TO LAO |
601 | |
602 | // Did we find a word on this iteration? If so, push it on the break stack |
603 | if (cuWordLength > 0) { |
604 | foundBreaks.push((current+cuWordLength), status); |
605 | } |
606 | } |
607 | |
608 | // Don't return a break for the end of the dictionary range if there is one there. |
609 | if (foundBreaks.peeki() >= rangeEnd) { |
610 | (void) foundBreaks.popi(); |
611 | wordsFound -= 1; |
612 | } |
613 | |
614 | return wordsFound; |
615 | } |
616 | |
617 | /* |
618 | ****************************************************************** |
619 | * BurmeseBreakEngine |
620 | */ |
621 | |
622 | // How many words in a row are "good enough"? |
623 | static const int32_t BURMESE_LOOKAHEAD = 3; |
624 | |
625 | // Will not combine a non-word with a preceding dictionary word longer than this |
626 | static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3; |
627 | |
628 | // Will not combine a non-word that shares at least this much prefix with a |
629 | // dictionary word, with a preceding word |
630 | static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3; |
631 | |
632 | // Minimum word size |
633 | static const int32_t BURMESE_MIN_WORD = 2; |
634 | |
635 | // Minimum number of characters for two words |
636 | static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2; |
637 | |
638 | BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
639 | : DictionaryBreakEngine(), |
640 | fDictionary(adoptDictionary) |
641 | { |
642 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
643 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Mymr" ); |
644 | fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]" ), status); |
645 | if (U_SUCCESS(status)) { |
646 | setCharacters(fBurmeseWordSet); |
647 | } |
648 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]" ), status); |
649 | fMarkSet.add(0x0020); |
650 | fEndWordSet = fBurmeseWordSet; |
651 | fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels |
652 | |
653 | // Compact for caching. |
654 | fMarkSet.compact(); |
655 | fEndWordSet.compact(); |
656 | fBeginWordSet.compact(); |
657 | UTRACE_EXIT_STATUS(status); |
658 | } |
659 | |
660 | BurmeseBreakEngine::~BurmeseBreakEngine() { |
661 | delete fDictionary; |
662 | } |
663 | |
664 | int32_t |
665 | BurmeseBreakEngine::divideUpDictionaryRange( UText *text, |
666 | int32_t rangeStart, |
667 | int32_t rangeEnd, |
668 | UVector32 &foundBreaks ) const { |
669 | if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) { |
670 | return 0; // Not enough characters for two words |
671 | } |
672 | |
673 | uint32_t wordsFound = 0; |
674 | int32_t cpWordLength = 0; |
675 | int32_t cuWordLength = 0; |
676 | int32_t current; |
677 | UErrorCode status = U_ZERO_ERROR; |
678 | PossibleWord words[BURMESE_LOOKAHEAD]; |
679 | |
680 | utext_setNativeIndex(text, rangeStart); |
681 | |
682 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
683 | cuWordLength = 0; |
684 | cpWordLength = 0; |
685 | |
686 | // Look for candidate words at the current position |
687 | int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
688 | |
689 | // If we found exactly one, use that |
690 | if (candidates == 1) { |
691 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
692 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
693 | wordsFound += 1; |
694 | } |
695 | // If there was more than one, see which one can take us forward the most words |
696 | else if (candidates > 1) { |
697 | // If we're already at the end of the range, we're done |
698 | if (utext_getNativeIndex(text) >= rangeEnd) { |
699 | goto foundBest; |
700 | } |
701 | do { |
702 | int32_t wordsMatched = 1; |
703 | if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
704 | if (wordsMatched < 2) { |
705 | // Followed by another dictionary word; mark first word as a good candidate |
706 | words[wordsFound%BURMESE_LOOKAHEAD].markCurrent(); |
707 | wordsMatched = 2; |
708 | } |
709 | |
710 | // If we're already at the end of the range, we're done |
711 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
712 | goto foundBest; |
713 | } |
714 | |
715 | // See if any of the possible second words is followed by a third word |
716 | do { |
717 | // If we find a third word, stop right away |
718 | if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
719 | words[wordsFound % BURMESE_LOOKAHEAD].markCurrent(); |
720 | goto foundBest; |
721 | } |
722 | } |
723 | while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text)); |
724 | } |
725 | } |
726 | while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text)); |
727 | foundBest: |
728 | cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text); |
729 | cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength(); |
730 | wordsFound += 1; |
731 | } |
732 | |
733 | // We come here after having either found a word or not. We look ahead to the |
734 | // next word. If it's not a dictionary word, we will combine it withe the word we |
735 | // just found (if there is one), but only if the preceding word does not exceed |
736 | // the threshold. |
737 | // The text iterator should now be positioned at the end of the word we found. |
738 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) { |
739 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
740 | // no preceding word, or the non-word shares less than the minimum threshold |
741 | // of characters with a dictionary word, then scan to resynchronize |
742 | if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
743 | && (cuWordLength == 0 |
744 | || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) { |
745 | // Look for a plausible word boundary |
746 | int32_t remaining = rangeEnd - (current + cuWordLength); |
747 | UChar32 pc; |
748 | UChar32 uc; |
749 | int32_t chars = 0; |
750 | for (;;) { |
751 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
752 | pc = utext_next32(text); |
753 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
754 | chars += pcSize; |
755 | remaining -= pcSize; |
756 | if (remaining <= 0) { |
757 | break; |
758 | } |
759 | uc = utext_current32(text); |
760 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
761 | // Maybe. See if it's in the dictionary. |
762 | // TODO: this looks iffy; compare with old code. |
763 | int32_t num_candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
764 | utext_setNativeIndex(text, current + cuWordLength + chars); |
765 | if (num_candidates > 0) { |
766 | break; |
767 | } |
768 | } |
769 | } |
770 | |
771 | // Bump the word count if there wasn't already one |
772 | if (cuWordLength <= 0) { |
773 | wordsFound += 1; |
774 | } |
775 | |
776 | // Update the length with the passed-over characters |
777 | cuWordLength += chars; |
778 | } |
779 | else { |
780 | // Back up to where we were for next iteration |
781 | utext_setNativeIndex(text, current + cuWordLength); |
782 | } |
783 | } |
784 | |
785 | // Never stop before a combining mark. |
786 | int32_t currPos; |
787 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
788 | utext_next32(text); |
789 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
790 | } |
791 | |
792 | // Look ahead for possible suffixes if a dictionary word does not follow. |
793 | // We do this in code rather than using a rule so that the heuristic |
794 | // resynch continues to function. For example, one of the suffix characters |
795 | // could be a typo in the middle of a word. |
796 | // NOT CURRENTLY APPLICABLE TO BURMESE |
797 | |
798 | // Did we find a word on this iteration? If so, push it on the break stack |
799 | if (cuWordLength > 0) { |
800 | foundBreaks.push((current+cuWordLength), status); |
801 | } |
802 | } |
803 | |
804 | // Don't return a break for the end of the dictionary range if there is one there. |
805 | if (foundBreaks.peeki() >= rangeEnd) { |
806 | (void) foundBreaks.popi(); |
807 | wordsFound -= 1; |
808 | } |
809 | |
810 | return wordsFound; |
811 | } |
812 | |
813 | /* |
814 | ****************************************************************** |
815 | * KhmerBreakEngine |
816 | */ |
817 | |
818 | // How many words in a row are "good enough"? |
819 | static const int32_t KHMER_LOOKAHEAD = 3; |
820 | |
821 | // Will not combine a non-word with a preceding dictionary word longer than this |
822 | static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 10; |
823 | |
824 | // Will not combine a non-word that shares at least this much prefix with a |
825 | // dictionary word, with a preceding word |
826 | static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 5; |
827 | |
828 | // Minimum word size |
829 | static const int32_t KHMER_MIN_WORD = 2; |
830 | |
831 | // Minimum number of characters for two words |
832 | static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2; |
833 | |
834 | KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status) |
835 | : DictionaryBreakEngine(), |
836 | fDictionary(adoptDictionary) |
837 | { |
838 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
839 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Khmr" ); |
840 | fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]" ), status); |
841 | if (U_SUCCESS(status)) { |
842 | setCharacters(fKhmerWordSet); |
843 | } |
844 | fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]" ), status); |
845 | fMarkSet.add(0x0020); |
846 | fEndWordSet = fKhmerWordSet; |
847 | fBeginWordSet.add(0x1780, 0x17B3); |
848 | //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels |
849 | //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word |
850 | //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word |
851 | fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters |
852 | //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels |
853 | // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT |
854 | // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
855 | // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK |
856 | // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI |
857 | // fSuffixSet.add(THAI_PAIYANNOI); |
858 | // fSuffixSet.add(THAI_MAIYAMOK); |
859 | |
860 | // Compact for caching. |
861 | fMarkSet.compact(); |
862 | fEndWordSet.compact(); |
863 | fBeginWordSet.compact(); |
864 | // fSuffixSet.compact(); |
865 | UTRACE_EXIT_STATUS(status); |
866 | } |
867 | |
868 | KhmerBreakEngine::~KhmerBreakEngine() { |
869 | delete fDictionary; |
870 | } |
871 | |
872 | int32_t |
873 | KhmerBreakEngine::divideUpDictionaryRange( UText *text, |
874 | int32_t rangeStart, |
875 | int32_t rangeEnd, |
876 | UVector32 &foundBreaks ) const { |
877 | if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) { |
878 | return 0; // Not enough characters for two words |
879 | } |
880 | |
881 | uint32_t wordsFound = 0; |
882 | int32_t cpWordLength = 0; |
883 | int32_t cuWordLength = 0; |
884 | int32_t current; |
885 | UErrorCode status = U_ZERO_ERROR; |
886 | PossibleWord words[KHMER_LOOKAHEAD]; |
887 | |
888 | utext_setNativeIndex(text, rangeStart); |
889 | |
890 | while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) { |
891 | cuWordLength = 0; |
892 | cpWordLength = 0; |
893 | |
894 | // Look for candidate words at the current position |
895 | int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
896 | |
897 | // If we found exactly one, use that |
898 | if (candidates == 1) { |
899 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
900 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
901 | wordsFound += 1; |
902 | } |
903 | |
904 | // If there was more than one, see which one can take us forward the most words |
905 | else if (candidates > 1) { |
906 | // If we're already at the end of the range, we're done |
907 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
908 | goto foundBest; |
909 | } |
910 | do { |
911 | int32_t wordsMatched = 1; |
912 | if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) { |
913 | if (wordsMatched < 2) { |
914 | // Followed by another dictionary word; mark first word as a good candidate |
915 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
916 | wordsMatched = 2; |
917 | } |
918 | |
919 | // If we're already at the end of the range, we're done |
920 | if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) { |
921 | goto foundBest; |
922 | } |
923 | |
924 | // See if any of the possible second words is followed by a third word |
925 | do { |
926 | // If we find a third word, stop right away |
927 | if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) { |
928 | words[wordsFound % KHMER_LOOKAHEAD].markCurrent(); |
929 | goto foundBest; |
930 | } |
931 | } |
932 | while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text)); |
933 | } |
934 | } |
935 | while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text)); |
936 | foundBest: |
937 | cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text); |
938 | cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength(); |
939 | wordsFound += 1; |
940 | } |
941 | |
942 | // We come here after having either found a word or not. We look ahead to the |
943 | // next word. If it's not a dictionary word, we will combine it with the word we |
944 | // just found (if there is one), but only if the preceding word does not exceed |
945 | // the threshold. |
946 | // The text iterator should now be positioned at the end of the word we found. |
947 | if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) { |
948 | // if it is a dictionary word, do nothing. If it isn't, then if there is |
949 | // no preceding word, or the non-word shares less than the minimum threshold |
950 | // of characters with a dictionary word, then scan to resynchronize |
951 | if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
952 | && (cuWordLength == 0 |
953 | || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) { |
954 | // Look for a plausible word boundary |
955 | int32_t remaining = rangeEnd - (current+cuWordLength); |
956 | UChar32 pc; |
957 | UChar32 uc; |
958 | int32_t chars = 0; |
959 | for (;;) { |
960 | int32_t pcIndex = (int32_t)utext_getNativeIndex(text); |
961 | pc = utext_next32(text); |
962 | int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex; |
963 | chars += pcSize; |
964 | remaining -= pcSize; |
965 | if (remaining <= 0) { |
966 | break; |
967 | } |
968 | uc = utext_current32(text); |
969 | if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) { |
970 | // Maybe. See if it's in the dictionary. |
971 | int32_t num_candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd); |
972 | utext_setNativeIndex(text, current+cuWordLength+chars); |
973 | if (num_candidates > 0) { |
974 | break; |
975 | } |
976 | } |
977 | } |
978 | |
979 | // Bump the word count if there wasn't already one |
980 | if (cuWordLength <= 0) { |
981 | wordsFound += 1; |
982 | } |
983 | |
984 | // Update the length with the passed-over characters |
985 | cuWordLength += chars; |
986 | } |
987 | else { |
988 | // Back up to where we were for next iteration |
989 | utext_setNativeIndex(text, current+cuWordLength); |
990 | } |
991 | } |
992 | |
993 | // Never stop before a combining mark. |
994 | int32_t currPos; |
995 | while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) { |
996 | utext_next32(text); |
997 | cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos; |
998 | } |
999 | |
1000 | // Look ahead for possible suffixes if a dictionary word does not follow. |
1001 | // We do this in code rather than using a rule so that the heuristic |
1002 | // resynch continues to function. For example, one of the suffix characters |
1003 | // could be a typo in the middle of a word. |
1004 | // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) { |
1005 | // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0 |
1006 | // && fSuffixSet.contains(uc = utext_current32(text))) { |
1007 | // if (uc == KHMER_PAIYANNOI) { |
1008 | // if (!fSuffixSet.contains(utext_previous32(text))) { |
1009 | // // Skip over previous end and PAIYANNOI |
1010 | // utext_next32(text); |
1011 | // utext_next32(text); |
1012 | // wordLength += 1; // Add PAIYANNOI to word |
1013 | // uc = utext_current32(text); // Fetch next character |
1014 | // } |
1015 | // else { |
1016 | // // Restore prior position |
1017 | // utext_next32(text); |
1018 | // } |
1019 | // } |
1020 | // if (uc == KHMER_MAIYAMOK) { |
1021 | // if (utext_previous32(text) != KHMER_MAIYAMOK) { |
1022 | // // Skip over previous end and MAIYAMOK |
1023 | // utext_next32(text); |
1024 | // utext_next32(text); |
1025 | // wordLength += 1; // Add MAIYAMOK to word |
1026 | // } |
1027 | // else { |
1028 | // // Restore prior position |
1029 | // utext_next32(text); |
1030 | // } |
1031 | // } |
1032 | // } |
1033 | // else { |
1034 | // utext_setNativeIndex(text, current+wordLength); |
1035 | // } |
1036 | // } |
1037 | |
1038 | // Did we find a word on this iteration? If so, push it on the break stack |
1039 | if (cuWordLength > 0) { |
1040 | foundBreaks.push((current+cuWordLength), status); |
1041 | } |
1042 | } |
1043 | |
1044 | // Don't return a break for the end of the dictionary range if there is one there. |
1045 | if (foundBreaks.peeki() >= rangeEnd) { |
1046 | (void) foundBreaks.popi(); |
1047 | wordsFound -= 1; |
1048 | } |
1049 | |
1050 | return wordsFound; |
1051 | } |
1052 | |
1053 | #if !UCONFIG_NO_NORMALIZATION |
1054 | /* |
1055 | ****************************************************************** |
1056 | * CjkBreakEngine |
1057 | */ |
1058 | static const uint32_t kuint32max = 0xFFFFFFFF; |
1059 | CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status) |
1060 | : DictionaryBreakEngine(), fDictionary(adoptDictionary) { |
1061 | UTRACE_ENTRY(UTRACE_UBRK_CREATE_BREAK_ENGINE); |
1062 | UTRACE_DATA1(UTRACE_INFO, "dictbe=%s" , "Hani" ); |
1063 | // Korean dictionary only includes Hangul syllables |
1064 | fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]" ), status); |
1065 | fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]" ), status); |
1066 | fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]" ), status); |
1067 | fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]" ), status); |
1068 | nfkcNorm2 = Normalizer2::getNFKCInstance(status); |
1069 | |
1070 | if (U_SUCCESS(status)) { |
1071 | // handle Korean and Japanese/Chinese using different dictionaries |
1072 | if (type == kKorean) { |
1073 | setCharacters(fHangulWordSet); |
1074 | } else { //Chinese and Japanese |
1075 | UnicodeSet cjSet; |
1076 | cjSet.addAll(fHanWordSet); |
1077 | cjSet.addAll(fKatakanaWordSet); |
1078 | cjSet.addAll(fHiraganaWordSet); |
1079 | cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1080 | cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK |
1081 | setCharacters(cjSet); |
1082 | } |
1083 | } |
1084 | UTRACE_EXIT_STATUS(status); |
1085 | } |
1086 | |
1087 | CjkBreakEngine::~CjkBreakEngine(){ |
1088 | delete fDictionary; |
1089 | } |
1090 | |
1091 | // The katakanaCost values below are based on the length frequencies of all |
1092 | // katakana phrases in the dictionary |
1093 | static const int32_t kMaxKatakanaLength = 8; |
1094 | static const int32_t kMaxKatakanaGroupLength = 20; |
1095 | static const uint32_t maxSnlp = 255; |
1096 | |
1097 | static inline uint32_t getKatakanaCost(int32_t wordLength){ |
1098 | //TODO: fill array with actual values from dictionary! |
1099 | static const uint32_t katakanaCost[kMaxKatakanaLength + 1] |
1100 | = {8192, 984, 408, 240, 204, 252, 300, 372, 480}; |
1101 | return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength]; |
1102 | } |
1103 | |
1104 | static inline bool isKatakana(UChar32 value) { |
1105 | return (value >= 0x30A1 && value <= 0x30FE && value != 0x30FB) || |
1106 | (value >= 0xFF66 && value <= 0xFF9f); |
1107 | } |
1108 | |
1109 | |
1110 | // Function for accessing internal utext flags. |
1111 | // Replicates an internal UText function. |
1112 | |
1113 | static inline int32_t utext_i32_flag(int32_t bitIndex) { |
1114 | return (int32_t)1 << bitIndex; |
1115 | } |
1116 | |
1117 | |
1118 | /* |
1119 | * @param text A UText representing the text |
1120 | * @param rangeStart The start of the range of dictionary characters |
1121 | * @param rangeEnd The end of the range of dictionary characters |
1122 | * @param foundBreaks vector<int32> to receive the break positions |
1123 | * @return The number of breaks found |
1124 | */ |
1125 | int32_t |
1126 | CjkBreakEngine::divideUpDictionaryRange( UText *inText, |
1127 | int32_t rangeStart, |
1128 | int32_t rangeEnd, |
1129 | UVector32 &foundBreaks ) const { |
1130 | if (rangeStart >= rangeEnd) { |
1131 | return 0; |
1132 | } |
1133 | |
1134 | // UnicodeString version of input UText, NFKC normalized if necessary. |
1135 | UnicodeString inString; |
1136 | |
1137 | // inputMap[inStringIndex] = corresponding native index from UText inText. |
1138 | // If NULL then mapping is 1:1 |
1139 | LocalPointer<UVector32> inputMap; |
1140 | |
1141 | UErrorCode status = U_ZERO_ERROR; |
1142 | |
1143 | |
1144 | // if UText has the input string as one contiguous UTF-16 chunk |
1145 | if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) && |
1146 | inText->chunkNativeStart <= rangeStart && |
1147 | inText->chunkNativeLimit >= rangeEnd && |
1148 | inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) { |
1149 | |
1150 | // Input UText is in one contiguous UTF-16 chunk. |
1151 | // Use Read-only aliasing UnicodeString. |
1152 | inString.setTo(FALSE, |
1153 | inText->chunkContents + rangeStart - inText->chunkNativeStart, |
1154 | rangeEnd - rangeStart); |
1155 | } else { |
1156 | // Copy the text from the original inText (UText) to inString (UnicodeString). |
1157 | // Create a map from UnicodeString indices -> UText offsets. |
1158 | utext_setNativeIndex(inText, rangeStart); |
1159 | int32_t limit = rangeEnd; |
1160 | U_ASSERT(limit <= utext_nativeLength(inText)); |
1161 | if (limit > utext_nativeLength(inText)) { |
1162 | limit = (int32_t)utext_nativeLength(inText); |
1163 | } |
1164 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1165 | if (U_FAILURE(status)) { |
1166 | return 0; |
1167 | } |
1168 | while (utext_getNativeIndex(inText) < limit) { |
1169 | int32_t nativePosition = (int32_t)utext_getNativeIndex(inText); |
1170 | UChar32 c = utext_next32(inText); |
1171 | U_ASSERT(c != U_SENTINEL); |
1172 | inString.append(c); |
1173 | while (inputMap->size() < inString.length()) { |
1174 | inputMap->addElement(nativePosition, status); |
1175 | } |
1176 | } |
1177 | inputMap->addElement(limit, status); |
1178 | } |
1179 | |
1180 | |
1181 | if (!nfkcNorm2->isNormalized(inString, status)) { |
1182 | UnicodeString normalizedInput; |
1183 | // normalizedMap[normalizedInput position] == original UText position. |
1184 | LocalPointer<UVector32> normalizedMap(new UVector32(status), status); |
1185 | if (U_FAILURE(status)) { |
1186 | return 0; |
1187 | } |
1188 | |
1189 | UnicodeString fragment; |
1190 | UnicodeString normalizedFragment; |
1191 | for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk |
1192 | fragment.remove(); |
1193 | int32_t fragmentStartI = srcI; |
1194 | UChar32 c = inString.char32At(srcI); |
1195 | for (;;) { |
1196 | fragment.append(c); |
1197 | srcI = inString.moveIndex32(srcI, 1); |
1198 | if (srcI == inString.length()) { |
1199 | break; |
1200 | } |
1201 | c = inString.char32At(srcI); |
1202 | if (nfkcNorm2->hasBoundaryBefore(c)) { |
1203 | break; |
1204 | } |
1205 | } |
1206 | nfkcNorm2->normalize(fragment, normalizedFragment, status); |
1207 | normalizedInput.append(normalizedFragment); |
1208 | |
1209 | // Map every position in the normalized chunk to the start of the chunk |
1210 | // in the original input. |
1211 | int32_t fragmentOriginalStart = inputMap.isValid() ? |
1212 | inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart; |
1213 | while (normalizedMap->size() < normalizedInput.length()) { |
1214 | normalizedMap->addElement(fragmentOriginalStart, status); |
1215 | if (U_FAILURE(status)) { |
1216 | break; |
1217 | } |
1218 | } |
1219 | } |
1220 | U_ASSERT(normalizedMap->size() == normalizedInput.length()); |
1221 | int32_t nativeEnd = inputMap.isValid() ? |
1222 | inputMap->elementAti(inString.length()) : inString.length()+rangeStart; |
1223 | normalizedMap->addElement(nativeEnd, status); |
1224 | |
1225 | inputMap = std::move(normalizedMap); |
1226 | inString = std::move(normalizedInput); |
1227 | } |
1228 | |
1229 | int32_t numCodePts = inString.countChar32(); |
1230 | if (numCodePts != inString.length()) { |
1231 | // There are supplementary characters in the input. |
1232 | // The dictionary will produce boundary positions in terms of code point indexes, |
1233 | // not in terms of code unit string indexes. |
1234 | // Use the inputMap mechanism to take care of this in addition to indexing differences |
1235 | // from normalization and/or UTF-8 input. |
1236 | UBool hadExistingMap = inputMap.isValid(); |
1237 | if (!hadExistingMap) { |
1238 | inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status); |
1239 | if (U_FAILURE(status)) { |
1240 | return 0; |
1241 | } |
1242 | } |
1243 | int32_t cpIdx = 0; |
1244 | for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) { |
1245 | U_ASSERT(cuIdx >= cpIdx); |
1246 | if (hadExistingMap) { |
1247 | inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx); |
1248 | } else { |
1249 | inputMap->addElement(cuIdx+rangeStart, status); |
1250 | } |
1251 | cpIdx++; |
1252 | if (cuIdx == inString.length()) { |
1253 | break; |
1254 | } |
1255 | } |
1256 | } |
1257 | |
1258 | // bestSnlp[i] is the snlp of the best segmentation of the first i |
1259 | // code points in the range to be matched. |
1260 | UVector32 bestSnlp(numCodePts + 1, status); |
1261 | bestSnlp.addElement(0, status); |
1262 | for(int32_t i = 1; i <= numCodePts; i++) { |
1263 | bestSnlp.addElement(kuint32max, status); |
1264 | } |
1265 | |
1266 | |
1267 | // prev[i] is the index of the last CJK code point in the previous word in |
1268 | // the best segmentation of the first i characters. |
1269 | UVector32 prev(numCodePts + 1, status); |
1270 | for(int32_t i = 0; i <= numCodePts; i++){ |
1271 | prev.addElement(-1, status); |
1272 | } |
1273 | |
1274 | const int32_t maxWordSize = 20; |
1275 | UVector32 values(numCodePts, status); |
1276 | values.setSize(numCodePts); |
1277 | UVector32 lengths(numCodePts, status); |
1278 | lengths.setSize(numCodePts); |
1279 | |
1280 | UText fu = UTEXT_INITIALIZER; |
1281 | utext_openUnicodeString(&fu, &inString, &status); |
1282 | |
1283 | // Dynamic programming to find the best segmentation. |
1284 | |
1285 | // In outer loop, i is the code point index, |
1286 | // ix is the corresponding string (code unit) index. |
1287 | // They differ when the string contains supplementary characters. |
1288 | int32_t ix = 0; |
1289 | bool is_prev_katakana = false; |
1290 | for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) { |
1291 | if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) { |
1292 | continue; |
1293 | } |
1294 | |
1295 | int32_t count; |
1296 | utext_setNativeIndex(&fu, ix); |
1297 | count = fDictionary->matches(&fu, maxWordSize, numCodePts, |
1298 | NULL, lengths.getBuffer(), values.getBuffer(), NULL); |
1299 | // Note: lengths is filled with code point lengths |
1300 | // The NULL parameter is the ignored code unit lengths. |
1301 | |
1302 | // if there are no single character matches found in the dictionary |
1303 | // starting with this character, treat character as a 1-character word |
1304 | // with the highest value possible, i.e. the least likely to occur. |
1305 | // Exclude Korean characters from this treatment, as they should be left |
1306 | // together by default. |
1307 | if ((count == 0 || lengths.elementAti(0) != 1) && |
1308 | !fHangulWordSet.contains(inString.char32At(ix))) { |
1309 | values.setElementAt(maxSnlp, count); // 255 |
1310 | lengths.setElementAt(1, count++); |
1311 | } |
1312 | |
1313 | for (int32_t j = 0; j < count; j++) { |
1314 | uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j); |
1315 | int32_t ln_j_i = lengths.elementAti(j) + i; |
1316 | if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) { |
1317 | bestSnlp.setElementAt(newSnlp, ln_j_i); |
1318 | prev.setElementAt(i, ln_j_i); |
1319 | } |
1320 | } |
1321 | |
1322 | // In Japanese, |
1323 | // Katakana word in single character is pretty rare. So we apply |
1324 | // the following heuristic to Katakana: any continuous run of Katakana |
1325 | // characters is considered a candidate word with a default cost |
1326 | // specified in the katakanaCost table according to its length. |
1327 | |
1328 | bool is_katakana = isKatakana(inString.char32At(ix)); |
1329 | int32_t katakanaRunLength = 1; |
1330 | if (!is_prev_katakana && is_katakana) { |
1331 | int32_t j = inString.moveIndex32(ix, 1); |
1332 | // Find the end of the continuous run of Katakana characters |
1333 | while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength && |
1334 | isKatakana(inString.char32At(j))) { |
1335 | j = inString.moveIndex32(j, 1); |
1336 | katakanaRunLength++; |
1337 | } |
1338 | if (katakanaRunLength < kMaxKatakanaGroupLength) { |
1339 | uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength); |
1340 | if (newSnlp < (uint32_t)bestSnlp.elementAti(i+katakanaRunLength)) { |
1341 | bestSnlp.setElementAt(newSnlp, i+katakanaRunLength); |
1342 | prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i; |
1343 | } |
1344 | } |
1345 | } |
1346 | is_prev_katakana = is_katakana; |
1347 | } |
1348 | utext_close(&fu); |
1349 | |
1350 | // Start pushing the optimal offset index into t_boundary (t for tentative). |
1351 | // prev[numCodePts] is guaranteed to be meaningful. |
1352 | // We'll first push in the reverse order, i.e., |
1353 | // t_boundary[0] = numCodePts, and afterwards do a swap. |
1354 | UVector32 t_boundary(numCodePts+1, status); |
1355 | |
1356 | int32_t numBreaks = 0; |
1357 | // No segmentation found, set boundary to end of range |
1358 | if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) { |
1359 | t_boundary.addElement(numCodePts, status); |
1360 | numBreaks++; |
1361 | } else { |
1362 | for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) { |
1363 | t_boundary.addElement(i, status); |
1364 | numBreaks++; |
1365 | } |
1366 | U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0); |
1367 | } |
1368 | |
1369 | // Add a break for the start of the dictionary range if there is not one |
1370 | // there already. |
1371 | if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) { |
1372 | t_boundary.addElement(0, status); |
1373 | numBreaks++; |
1374 | } |
1375 | |
1376 | // Now that we're done, convert positions in t_boundary[] (indices in |
1377 | // the normalized input string) back to indices in the original input UText |
1378 | // while reversing t_boundary and pushing values to foundBreaks. |
1379 | int32_t prevCPPos = -1; |
1380 | int32_t prevUTextPos = -1; |
1381 | for (int32_t i = numBreaks-1; i >= 0; i--) { |
1382 | int32_t cpPos = t_boundary.elementAti(i); |
1383 | U_ASSERT(cpPos > prevCPPos); |
1384 | int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart; |
1385 | U_ASSERT(utextPos >= prevUTextPos); |
1386 | if (utextPos > prevUTextPos) { |
1387 | // Boundaries are added to foundBreaks output in ascending order. |
1388 | U_ASSERT(foundBreaks.size() == 0 || foundBreaks.peeki() < utextPos); |
1389 | foundBreaks.push(utextPos, status); |
1390 | } else { |
1391 | // Normalization expanded the input text, the dictionary found a boundary |
1392 | // within the expansion, giving two boundaries with the same index in the |
1393 | // original text. Ignore the second. See ticket #12918. |
1394 | --numBreaks; |
1395 | } |
1396 | prevCPPos = cpPos; |
1397 | prevUTextPos = utextPos; |
1398 | } |
1399 | (void)prevCPPos; // suppress compiler warnings about unused variable |
1400 | |
1401 | // inString goes out of scope |
1402 | // inputMap goes out of scope |
1403 | return numBreaks; |
1404 | } |
1405 | #endif |
1406 | |
1407 | U_NAMESPACE_END |
1408 | |
1409 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |
1410 | |
1411 | |