| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * |
| 6 | * Copyright (C) 2001-2014, International Business Machines |
| 7 | * Corporation and others. All Rights Reserved. |
| 8 | * |
| 9 | ****************************************************************************** |
| 10 | * file name: utrie2_builder.cpp |
| 11 | * encoding: UTF-8 |
| 12 | * tab size: 8 (not used) |
| 13 | * indentation:4 |
| 14 | * |
| 15 | * created on: 2008sep26 (split off from utrie2.c) |
| 16 | * created by: Markus W. Scherer |
| 17 | * |
| 18 | * This is a common implementation of a Unicode trie. |
| 19 | * It is a kind of compressed, serializable table of 16- or 32-bit values associated with |
| 20 | * Unicode code points (0..0x10ffff). |
| 21 | * This is the second common version of a Unicode trie (hence the name UTrie2). |
| 22 | * See utrie2.h for a comparison. |
| 23 | * |
| 24 | * This file contains only the builder code. |
| 25 | * See utrie2.c for the runtime and enumeration code. |
| 26 | */ |
| 27 | // #define UTRIE2_DEBUG |
| 28 | #ifdef UTRIE2_DEBUG |
| 29 | # include <stdio.h> |
| 30 | #endif |
| 31 | // #define UCPTRIE_DEBUG |
| 32 | |
| 33 | #include "unicode/utypes.h" |
| 34 | #ifdef UCPTRIE_DEBUG |
| 35 | #include "unicode/ucptrie.h" |
| 36 | #include "unicode/umutablecptrie.h" |
| 37 | #include "ucptrie_impl.h" |
| 38 | #endif |
| 39 | #include "cmemory.h" |
| 40 | #include "utrie2.h" |
| 41 | #include "utrie2_impl.h" |
| 42 | |
| 43 | #include "utrie.h" // for utrie2_fromUTrie() |
| 44 | |
| 45 | /* Implementation notes ----------------------------------------------------- */ |
| 46 | |
| 47 | /* |
| 48 | * The UTRIE2_SHIFT_1, UTRIE2_SHIFT_2, UTRIE2_INDEX_SHIFT and other values |
| 49 | * have been chosen to minimize trie sizes overall. |
| 50 | * Most of the code is flexible enough to work with a range of values, |
| 51 | * within certain limits. |
| 52 | * |
| 53 | * Exception: Support for separate values for lead surrogate code _units_ |
| 54 | * vs. code _points_ was added after the constants were fixed, |
| 55 | * and has not been tested nor particularly designed for different constant values. |
| 56 | * (Especially the utrie2_enum() code that jumps to the special LSCP index-2 |
| 57 | * part and back.) |
| 58 | * |
| 59 | * Requires UTRIE2_SHIFT_2<=6. Otherwise 0xc0 which is the top of the ASCII-linear data |
| 60 | * including the bad-UTF-8-data block is not a multiple of UTRIE2_DATA_BLOCK_LENGTH |
| 61 | * and map[block>>UTRIE2_SHIFT_2] (used in reference counting and compaction |
| 62 | * remapping) stops working. |
| 63 | * |
| 64 | * Requires UTRIE2_SHIFT_1>=10 because utrie2_enumForLeadSurrogate() |
| 65 | * assumes that a single index-2 block is used for 0x400 code points |
| 66 | * corresponding to one lead surrogate. |
| 67 | * |
| 68 | * Requires UTRIE2_SHIFT_1<=16. Otherwise one single index-2 block contains |
| 69 | * more than one Unicode plane, and the split of the index-2 table into a BMP |
| 70 | * part and a supplementary part, with a gap in between, would not work. |
| 71 | * |
| 72 | * Requires UTRIE2_INDEX_SHIFT>=1 not because of the code but because |
| 73 | * there is data with more than 64k distinct values, |
| 74 | * for example for Unihan collation with a separate collation weight per |
| 75 | * Han character. |
| 76 | */ |
| 77 | |
| 78 | /* Building a trie ----------------------------------------------------------*/ |
| 79 | |
| 80 | enum { |
| 81 | /** The null index-2 block, following the gap in the index-2 table. */ |
| 82 | UNEWTRIE2_INDEX_2_NULL_OFFSET=UNEWTRIE2_INDEX_GAP_OFFSET+UNEWTRIE2_INDEX_GAP_LENGTH, |
| 83 | |
| 84 | /** The start of allocated index-2 blocks. */ |
| 85 | UNEWTRIE2_INDEX_2_START_OFFSET=UNEWTRIE2_INDEX_2_NULL_OFFSET+UTRIE2_INDEX_2_BLOCK_LENGTH, |
| 86 | |
| 87 | /** |
| 88 | * The null data block. |
| 89 | * Length 64=0x40 even if UTRIE2_DATA_BLOCK_LENGTH is smaller, |
| 90 | * to work with 6-bit trail bytes from 2-byte UTF-8. |
| 91 | */ |
| 92 | UNEWTRIE2_DATA_NULL_OFFSET=UTRIE2_DATA_START_OFFSET, |
| 93 | |
| 94 | /** The start of allocated data blocks. */ |
| 95 | UNEWTRIE2_DATA_START_OFFSET=UNEWTRIE2_DATA_NULL_OFFSET+0x40, |
| 96 | |
| 97 | /** |
| 98 | * The start of data blocks for U+0800 and above. |
| 99 | * Below, compaction uses a block length of 64 for 2-byte UTF-8. |
| 100 | * From here on, compaction uses UTRIE2_DATA_BLOCK_LENGTH. |
| 101 | * Data values for 0x780 code points beyond ASCII. |
| 102 | */ |
| 103 | UNEWTRIE2_DATA_0800_OFFSET=UNEWTRIE2_DATA_START_OFFSET+0x780 |
| 104 | }; |
| 105 | |
| 106 | /* Start with allocation of 16k data entries. */ |
| 107 | #define UNEWTRIE2_INITIAL_DATA_LENGTH ((int32_t)1<<14) |
| 108 | |
| 109 | /* Grow about 8x each time. */ |
| 110 | #define UNEWTRIE2_MEDIUM_DATA_LENGTH ((int32_t)1<<17) |
| 111 | |
| 112 | static int32_t |
| 113 | allocIndex2Block(UNewTrie2 *trie); |
| 114 | |
| 115 | U_CAPI UTrie2 * U_EXPORT2 |
| 116 | utrie2_open(uint32_t initialValue, uint32_t errorValue, UErrorCode *pErrorCode) { |
| 117 | UTrie2 *trie; |
| 118 | UNewTrie2 *newTrie; |
| 119 | uint32_t *data; |
| 120 | int32_t i, j; |
| 121 | |
| 122 | if(U_FAILURE(*pErrorCode)) { |
| 123 | return NULL; |
| 124 | } |
| 125 | |
| 126 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); |
| 127 | newTrie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); |
| 128 | data=(uint32_t *)uprv_malloc(UNEWTRIE2_INITIAL_DATA_LENGTH*4); |
| 129 | if(trie==NULL || newTrie==NULL || data==NULL) { |
| 130 | uprv_free(trie); |
| 131 | uprv_free(newTrie); |
| 132 | uprv_free(data); |
| 133 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 134 | return 0; |
| 135 | } |
| 136 | |
| 137 | uprv_memset(trie, 0, sizeof(UTrie2)); |
| 138 | trie->initialValue=initialValue; |
| 139 | trie->errorValue=errorValue; |
| 140 | trie->highStart=0x110000; |
| 141 | trie->newTrie=newTrie; |
| 142 | #ifdef UTRIE2_DEBUG |
| 143 | trie->name="open" ; |
| 144 | #endif |
| 145 | |
| 146 | newTrie->data=data; |
| 147 | #ifdef UCPTRIE_DEBUG |
| 148 | newTrie->t3=umutablecptrie_open(initialValue, errorValue, pErrorCode); |
| 149 | #endif |
| 150 | newTrie->dataCapacity=UNEWTRIE2_INITIAL_DATA_LENGTH; |
| 151 | newTrie->initialValue=initialValue; |
| 152 | newTrie->errorValue=errorValue; |
| 153 | newTrie->highStart=0x110000; |
| 154 | newTrie->firstFreeBlock=0; /* no free block in the list */ |
| 155 | newTrie->isCompacted=FALSE; |
| 156 | |
| 157 | /* |
| 158 | * preallocate and reset |
| 159 | * - ASCII |
| 160 | * - the bad-UTF-8-data block |
| 161 | * - the null data block |
| 162 | */ |
| 163 | for(i=0; i<0x80; ++i) { |
| 164 | newTrie->data[i]=initialValue; |
| 165 | } |
| 166 | for(; i<0xc0; ++i) { |
| 167 | newTrie->data[i]=errorValue; |
| 168 | } |
| 169 | for(i=UNEWTRIE2_DATA_NULL_OFFSET; i<UNEWTRIE2_DATA_START_OFFSET; ++i) { |
| 170 | newTrie->data[i]=initialValue; |
| 171 | } |
| 172 | newTrie->dataNullOffset=UNEWTRIE2_DATA_NULL_OFFSET; |
| 173 | newTrie->dataLength=UNEWTRIE2_DATA_START_OFFSET; |
| 174 | |
| 175 | /* set the index-2 indexes for the 2=0x80>>UTRIE2_SHIFT_2 ASCII data blocks */ |
| 176 | for(i=0, j=0; j<0x80; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
| 177 | newTrie->index2[i]=j; |
| 178 | newTrie->map[i]=1; |
| 179 | } |
| 180 | /* reference counts for the bad-UTF-8-data block */ |
| 181 | for(; j<0xc0; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
| 182 | newTrie->map[i]=0; |
| 183 | } |
| 184 | /* |
| 185 | * Reference counts for the null data block: all blocks except for the ASCII blocks. |
| 186 | * Plus 1 so that we don't drop this block during compaction. |
| 187 | * Plus as many as needed for lead surrogate code points. |
| 188 | */ |
| 189 | /* i==newTrie->dataNullOffset */ |
| 190 | newTrie->map[i++]= |
| 191 | (0x110000>>UTRIE2_SHIFT_2)- |
| 192 | (0x80>>UTRIE2_SHIFT_2)+ |
| 193 | 1+ |
| 194 | UTRIE2_LSCP_INDEX_2_LENGTH; |
| 195 | j+=UTRIE2_DATA_BLOCK_LENGTH; |
| 196 | for(; j<UNEWTRIE2_DATA_START_OFFSET; ++i, j+=UTRIE2_DATA_BLOCK_LENGTH) { |
| 197 | newTrie->map[i]=0; |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * set the remaining indexes in the BMP index-2 block |
| 202 | * to the null data block |
| 203 | */ |
| 204 | for(i=0x80>>UTRIE2_SHIFT_2; i<UTRIE2_INDEX_2_BMP_LENGTH; ++i) { |
| 205 | newTrie->index2[i]=UNEWTRIE2_DATA_NULL_OFFSET; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * Fill the index gap with impossible values so that compaction |
| 210 | * does not overlap other index-2 blocks with the gap. |
| 211 | */ |
| 212 | for(i=0; i<UNEWTRIE2_INDEX_GAP_LENGTH; ++i) { |
| 213 | newTrie->index2[UNEWTRIE2_INDEX_GAP_OFFSET+i]=-1; |
| 214 | } |
| 215 | |
| 216 | /* set the indexes in the null index-2 block */ |
| 217 | for(i=0; i<UTRIE2_INDEX_2_BLOCK_LENGTH; ++i) { |
| 218 | newTrie->index2[UNEWTRIE2_INDEX_2_NULL_OFFSET+i]=UNEWTRIE2_DATA_NULL_OFFSET; |
| 219 | } |
| 220 | newTrie->index2NullOffset=UNEWTRIE2_INDEX_2_NULL_OFFSET; |
| 221 | newTrie->index2Length=UNEWTRIE2_INDEX_2_START_OFFSET; |
| 222 | |
| 223 | /* set the index-1 indexes for the linear index-2 block */ |
| 224 | for(i=0, j=0; |
| 225 | i<UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; |
| 226 | ++i, j+=UTRIE2_INDEX_2_BLOCK_LENGTH |
| 227 | ) { |
| 228 | newTrie->index1[i]=j; |
| 229 | } |
| 230 | |
| 231 | /* set the remaining index-1 indexes to the null index-2 block */ |
| 232 | for(; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { |
| 233 | newTrie->index1[i]=UNEWTRIE2_INDEX_2_NULL_OFFSET; |
| 234 | } |
| 235 | |
| 236 | /* |
| 237 | * Preallocate and reset data for U+0080..U+07ff, |
| 238 | * for 2-byte UTF-8 which will be compacted in 64-blocks |
| 239 | * even if UTRIE2_DATA_BLOCK_LENGTH is smaller. |
| 240 | */ |
| 241 | for(i=0x80; i<0x800; i+=UTRIE2_DATA_BLOCK_LENGTH) { |
| 242 | utrie2_set32(trie, i, initialValue, pErrorCode); |
| 243 | } |
| 244 | |
| 245 | return trie; |
| 246 | } |
| 247 | |
| 248 | static UNewTrie2 * |
| 249 | cloneBuilder(const UNewTrie2 *other) { |
| 250 | UNewTrie2 *trie; |
| 251 | |
| 252 | trie=(UNewTrie2 *)uprv_malloc(sizeof(UNewTrie2)); |
| 253 | if(trie==NULL) { |
| 254 | return NULL; |
| 255 | } |
| 256 | |
| 257 | trie->data=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
| 258 | if(trie->data==NULL) { |
| 259 | uprv_free(trie); |
| 260 | return NULL; |
| 261 | } |
| 262 | #ifdef UCPTRIE_DEBUG |
| 263 | if(other->t3==nullptr) { |
| 264 | trie->t3=nullptr; |
| 265 | } else { |
| 266 | UErrorCode errorCode=U_ZERO_ERROR; |
| 267 | trie->t3=umutablecptrie_clone(other->t3, &errorCode); |
| 268 | } |
| 269 | #endif |
| 270 | trie->dataCapacity=other->dataCapacity; |
| 271 | |
| 272 | /* clone data */ |
| 273 | uprv_memcpy(trie->index1, other->index1, sizeof(trie->index1)); |
| 274 | uprv_memcpy(trie->index2, other->index2, (size_t)other->index2Length*4); |
| 275 | trie->index2NullOffset=other->index2NullOffset; |
| 276 | trie->index2Length=other->index2Length; |
| 277 | |
| 278 | uprv_memcpy(trie->data, other->data, (size_t)other->dataLength*4); |
| 279 | trie->dataNullOffset=other->dataNullOffset; |
| 280 | trie->dataLength=other->dataLength; |
| 281 | |
| 282 | /* reference counters */ |
| 283 | if(other->isCompacted) { |
| 284 | trie->firstFreeBlock=0; |
| 285 | } else { |
| 286 | uprv_memcpy(trie->map, other->map, ((size_t)other->dataLength>>UTRIE2_SHIFT_2)*4); |
| 287 | trie->firstFreeBlock=other->firstFreeBlock; |
| 288 | } |
| 289 | |
| 290 | trie->initialValue=other->initialValue; |
| 291 | trie->errorValue=other->errorValue; |
| 292 | trie->highStart=other->highStart; |
| 293 | trie->isCompacted=other->isCompacted; |
| 294 | |
| 295 | return trie; |
| 296 | } |
| 297 | |
| 298 | U_CAPI UTrie2 * U_EXPORT2 |
| 299 | utrie2_clone(const UTrie2 *other, UErrorCode *pErrorCode) { |
| 300 | UTrie2 *trie; |
| 301 | |
| 302 | if(U_FAILURE(*pErrorCode)) { |
| 303 | return NULL; |
| 304 | } |
| 305 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { |
| 306 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 307 | return NULL; |
| 308 | } |
| 309 | |
| 310 | trie=(UTrie2 *)uprv_malloc(sizeof(UTrie2)); |
| 311 | if(trie==NULL) { |
| 312 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 313 | return NULL; |
| 314 | } |
| 315 | uprv_memcpy(trie, other, sizeof(UTrie2)); |
| 316 | |
| 317 | if(other->memory!=NULL) { |
| 318 | trie->memory=uprv_malloc(other->length); |
| 319 | if(trie->memory!=NULL) { |
| 320 | trie->isMemoryOwned=TRUE; |
| 321 | uprv_memcpy(trie->memory, other->memory, other->length); |
| 322 | |
| 323 | /* make the clone's pointers point to its own memory */ |
| 324 | trie->index=(uint16_t *)trie->memory+(other->index-(uint16_t *)other->memory); |
| 325 | if(other->data16!=NULL) { |
| 326 | trie->data16=(uint16_t *)trie->memory+(other->data16-(uint16_t *)other->memory); |
| 327 | } |
| 328 | if(other->data32!=NULL) { |
| 329 | trie->data32=(uint32_t *)trie->memory+(other->data32-(uint32_t *)other->memory); |
| 330 | } |
| 331 | } |
| 332 | } else /* other->newTrie!=NULL */ { |
| 333 | trie->newTrie=cloneBuilder(other->newTrie); |
| 334 | } |
| 335 | |
| 336 | if(trie->memory==NULL && trie->newTrie==NULL) { |
| 337 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 338 | uprv_free(trie); |
| 339 | trie=NULL; |
| 340 | } |
| 341 | return trie; |
| 342 | } |
| 343 | |
| 344 | typedef struct NewTrieAndStatus { |
| 345 | UTrie2 *trie; |
| 346 | UErrorCode errorCode; |
| 347 | UBool exclusiveLimit; /* rather than inclusive range end */ |
| 348 | } NewTrieAndStatus; |
| 349 | |
| 350 | static UBool U_CALLCONV |
| 351 | copyEnumRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
| 352 | NewTrieAndStatus *nt=(NewTrieAndStatus *)context; |
| 353 | if(value!=nt->trie->initialValue) { |
| 354 | if(nt->exclusiveLimit) { |
| 355 | --end; |
| 356 | } |
| 357 | if(start==end) { |
| 358 | utrie2_set32(nt->trie, start, value, &nt->errorCode); |
| 359 | } else { |
| 360 | utrie2_setRange32(nt->trie, start, end, value, TRUE, &nt->errorCode); |
| 361 | } |
| 362 | return U_SUCCESS(nt->errorCode); |
| 363 | } else { |
| 364 | return TRUE; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | #ifdef UTRIE2_DEBUG |
| 369 | static long countInitial(const UTrie2 *trie) { |
| 370 | uint32_t initialValue=trie->initialValue; |
| 371 | int32_t length=trie->dataLength; |
| 372 | long count=0; |
| 373 | if(trie->data16!=nullptr) { |
| 374 | for(int32_t i=0; i<length; ++i) { |
| 375 | if(trie->data16[i]==initialValue) { ++count; } |
| 376 | } |
| 377 | } else { |
| 378 | for(int32_t i=0; i<length; ++i) { |
| 379 | if(trie->data32[i]==initialValue) { ++count; } |
| 380 | } |
| 381 | } |
| 382 | return count; |
| 383 | } |
| 384 | |
| 385 | static void |
| 386 | utrie_printLengths(const UTrie *trie) { |
| 387 | long indexLength=trie->indexLength; |
| 388 | long dataLength=(long)trie->dataLength; |
| 389 | long totalLength=(long)sizeof(UTrieHeader)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); |
| 390 | printf("**UTrieLengths** index:%6ld data:%6ld serialized:%6ld\n" , |
| 391 | indexLength, dataLength, totalLength); |
| 392 | } |
| 393 | |
| 394 | static void |
| 395 | utrie2_printLengths(const UTrie2 *trie, const char *which) { |
| 396 | long indexLength=trie->indexLength; |
| 397 | long dataLength=(long)trie->dataLength; |
| 398 | long totalLength=(long)sizeof(UTrie2Header)+indexLength*2+dataLength*(trie->data32!=NULL ? 4 : 2); |
| 399 | printf("**UTrie2Lengths(%s %s)** index:%6ld data:%6ld countInitial:%6ld serialized:%6ld\n" , |
| 400 | which, trie->name, indexLength, dataLength, countInitial(trie), totalLength); |
| 401 | } |
| 402 | #endif |
| 403 | |
| 404 | U_CAPI UTrie2 * U_EXPORT2 |
| 405 | utrie2_cloneAsThawed(const UTrie2 *other, UErrorCode *pErrorCode) { |
| 406 | NewTrieAndStatus context; |
| 407 | UChar lead; |
| 408 | |
| 409 | if(U_FAILURE(*pErrorCode)) { |
| 410 | return NULL; |
| 411 | } |
| 412 | if(other==NULL || (other->memory==NULL && other->newTrie==NULL)) { |
| 413 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 414 | return NULL; |
| 415 | } |
| 416 | if(other->newTrie!=NULL && !other->newTrie->isCompacted) { |
| 417 | return utrie2_clone(other, pErrorCode); /* clone an unfrozen trie */ |
| 418 | } |
| 419 | |
| 420 | /* Clone the frozen trie by enumerating it and building a new one. */ |
| 421 | context.trie=utrie2_open(other->initialValue, other->errorValue, pErrorCode); |
| 422 | if(U_FAILURE(*pErrorCode)) { |
| 423 | return NULL; |
| 424 | } |
| 425 | context.exclusiveLimit=FALSE; |
| 426 | context.errorCode=*pErrorCode; |
| 427 | utrie2_enum(other, NULL, copyEnumRange, &context); |
| 428 | *pErrorCode=context.errorCode; |
| 429 | for(lead=0xd800; lead<0xdc00; ++lead) { |
| 430 | uint32_t value; |
| 431 | if(other->data32==NULL) { |
| 432 | value=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(other, lead); |
| 433 | } else { |
| 434 | value=UTRIE2_GET32_FROM_U16_SINGLE_LEAD(other, lead); |
| 435 | } |
| 436 | if(value!=other->initialValue) { |
| 437 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); |
| 438 | } |
| 439 | } |
| 440 | if(U_FAILURE(*pErrorCode)) { |
| 441 | utrie2_close(context.trie); |
| 442 | context.trie=NULL; |
| 443 | } |
| 444 | return context.trie; |
| 445 | } |
| 446 | |
| 447 | /* Almost the same as utrie2_cloneAsThawed() but copies a UTrie and freezes the clone. */ |
| 448 | U_CAPI UTrie2 * U_EXPORT2 |
| 449 | utrie2_fromUTrie(const UTrie *trie1, uint32_t errorValue, UErrorCode *pErrorCode) { |
| 450 | NewTrieAndStatus context; |
| 451 | UChar lead; |
| 452 | |
| 453 | if(U_FAILURE(*pErrorCode)) { |
| 454 | return NULL; |
| 455 | } |
| 456 | if(trie1==NULL) { |
| 457 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 458 | return NULL; |
| 459 | } |
| 460 | context.trie=utrie2_open(trie1->initialValue, errorValue, pErrorCode); |
| 461 | if(U_FAILURE(*pErrorCode)) { |
| 462 | return NULL; |
| 463 | } |
| 464 | context.exclusiveLimit=TRUE; |
| 465 | context.errorCode=*pErrorCode; |
| 466 | utrie_enum(trie1, NULL, copyEnumRange, &context); |
| 467 | *pErrorCode=context.errorCode; |
| 468 | for(lead=0xd800; lead<0xdc00; ++lead) { |
| 469 | uint32_t value; |
| 470 | if(trie1->data32==NULL) { |
| 471 | value=UTRIE_GET16_FROM_LEAD(trie1, lead); |
| 472 | } else { |
| 473 | value=UTRIE_GET32_FROM_LEAD(trie1, lead); |
| 474 | } |
| 475 | if(value!=trie1->initialValue) { |
| 476 | utrie2_set32ForLeadSurrogateCodeUnit(context.trie, lead, value, pErrorCode); |
| 477 | } |
| 478 | } |
| 479 | if(U_SUCCESS(*pErrorCode)) { |
| 480 | utrie2_freeze(context.trie, |
| 481 | trie1->data32!=NULL ? UTRIE2_32_VALUE_BITS : UTRIE2_16_VALUE_BITS, |
| 482 | pErrorCode); |
| 483 | } |
| 484 | #ifdef UTRIE2_DEBUG |
| 485 | if(U_SUCCESS(*pErrorCode)) { |
| 486 | utrie_printLengths(trie1); |
| 487 | utrie2_printLengths(context.trie, "fromUTrie" ); |
| 488 | } |
| 489 | #endif |
| 490 | if(U_FAILURE(*pErrorCode)) { |
| 491 | utrie2_close(context.trie); |
| 492 | context.trie=NULL; |
| 493 | } |
| 494 | return context.trie; |
| 495 | } |
| 496 | |
| 497 | static inline UBool |
| 498 | isInNullBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
| 499 | int32_t i2, block; |
| 500 | |
| 501 | if(U_IS_LEAD(c) && forLSCP) { |
| 502 | i2=(UTRIE2_LSCP_INDEX_2_OFFSET-(0xd800>>UTRIE2_SHIFT_2))+ |
| 503 | (c>>UTRIE2_SHIFT_2); |
| 504 | } else { |
| 505 | i2=trie->index1[c>>UTRIE2_SHIFT_1]+ |
| 506 | ((c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK); |
| 507 | } |
| 508 | block=trie->index2[i2]; |
| 509 | return (UBool)(block==trie->dataNullOffset); |
| 510 | } |
| 511 | |
| 512 | static int32_t |
| 513 | allocIndex2Block(UNewTrie2 *trie) { |
| 514 | int32_t newBlock, newTop; |
| 515 | |
| 516 | newBlock=trie->index2Length; |
| 517 | newTop=newBlock+UTRIE2_INDEX_2_BLOCK_LENGTH; |
| 518 | if(newTop>UPRV_LENGTHOF(trie->index2)) { |
| 519 | /* |
| 520 | * Should never occur. |
| 521 | * Either UTRIE2_MAX_BUILD_TIME_INDEX_LENGTH is incorrect, |
| 522 | * or the code writes more values than should be possible. |
| 523 | */ |
| 524 | return -1; |
| 525 | } |
| 526 | trie->index2Length=newTop; |
| 527 | uprv_memcpy(trie->index2+newBlock, trie->index2+trie->index2NullOffset, UTRIE2_INDEX_2_BLOCK_LENGTH*4); |
| 528 | return newBlock; |
| 529 | } |
| 530 | |
| 531 | static int32_t |
| 532 | getIndex2Block(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
| 533 | int32_t i1, i2; |
| 534 | |
| 535 | if(U_IS_LEAD(c) && forLSCP) { |
| 536 | return UTRIE2_LSCP_INDEX_2_OFFSET; |
| 537 | } |
| 538 | |
| 539 | i1=c>>UTRIE2_SHIFT_1; |
| 540 | i2=trie->index1[i1]; |
| 541 | if(i2==trie->index2NullOffset) { |
| 542 | i2=allocIndex2Block(trie); |
| 543 | if(i2<0) { |
| 544 | return -1; /* program error */ |
| 545 | } |
| 546 | trie->index1[i1]=i2; |
| 547 | } |
| 548 | return i2; |
| 549 | } |
| 550 | |
| 551 | static int32_t |
| 552 | allocDataBlock(UNewTrie2 *trie, int32_t copyBlock) { |
| 553 | int32_t newBlock, newTop; |
| 554 | |
| 555 | if(trie->firstFreeBlock!=0) { |
| 556 | /* get the first free block */ |
| 557 | newBlock=trie->firstFreeBlock; |
| 558 | trie->firstFreeBlock=-trie->map[newBlock>>UTRIE2_SHIFT_2]; |
| 559 | } else { |
| 560 | /* get a new block from the high end */ |
| 561 | newBlock=trie->dataLength; |
| 562 | newTop=newBlock+UTRIE2_DATA_BLOCK_LENGTH; |
| 563 | if(newTop>trie->dataCapacity) { |
| 564 | /* out of memory in the data array */ |
| 565 | int32_t capacity; |
| 566 | uint32_t *data; |
| 567 | |
| 568 | if(trie->dataCapacity<UNEWTRIE2_MEDIUM_DATA_LENGTH) { |
| 569 | capacity=UNEWTRIE2_MEDIUM_DATA_LENGTH; |
| 570 | } else if(trie->dataCapacity<UNEWTRIE2_MAX_DATA_LENGTH) { |
| 571 | capacity=UNEWTRIE2_MAX_DATA_LENGTH; |
| 572 | } else { |
| 573 | /* |
| 574 | * Should never occur. |
| 575 | * Either UNEWTRIE2_MAX_DATA_LENGTH is incorrect, |
| 576 | * or the code writes more values than should be possible. |
| 577 | */ |
| 578 | return -1; |
| 579 | } |
| 580 | data=(uint32_t *)uprv_malloc(capacity*4); |
| 581 | if(data==NULL) { |
| 582 | return -1; |
| 583 | } |
| 584 | uprv_memcpy(data, trie->data, (size_t)trie->dataLength*4); |
| 585 | uprv_free(trie->data); |
| 586 | trie->data=data; |
| 587 | trie->dataCapacity=capacity; |
| 588 | } |
| 589 | trie->dataLength=newTop; |
| 590 | } |
| 591 | uprv_memcpy(trie->data+newBlock, trie->data+copyBlock, UTRIE2_DATA_BLOCK_LENGTH*4); |
| 592 | trie->map[newBlock>>UTRIE2_SHIFT_2]=0; |
| 593 | return newBlock; |
| 594 | } |
| 595 | |
| 596 | /* call when the block's reference counter reaches 0 */ |
| 597 | static void |
| 598 | releaseDataBlock(UNewTrie2 *trie, int32_t block) { |
| 599 | /* put this block at the front of the free-block chain */ |
| 600 | trie->map[block>>UTRIE2_SHIFT_2]=-trie->firstFreeBlock; |
| 601 | trie->firstFreeBlock=block; |
| 602 | } |
| 603 | |
| 604 | static inline UBool |
| 605 | isWritableBlock(UNewTrie2 *trie, int32_t block) { |
| 606 | return (UBool)(block!=trie->dataNullOffset && 1==trie->map[block>>UTRIE2_SHIFT_2]); |
| 607 | } |
| 608 | |
| 609 | static inline void |
| 610 | setIndex2Entry(UNewTrie2 *trie, int32_t i2, int32_t block) { |
| 611 | int32_t oldBlock; |
| 612 | ++trie->map[block>>UTRIE2_SHIFT_2]; /* increment first, in case block==oldBlock! */ |
| 613 | oldBlock=trie->index2[i2]; |
| 614 | if(0 == --trie->map[oldBlock>>UTRIE2_SHIFT_2]) { |
| 615 | releaseDataBlock(trie, oldBlock); |
| 616 | } |
| 617 | trie->index2[i2]=block; |
| 618 | } |
| 619 | |
| 620 | /** |
| 621 | * No error checking for illegal arguments. |
| 622 | * |
| 623 | * @return -1 if no new data block available (out of memory in data array) |
| 624 | * @internal |
| 625 | */ |
| 626 | static int32_t |
| 627 | getDataBlock(UNewTrie2 *trie, UChar32 c, UBool forLSCP) { |
| 628 | int32_t i2, oldBlock, newBlock; |
| 629 | |
| 630 | i2=getIndex2Block(trie, c, forLSCP); |
| 631 | if(i2<0) { |
| 632 | return -1; /* program error */ |
| 633 | } |
| 634 | |
| 635 | i2+=(c>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; |
| 636 | oldBlock=trie->index2[i2]; |
| 637 | if(isWritableBlock(trie, oldBlock)) { |
| 638 | return oldBlock; |
| 639 | } |
| 640 | |
| 641 | /* allocate a new data block */ |
| 642 | newBlock=allocDataBlock(trie, oldBlock); |
| 643 | if(newBlock<0) { |
| 644 | /* out of memory in the data array */ |
| 645 | return -1; |
| 646 | } |
| 647 | setIndex2Entry(trie, i2, newBlock); |
| 648 | return newBlock; |
| 649 | } |
| 650 | |
| 651 | /** |
| 652 | * @return TRUE if the value was successfully set |
| 653 | */ |
| 654 | static void |
| 655 | set32(UNewTrie2 *trie, |
| 656 | UChar32 c, UBool forLSCP, uint32_t value, |
| 657 | UErrorCode *pErrorCode) { |
| 658 | int32_t block; |
| 659 | |
| 660 | if(trie==NULL || trie->isCompacted) { |
| 661 | *pErrorCode=U_NO_WRITE_PERMISSION; |
| 662 | return; |
| 663 | } |
| 664 | #ifdef UCPTRIE_DEBUG |
| 665 | umutablecptrie_set(trie->t3, c, value, pErrorCode); |
| 666 | #endif |
| 667 | |
| 668 | block=getDataBlock(trie, c, forLSCP); |
| 669 | if(block<0) { |
| 670 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 671 | return; |
| 672 | } |
| 673 | |
| 674 | trie->data[block+(c&UTRIE2_DATA_MASK)]=value; |
| 675 | } |
| 676 | |
| 677 | U_CAPI void U_EXPORT2 |
| 678 | utrie2_set32(UTrie2 *trie, UChar32 c, uint32_t value, UErrorCode *pErrorCode) { |
| 679 | if(U_FAILURE(*pErrorCode)) { |
| 680 | return; |
| 681 | } |
| 682 | if((uint32_t)c>0x10ffff) { |
| 683 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 684 | return; |
| 685 | } |
| 686 | set32(trie->newTrie, c, TRUE, value, pErrorCode); |
| 687 | } |
| 688 | |
| 689 | U_CAPI void U_EXPORT2 |
| 690 | utrie2_set32ForLeadSurrogateCodeUnit(UTrie2 *trie, |
| 691 | UChar32 c, uint32_t value, |
| 692 | UErrorCode *pErrorCode) { |
| 693 | if(U_FAILURE(*pErrorCode)) { |
| 694 | return; |
| 695 | } |
| 696 | if(!U_IS_LEAD(c)) { |
| 697 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 698 | return; |
| 699 | } |
| 700 | set32(trie->newTrie, c, FALSE, value, pErrorCode); |
| 701 | } |
| 702 | |
| 703 | static void |
| 704 | writeBlock(uint32_t *block, uint32_t value) { |
| 705 | uint32_t *limit=block+UTRIE2_DATA_BLOCK_LENGTH; |
| 706 | while(block<limit) { |
| 707 | *block++=value; |
| 708 | } |
| 709 | } |
| 710 | |
| 711 | /** |
| 712 | * initialValue is ignored if overwrite=TRUE |
| 713 | * @internal |
| 714 | */ |
| 715 | static void |
| 716 | fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
| 717 | uint32_t value, uint32_t initialValue, UBool overwrite) { |
| 718 | uint32_t *pLimit; |
| 719 | |
| 720 | pLimit=block+limit; |
| 721 | block+=start; |
| 722 | if(overwrite) { |
| 723 | while(block<pLimit) { |
| 724 | *block++=value; |
| 725 | } |
| 726 | } else { |
| 727 | while(block<pLimit) { |
| 728 | if(*block==initialValue) { |
| 729 | *block=value; |
| 730 | } |
| 731 | ++block; |
| 732 | } |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | U_CAPI void U_EXPORT2 |
| 737 | utrie2_setRange32(UTrie2 *trie, |
| 738 | UChar32 start, UChar32 end, |
| 739 | uint32_t value, UBool overwrite, |
| 740 | UErrorCode *pErrorCode) { |
| 741 | /* |
| 742 | * repeat value in [start..end] |
| 743 | * mark index values for repeat-data blocks by setting bit 31 of the index values |
| 744 | * fill around existing values if any, if(overwrite) |
| 745 | */ |
| 746 | UNewTrie2 *newTrie; |
| 747 | int32_t block, rest, repeatBlock; |
| 748 | UChar32 limit; |
| 749 | |
| 750 | if(U_FAILURE(*pErrorCode)) { |
| 751 | return; |
| 752 | } |
| 753 | if((uint32_t)start>0x10ffff || (uint32_t)end>0x10ffff || start>end) { |
| 754 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 755 | return; |
| 756 | } |
| 757 | newTrie=trie->newTrie; |
| 758 | if(newTrie==NULL || newTrie->isCompacted) { |
| 759 | *pErrorCode=U_NO_WRITE_PERMISSION; |
| 760 | return; |
| 761 | } |
| 762 | #ifdef UCPTRIE_DEBUG |
| 763 | umutablecptrie_setRange(newTrie->t3, start, end, value, pErrorCode); |
| 764 | #endif |
| 765 | if(!overwrite && value==newTrie->initialValue) { |
| 766 | return; /* nothing to do */ |
| 767 | } |
| 768 | |
| 769 | limit=end+1; |
| 770 | if(start&UTRIE2_DATA_MASK) { |
| 771 | UChar32 nextStart; |
| 772 | |
| 773 | /* set partial block at [start..following block boundary[ */ |
| 774 | block=getDataBlock(newTrie, start, TRUE); |
| 775 | if(block<0) { |
| 776 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 777 | return; |
| 778 | } |
| 779 | |
| 780 | nextStart=(start+UTRIE2_DATA_MASK)&~UTRIE2_DATA_MASK; |
| 781 | if(nextStart<=limit) { |
| 782 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, UTRIE2_DATA_BLOCK_LENGTH, |
| 783 | value, newTrie->initialValue, overwrite); |
| 784 | start=nextStart; |
| 785 | } else { |
| 786 | fillBlock(newTrie->data+block, start&UTRIE2_DATA_MASK, limit&UTRIE2_DATA_MASK, |
| 787 | value, newTrie->initialValue, overwrite); |
| 788 | return; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | /* number of positions in the last, partial block */ |
| 793 | rest=limit&UTRIE2_DATA_MASK; |
| 794 | |
| 795 | /* round down limit to a block boundary */ |
| 796 | limit&=~UTRIE2_DATA_MASK; |
| 797 | |
| 798 | /* iterate over all-value blocks */ |
| 799 | if(value==newTrie->initialValue) { |
| 800 | repeatBlock=newTrie->dataNullOffset; |
| 801 | } else { |
| 802 | repeatBlock=-1; |
| 803 | } |
| 804 | |
| 805 | while(start<limit) { |
| 806 | int32_t i2; |
| 807 | UBool setRepeatBlock=FALSE; |
| 808 | |
| 809 | if(value==newTrie->initialValue && isInNullBlock(newTrie, start, TRUE)) { |
| 810 | start+=UTRIE2_DATA_BLOCK_LENGTH; /* nothing to do */ |
| 811 | continue; |
| 812 | } |
| 813 | |
| 814 | /* get index value */ |
| 815 | i2=getIndex2Block(newTrie, start, TRUE); |
| 816 | if(i2<0) { |
| 817 | *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
| 818 | return; |
| 819 | } |
| 820 | i2+=(start>>UTRIE2_SHIFT_2)&UTRIE2_INDEX_2_MASK; |
| 821 | block=newTrie->index2[i2]; |
| 822 | if(isWritableBlock(newTrie, block)) { |
| 823 | /* already allocated */ |
| 824 | if(overwrite && block>=UNEWTRIE2_DATA_0800_OFFSET) { |
| 825 | /* |
| 826 | * We overwrite all values, and it's not a |
| 827 | * protected (ASCII-linear or 2-byte UTF-8) block: |
| 828 | * replace with the repeatBlock. |
| 829 | */ |
| 830 | setRepeatBlock=TRUE; |
| 831 | } else { |
| 832 | /* !overwrite, or protected block: just write the values into this block */ |
| 833 | fillBlock(newTrie->data+block, |
| 834 | 0, UTRIE2_DATA_BLOCK_LENGTH, |
| 835 | value, newTrie->initialValue, overwrite); |
| 836 | } |
| 837 | } else if(newTrie->data[block]!=value && (overwrite || block==newTrie->dataNullOffset)) { |
| 838 | /* |
| 839 | * Set the repeatBlock instead of the null block or previous repeat block: |
| 840 | * |
| 841 | * If !isWritableBlock() then all entries in the block have the same value |
| 842 | * because it's the null block or a range block (the repeatBlock from a previous |
| 843 | * call to utrie2_setRange32()). |
| 844 | * No other blocks are used multiple times before compacting. |
| 845 | * |
| 846 | * The null block is the only non-writable block with the initialValue because |
| 847 | * of the repeatBlock initialization above. (If value==initialValue, then |
| 848 | * the repeatBlock will be the null data block.) |
| 849 | * |
| 850 | * We set our repeatBlock if the desired value differs from the block's value, |
| 851 | * and if we overwrite any data or if the data is all initial values |
| 852 | * (which is the same as the block being the null block, see above). |
| 853 | */ |
| 854 | setRepeatBlock=TRUE; |
| 855 | } |
| 856 | if(setRepeatBlock) { |
| 857 | if(repeatBlock>=0) { |
| 858 | setIndex2Entry(newTrie, i2, repeatBlock); |
| 859 | } else { |
| 860 | /* create and set and fill the repeatBlock */ |
| 861 | repeatBlock=getDataBlock(newTrie, start, TRUE); |
| 862 | if(repeatBlock<0) { |
| 863 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 864 | return; |
| 865 | } |
| 866 | writeBlock(newTrie->data+repeatBlock, value); |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | start+=UTRIE2_DATA_BLOCK_LENGTH; |
| 871 | } |
| 872 | |
| 873 | if(rest>0) { |
| 874 | /* set partial block at [last block boundary..limit[ */ |
| 875 | block=getDataBlock(newTrie, start, TRUE); |
| 876 | if(block<0) { |
| 877 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 878 | return; |
| 879 | } |
| 880 | |
| 881 | fillBlock(newTrie->data+block, 0, rest, value, newTrie->initialValue, overwrite); |
| 882 | } |
| 883 | |
| 884 | return; |
| 885 | } |
| 886 | |
| 887 | /* compaction --------------------------------------------------------------- */ |
| 888 | |
| 889 | static inline UBool |
| 890 | equal_int32(const int32_t *s, const int32_t *t, int32_t length) { |
| 891 | while(length>0 && *s==*t) { |
| 892 | ++s; |
| 893 | ++t; |
| 894 | --length; |
| 895 | } |
| 896 | return (UBool)(length==0); |
| 897 | } |
| 898 | |
| 899 | static inline UBool |
| 900 | equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
| 901 | while(length>0 && *s==*t) { |
| 902 | ++s; |
| 903 | ++t; |
| 904 | --length; |
| 905 | } |
| 906 | return (UBool)(length==0); |
| 907 | } |
| 908 | |
| 909 | static int32_t |
| 910 | findSameIndex2Block(const int32_t *idx, int32_t index2Length, int32_t otherBlock) { |
| 911 | int32_t block; |
| 912 | |
| 913 | /* ensure that we do not even partially get past index2Length */ |
| 914 | index2Length-=UTRIE2_INDEX_2_BLOCK_LENGTH; |
| 915 | |
| 916 | for(block=0; block<=index2Length; ++block) { |
| 917 | if(equal_int32(idx+block, idx+otherBlock, UTRIE2_INDEX_2_BLOCK_LENGTH)) { |
| 918 | return block; |
| 919 | } |
| 920 | } |
| 921 | return -1; |
| 922 | } |
| 923 | |
| 924 | static int32_t |
| 925 | findSameDataBlock(const uint32_t *data, int32_t dataLength, int32_t otherBlock, int32_t blockLength) { |
| 926 | int32_t block; |
| 927 | |
| 928 | /* ensure that we do not even partially get past dataLength */ |
| 929 | dataLength-=blockLength; |
| 930 | |
| 931 | for(block=0; block<=dataLength; block+=UTRIE2_DATA_GRANULARITY) { |
| 932 | if(equal_uint32(data+block, data+otherBlock, blockLength)) { |
| 933 | return block; |
| 934 | } |
| 935 | } |
| 936 | return -1; |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * Find the start of the last range in the trie by enumerating backward. |
| 941 | * Indexes for supplementary code points higher than this will be omitted. |
| 942 | */ |
| 943 | static UChar32 |
| 944 | findHighStart(UNewTrie2 *trie, uint32_t highValue) { |
| 945 | const uint32_t *data32; |
| 946 | |
| 947 | uint32_t value, initialValue; |
| 948 | UChar32 c, prev; |
| 949 | int32_t i1, i2, j, i2Block, prevI2Block, index2NullOffset, block, prevBlock, nullBlock; |
| 950 | |
| 951 | data32=trie->data; |
| 952 | initialValue=trie->initialValue; |
| 953 | |
| 954 | index2NullOffset=trie->index2NullOffset; |
| 955 | nullBlock=trie->dataNullOffset; |
| 956 | |
| 957 | /* set variables for previous range */ |
| 958 | if(highValue==initialValue) { |
| 959 | prevI2Block=index2NullOffset; |
| 960 | prevBlock=nullBlock; |
| 961 | } else { |
| 962 | prevI2Block=-1; |
| 963 | prevBlock=-1; |
| 964 | } |
| 965 | prev=0x110000; |
| 966 | |
| 967 | /* enumerate index-2 blocks */ |
| 968 | i1=UNEWTRIE2_INDEX_1_LENGTH; |
| 969 | c=prev; |
| 970 | while(c>0) { |
| 971 | i2Block=trie->index1[--i1]; |
| 972 | if(i2Block==prevI2Block) { |
| 973 | /* the index-2 block is the same as the previous one, and filled with highValue */ |
| 974 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; |
| 975 | continue; |
| 976 | } |
| 977 | prevI2Block=i2Block; |
| 978 | if(i2Block==index2NullOffset) { |
| 979 | /* this is the null index-2 block */ |
| 980 | if(highValue!=initialValue) { |
| 981 | return c; |
| 982 | } |
| 983 | c-=UTRIE2_CP_PER_INDEX_1_ENTRY; |
| 984 | } else { |
| 985 | /* enumerate data blocks for one index-2 block */ |
| 986 | for(i2=UTRIE2_INDEX_2_BLOCK_LENGTH; i2>0;) { |
| 987 | block=trie->index2[i2Block+ --i2]; |
| 988 | if(block==prevBlock) { |
| 989 | /* the block is the same as the previous one, and filled with highValue */ |
| 990 | c-=UTRIE2_DATA_BLOCK_LENGTH; |
| 991 | continue; |
| 992 | } |
| 993 | prevBlock=block; |
| 994 | if(block==nullBlock) { |
| 995 | /* this is the null data block */ |
| 996 | if(highValue!=initialValue) { |
| 997 | return c; |
| 998 | } |
| 999 | c-=UTRIE2_DATA_BLOCK_LENGTH; |
| 1000 | } else { |
| 1001 | for(j=UTRIE2_DATA_BLOCK_LENGTH; j>0;) { |
| 1002 | value=data32[block+ --j]; |
| 1003 | if(value!=highValue) { |
| 1004 | return c; |
| 1005 | } |
| 1006 | --c; |
| 1007 | } |
| 1008 | } |
| 1009 | } |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | /* deliver last range */ |
| 1014 | return 0; |
| 1015 | } |
| 1016 | |
| 1017 | /* |
| 1018 | * Compact a build-time trie. |
| 1019 | * |
| 1020 | * The compaction |
| 1021 | * - removes blocks that are identical with earlier ones |
| 1022 | * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
| 1023 | * - moves blocks in steps of the data granularity |
| 1024 | * - moves and overlaps blocks that overlap with multiple values in the overlap region |
| 1025 | * |
| 1026 | * It does not |
| 1027 | * - try to move and overlap blocks that are not already adjacent |
| 1028 | */ |
| 1029 | static void |
| 1030 | compactData(UNewTrie2 *trie) { |
| 1031 | #ifdef UTRIE2_DEBUG |
| 1032 | int32_t countSame=0, sumOverlaps=0; |
| 1033 | #endif |
| 1034 | |
| 1035 | int32_t start, newStart, movedStart; |
| 1036 | int32_t blockLength, overlap; |
| 1037 | int32_t i, mapIndex, blockCount; |
| 1038 | |
| 1039 | /* do not compact linear-ASCII data */ |
| 1040 | newStart=UTRIE2_DATA_START_OFFSET; |
| 1041 | for(start=0, i=0; start<newStart; start+=UTRIE2_DATA_BLOCK_LENGTH, ++i) { |
| 1042 | trie->map[i]=start; |
| 1043 | } |
| 1044 | |
| 1045 | /* |
| 1046 | * Start with a block length of 64 for 2-byte UTF-8, |
| 1047 | * then switch to UTRIE2_DATA_BLOCK_LENGTH. |
| 1048 | */ |
| 1049 | blockLength=64; |
| 1050 | blockCount=blockLength>>UTRIE2_SHIFT_2; |
| 1051 | for(start=newStart; start<trie->dataLength;) { |
| 1052 | /* |
| 1053 | * start: index of first entry of current block |
| 1054 | * newStart: index where the current block is to be moved |
| 1055 | * (right after current end of already-compacted data) |
| 1056 | */ |
| 1057 | if(start==UNEWTRIE2_DATA_0800_OFFSET) { |
| 1058 | blockLength=UTRIE2_DATA_BLOCK_LENGTH; |
| 1059 | blockCount=1; |
| 1060 | } |
| 1061 | |
| 1062 | /* skip blocks that are not used */ |
| 1063 | if(trie->map[start>>UTRIE2_SHIFT_2]<=0) { |
| 1064 | /* advance start to the next block */ |
| 1065 | start+=blockLength; |
| 1066 | |
| 1067 | /* leave newStart with the previous block! */ |
| 1068 | continue; |
| 1069 | } |
| 1070 | |
| 1071 | /* search for an identical block */ |
| 1072 | if( (movedStart=findSameDataBlock(trie->data, newStart, start, blockLength)) |
| 1073 | >=0 |
| 1074 | ) { |
| 1075 | #ifdef UTRIE2_DEBUG |
| 1076 | ++countSame; |
| 1077 | #endif |
| 1078 | /* found an identical block, set the other block's index value for the current block */ |
| 1079 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
| 1080 | trie->map[mapIndex++]=movedStart; |
| 1081 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; |
| 1082 | } |
| 1083 | |
| 1084 | /* advance start to the next block */ |
| 1085 | start+=blockLength; |
| 1086 | |
| 1087 | /* leave newStart with the previous block! */ |
| 1088 | continue; |
| 1089 | } |
| 1090 | |
| 1091 | /* see if the beginning of this block can be overlapped with the end of the previous block */ |
| 1092 | /* look for maximum overlap (modulo granularity) with the previous, adjacent block */ |
| 1093 | for(overlap=blockLength-UTRIE2_DATA_GRANULARITY; |
| 1094 | overlap>0 && !equal_uint32(trie->data+(newStart-overlap), trie->data+start, overlap); |
| 1095 | overlap-=UTRIE2_DATA_GRANULARITY) {} |
| 1096 | |
| 1097 | #ifdef UTRIE2_DEBUG |
| 1098 | sumOverlaps+=overlap; |
| 1099 | #endif |
| 1100 | if(overlap>0 || newStart<start) { |
| 1101 | /* some overlap, or just move the whole block */ |
| 1102 | movedStart=newStart-overlap; |
| 1103 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
| 1104 | trie->map[mapIndex++]=movedStart; |
| 1105 | movedStart+=UTRIE2_DATA_BLOCK_LENGTH; |
| 1106 | } |
| 1107 | |
| 1108 | /* move the non-overlapping indexes to their new positions */ |
| 1109 | start+=overlap; |
| 1110 | for(i=blockLength-overlap; i>0; --i) { |
| 1111 | trie->data[newStart++]=trie->data[start++]; |
| 1112 | } |
| 1113 | } else /* no overlap && newStart==start */ { |
| 1114 | for(i=blockCount, mapIndex=start>>UTRIE2_SHIFT_2; i>0; --i) { |
| 1115 | trie->map[mapIndex++]=start; |
| 1116 | start+=UTRIE2_DATA_BLOCK_LENGTH; |
| 1117 | } |
| 1118 | newStart=start; |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | /* now adjust the index-2 table */ |
| 1123 | for(i=0; i<trie->index2Length; ++i) { |
| 1124 | if(i==UNEWTRIE2_INDEX_GAP_OFFSET) { |
| 1125 | /* Gap indexes are invalid (-1). Skip over the gap. */ |
| 1126 | i+=UNEWTRIE2_INDEX_GAP_LENGTH; |
| 1127 | } |
| 1128 | trie->index2[i]=trie->map[trie->index2[i]>>UTRIE2_SHIFT_2]; |
| 1129 | } |
| 1130 | trie->dataNullOffset=trie->map[trie->dataNullOffset>>UTRIE2_SHIFT_2]; |
| 1131 | |
| 1132 | /* ensure dataLength alignment */ |
| 1133 | while((newStart&(UTRIE2_DATA_GRANULARITY-1))!=0) { |
| 1134 | trie->data[newStart++]=trie->initialValue; |
| 1135 | } |
| 1136 | |
| 1137 | #ifdef UTRIE2_DEBUG |
| 1138 | /* we saved some space */ |
| 1139 | printf("compacting UTrie2: count of 32-bit data words %lu->%lu countSame=%ld sumOverlaps=%ld\n" , |
| 1140 | (long)trie->dataLength, (long)newStart, (long)countSame, (long)sumOverlaps); |
| 1141 | #endif |
| 1142 | |
| 1143 | trie->dataLength=newStart; |
| 1144 | } |
| 1145 | |
| 1146 | static void |
| 1147 | compactIndex2(UNewTrie2 *trie) { |
| 1148 | int32_t i, start, newStart, movedStart, overlap; |
| 1149 | |
| 1150 | /* do not compact linear-BMP index-2 blocks */ |
| 1151 | newStart=UTRIE2_INDEX_2_BMP_LENGTH; |
| 1152 | for(start=0, i=0; start<newStart; start+=UTRIE2_INDEX_2_BLOCK_LENGTH, ++i) { |
| 1153 | trie->map[i]=start; |
| 1154 | } |
| 1155 | |
| 1156 | /* Reduce the index table gap to what will be needed at runtime. */ |
| 1157 | newStart+=UTRIE2_UTF8_2B_INDEX_2_LENGTH+((trie->highStart-0x10000)>>UTRIE2_SHIFT_1); |
| 1158 | |
| 1159 | for(start=UNEWTRIE2_INDEX_2_NULL_OFFSET; start<trie->index2Length;) { |
| 1160 | /* |
| 1161 | * start: index of first entry of current block |
| 1162 | * newStart: index where the current block is to be moved |
| 1163 | * (right after current end of already-compacted data) |
| 1164 | */ |
| 1165 | |
| 1166 | /* search for an identical block */ |
| 1167 | if( (movedStart=findSameIndex2Block(trie->index2, newStart, start)) |
| 1168 | >=0 |
| 1169 | ) { |
| 1170 | /* found an identical block, set the other block's index value for the current block */ |
| 1171 | trie->map[start>>UTRIE2_SHIFT_1_2]=movedStart; |
| 1172 | |
| 1173 | /* advance start to the next block */ |
| 1174 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; |
| 1175 | |
| 1176 | /* leave newStart with the previous block! */ |
| 1177 | continue; |
| 1178 | } |
| 1179 | |
| 1180 | /* see if the beginning of this block can be overlapped with the end of the previous block */ |
| 1181 | /* look for maximum overlap with the previous, adjacent block */ |
| 1182 | for(overlap=UTRIE2_INDEX_2_BLOCK_LENGTH-1; |
| 1183 | overlap>0 && !equal_int32(trie->index2+(newStart-overlap), trie->index2+start, overlap); |
| 1184 | --overlap) {} |
| 1185 | |
| 1186 | if(overlap>0 || newStart<start) { |
| 1187 | /* some overlap, or just move the whole block */ |
| 1188 | trie->map[start>>UTRIE2_SHIFT_1_2]=newStart-overlap; |
| 1189 | |
| 1190 | /* move the non-overlapping indexes to their new positions */ |
| 1191 | start+=overlap; |
| 1192 | for(i=UTRIE2_INDEX_2_BLOCK_LENGTH-overlap; i>0; --i) { |
| 1193 | trie->index2[newStart++]=trie->index2[start++]; |
| 1194 | } |
| 1195 | } else /* no overlap && newStart==start */ { |
| 1196 | trie->map[start>>UTRIE2_SHIFT_1_2]=start; |
| 1197 | start+=UTRIE2_INDEX_2_BLOCK_LENGTH; |
| 1198 | newStart=start; |
| 1199 | } |
| 1200 | } |
| 1201 | |
| 1202 | /* now adjust the index-1 table */ |
| 1203 | for(i=0; i<UNEWTRIE2_INDEX_1_LENGTH; ++i) { |
| 1204 | trie->index1[i]=trie->map[trie->index1[i]>>UTRIE2_SHIFT_1_2]; |
| 1205 | } |
| 1206 | trie->index2NullOffset=trie->map[trie->index2NullOffset>>UTRIE2_SHIFT_1_2]; |
| 1207 | |
| 1208 | /* |
| 1209 | * Ensure data table alignment: |
| 1210 | * Needs to be granularity-aligned for 16-bit trie |
| 1211 | * (so that dataMove will be down-shiftable), |
| 1212 | * and 2-aligned for uint32_t data. |
| 1213 | */ |
| 1214 | while((newStart&((UTRIE2_DATA_GRANULARITY-1)|1))!=0) { |
| 1215 | /* Arbitrary value: 0x3fffc not possible for real data. */ |
| 1216 | trie->index2[newStart++]=(int32_t)0xffff<<UTRIE2_INDEX_SHIFT; |
| 1217 | } |
| 1218 | |
| 1219 | #ifdef UTRIE2_DEBUG |
| 1220 | /* we saved some space */ |
| 1221 | printf("compacting UTrie2: count of 16-bit index words %lu->%lu\n" , |
| 1222 | (long)trie->index2Length, (long)newStart); |
| 1223 | #endif |
| 1224 | |
| 1225 | trie->index2Length=newStart; |
| 1226 | } |
| 1227 | |
| 1228 | static void |
| 1229 | compactTrie(UTrie2 *trie, UErrorCode *pErrorCode) { |
| 1230 | UNewTrie2 *newTrie; |
| 1231 | UChar32 highStart, suppHighStart; |
| 1232 | uint32_t highValue; |
| 1233 | |
| 1234 | newTrie=trie->newTrie; |
| 1235 | |
| 1236 | /* find highStart and round it up */ |
| 1237 | highValue=utrie2_get32(trie, 0x10ffff); |
| 1238 | highStart=findHighStart(newTrie, highValue); |
| 1239 | highStart=(highStart+(UTRIE2_CP_PER_INDEX_1_ENTRY-1))&~(UTRIE2_CP_PER_INDEX_1_ENTRY-1); |
| 1240 | if(highStart==0x110000) { |
| 1241 | highValue=trie->errorValue; |
| 1242 | } |
| 1243 | |
| 1244 | /* |
| 1245 | * Set trie->highStart only after utrie2_get32(trie, highStart). |
| 1246 | * Otherwise utrie2_get32(trie, highStart) would try to read the highValue. |
| 1247 | */ |
| 1248 | trie->highStart=newTrie->highStart=highStart; |
| 1249 | |
| 1250 | #ifdef UTRIE2_DEBUG |
| 1251 | printf("UTrie2: highStart U+%06lx highValue 0x%lx initialValue 0x%lx\n" , |
| 1252 | (long)highStart, (long)highValue, (long)trie->initialValue); |
| 1253 | #endif |
| 1254 | |
| 1255 | if(highStart<0x110000) { |
| 1256 | /* Blank out [highStart..10ffff] to release associated data blocks. */ |
| 1257 | suppHighStart= highStart<=0x10000 ? 0x10000 : highStart; |
| 1258 | utrie2_setRange32(trie, suppHighStart, 0x10ffff, trie->initialValue, TRUE, pErrorCode); |
| 1259 | if(U_FAILURE(*pErrorCode)) { |
| 1260 | return; |
| 1261 | } |
| 1262 | } |
| 1263 | |
| 1264 | compactData(newTrie); |
| 1265 | if(highStart>0x10000) { |
| 1266 | compactIndex2(newTrie); |
| 1267 | #ifdef UTRIE2_DEBUG |
| 1268 | } else { |
| 1269 | printf("UTrie2: highStart U+%04lx count of 16-bit index words %lu->%lu\n" , |
| 1270 | (long)highStart, (long)trie->newTrie->index2Length, (long)UTRIE2_INDEX_1_OFFSET); |
| 1271 | #endif |
| 1272 | } |
| 1273 | |
| 1274 | /* |
| 1275 | * Store the highValue in the data array and round up the dataLength. |
| 1276 | * Must be done after compactData() because that assumes that dataLength |
| 1277 | * is a multiple of UTRIE2_DATA_BLOCK_LENGTH. |
| 1278 | */ |
| 1279 | newTrie->data[newTrie->dataLength++]=highValue; |
| 1280 | while((newTrie->dataLength&(UTRIE2_DATA_GRANULARITY-1))!=0) { |
| 1281 | newTrie->data[newTrie->dataLength++]=trie->initialValue; |
| 1282 | } |
| 1283 | |
| 1284 | newTrie->isCompacted=TRUE; |
| 1285 | } |
| 1286 | |
| 1287 | /* serialization ------------------------------------------------------------ */ |
| 1288 | |
| 1289 | /** |
| 1290 | * Maximum length of the runtime index array. |
| 1291 | * Limited by its own 16-bit index values, and by uint16_t UTrie2Header.indexLength. |
| 1292 | * (The actual maximum length is lower, |
| 1293 | * (0x110000>>UTRIE2_SHIFT_2)+UTRIE2_UTF8_2B_INDEX_2_LENGTH+UTRIE2_MAX_INDEX_1_LENGTH.) |
| 1294 | */ |
| 1295 | #define UTRIE2_MAX_INDEX_LENGTH 0xffff |
| 1296 | |
| 1297 | /** |
| 1298 | * Maximum length of the runtime data array. |
| 1299 | * Limited by 16-bit index values that are left-shifted by UTRIE2_INDEX_SHIFT, |
| 1300 | * and by uint16_t UTrie2Header.shiftedDataLength. |
| 1301 | */ |
| 1302 | #define UTRIE2_MAX_DATA_LENGTH (0xffff<<UTRIE2_INDEX_SHIFT) |
| 1303 | |
| 1304 | /* Compact and internally serialize the trie. */ |
| 1305 | U_CAPI void U_EXPORT2 |
| 1306 | utrie2_freeze(UTrie2 *trie, UTrie2ValueBits valueBits, UErrorCode *pErrorCode) { |
| 1307 | UNewTrie2 *newTrie; |
| 1308 | UTrie2Header *; |
| 1309 | uint32_t *p; |
| 1310 | uint16_t *dest16; |
| 1311 | int32_t i, length; |
| 1312 | int32_t allIndexesLength; |
| 1313 | int32_t dataMove; /* >0 if the data is moved to the end of the index array */ |
| 1314 | UChar32 highStart; |
| 1315 | |
| 1316 | /* argument check */ |
| 1317 | if(U_FAILURE(*pErrorCode)) { |
| 1318 | return; |
| 1319 | } |
| 1320 | if( trie==NULL || |
| 1321 | valueBits<0 || UTRIE2_COUNT_VALUE_BITS<=valueBits |
| 1322 | ) { |
| 1323 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 1324 | return; |
| 1325 | } |
| 1326 | newTrie=trie->newTrie; |
| 1327 | if(newTrie==NULL) { |
| 1328 | /* already frozen */ |
| 1329 | UTrie2ValueBits frozenValueBits= |
| 1330 | trie->data16!=NULL ? UTRIE2_16_VALUE_BITS : UTRIE2_32_VALUE_BITS; |
| 1331 | if(valueBits!=frozenValueBits) { |
| 1332 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 1333 | } |
| 1334 | return; |
| 1335 | } |
| 1336 | |
| 1337 | /* compact if necessary */ |
| 1338 | if(!newTrie->isCompacted) { |
| 1339 | compactTrie(trie, pErrorCode); |
| 1340 | if(U_FAILURE(*pErrorCode)) { |
| 1341 | return; |
| 1342 | } |
| 1343 | } |
| 1344 | highStart=trie->highStart; |
| 1345 | |
| 1346 | if(highStart<=0x10000) { |
| 1347 | allIndexesLength=UTRIE2_INDEX_1_OFFSET; |
| 1348 | } else { |
| 1349 | allIndexesLength=newTrie->index2Length; |
| 1350 | } |
| 1351 | if(valueBits==UTRIE2_16_VALUE_BITS) { |
| 1352 | dataMove=allIndexesLength; |
| 1353 | } else { |
| 1354 | dataMove=0; |
| 1355 | } |
| 1356 | |
| 1357 | /* are indexLength and dataLength within limits? */ |
| 1358 | if( /* for unshifted indexLength */ |
| 1359 | allIndexesLength>UTRIE2_MAX_INDEX_LENGTH || |
| 1360 | /* for unshifted dataNullOffset */ |
| 1361 | (dataMove+newTrie->dataNullOffset)>0xffff || |
| 1362 | /* for unshifted 2-byte UTF-8 index-2 values */ |
| 1363 | (dataMove+UNEWTRIE2_DATA_0800_OFFSET)>0xffff || |
| 1364 | /* for shiftedDataLength */ |
| 1365 | (dataMove+newTrie->dataLength)>UTRIE2_MAX_DATA_LENGTH |
| 1366 | ) { |
| 1367 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1368 | return; |
| 1369 | } |
| 1370 | |
| 1371 | /* calculate the total serialized length */ |
| 1372 | length=sizeof(UTrie2Header)+allIndexesLength*2; |
| 1373 | if(valueBits==UTRIE2_16_VALUE_BITS) { |
| 1374 | length+=newTrie->dataLength*2; |
| 1375 | } else { |
| 1376 | length+=newTrie->dataLength*4; |
| 1377 | } |
| 1378 | |
| 1379 | trie->memory=uprv_malloc(length); |
| 1380 | if(trie->memory==NULL) { |
| 1381 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1382 | return; |
| 1383 | } |
| 1384 | trie->length=length; |
| 1385 | trie->isMemoryOwned=TRUE; |
| 1386 | |
| 1387 | trie->indexLength=allIndexesLength; |
| 1388 | trie->dataLength=newTrie->dataLength; |
| 1389 | if(highStart<=0x10000) { |
| 1390 | trie->index2NullOffset=0xffff; |
| 1391 | } else { |
| 1392 | trie->index2NullOffset=static_cast<uint16_t>(UTRIE2_INDEX_2_OFFSET+newTrie->index2NullOffset); |
| 1393 | } |
| 1394 | trie->dataNullOffset=(uint16_t)(dataMove+newTrie->dataNullOffset); |
| 1395 | trie->highValueIndex=dataMove+trie->dataLength-UTRIE2_DATA_GRANULARITY; |
| 1396 | |
| 1397 | /* set the header fields */ |
| 1398 | header=(UTrie2Header *)trie->memory; |
| 1399 | |
| 1400 | header->signature=UTRIE2_SIG; /* "Tri2" */ |
| 1401 | header->options=(uint16_t)valueBits; |
| 1402 | |
| 1403 | header->indexLength=(uint16_t)trie->indexLength; |
| 1404 | header->shiftedDataLength=(uint16_t)(trie->dataLength>>UTRIE2_INDEX_SHIFT); |
| 1405 | header->index2NullOffset=trie->index2NullOffset; |
| 1406 | header->dataNullOffset=trie->dataNullOffset; |
| 1407 | header->shiftedHighStart=(uint16_t)(highStart>>UTRIE2_SHIFT_1); |
| 1408 | |
| 1409 | /* fill the index and data arrays */ |
| 1410 | dest16=(uint16_t *)(header+1); |
| 1411 | trie->index=dest16; |
| 1412 | |
| 1413 | /* write the index-2 array values shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove */ |
| 1414 | p=(uint32_t *)newTrie->index2; |
| 1415 | for(i=UTRIE2_INDEX_2_BMP_LENGTH; i>0; --i) { |
| 1416 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); |
| 1417 | } |
| 1418 | |
| 1419 | /* write UTF-8 2-byte index-2 values, not right-shifted */ |
| 1420 | for(i=0; i<(0xc2-0xc0); ++i) { /* C0..C1 */ |
| 1421 | *dest16++=(uint16_t)(dataMove+UTRIE2_BAD_UTF8_DATA_OFFSET); |
| 1422 | } |
| 1423 | for(; i<(0xe0-0xc0); ++i) { /* C2..DF */ |
| 1424 | *dest16++=(uint16_t)(dataMove+newTrie->index2[i<<(6-UTRIE2_SHIFT_2)]); |
| 1425 | } |
| 1426 | |
| 1427 | if(highStart>0x10000) { |
| 1428 | int32_t index1Length=(highStart-0x10000)>>UTRIE2_SHIFT_1; |
| 1429 | int32_t index2Offset=UTRIE2_INDEX_2_BMP_LENGTH+UTRIE2_UTF8_2B_INDEX_2_LENGTH+index1Length; |
| 1430 | |
| 1431 | /* write 16-bit index-1 values for supplementary code points */ |
| 1432 | p=(uint32_t *)newTrie->index1+UTRIE2_OMITTED_BMP_INDEX_1_LENGTH; |
| 1433 | for(i=index1Length; i>0; --i) { |
| 1434 | *dest16++=(uint16_t)(UTRIE2_INDEX_2_OFFSET + *p++); |
| 1435 | } |
| 1436 | |
| 1437 | /* |
| 1438 | * write the index-2 array values for supplementary code points, |
| 1439 | * shifted right by UTRIE2_INDEX_SHIFT, after adding dataMove |
| 1440 | */ |
| 1441 | p=(uint32_t *)newTrie->index2+index2Offset; |
| 1442 | for(i=newTrie->index2Length-index2Offset; i>0; --i) { |
| 1443 | *dest16++=(uint16_t)((dataMove + *p++)>>UTRIE2_INDEX_SHIFT); |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | /* write the 16/32-bit data array */ |
| 1448 | switch(valueBits) { |
| 1449 | case UTRIE2_16_VALUE_BITS: |
| 1450 | /* write 16-bit data values */ |
| 1451 | trie->data16=dest16; |
| 1452 | trie->data32=NULL; |
| 1453 | p=newTrie->data; |
| 1454 | for(i=newTrie->dataLength; i>0; --i) { |
| 1455 | *dest16++=(uint16_t)*p++; |
| 1456 | } |
| 1457 | break; |
| 1458 | case UTRIE2_32_VALUE_BITS: |
| 1459 | /* write 32-bit data values */ |
| 1460 | trie->data16=NULL; |
| 1461 | trie->data32=(uint32_t *)dest16; |
| 1462 | uprv_memcpy(dest16, newTrie->data, (size_t)newTrie->dataLength*4); |
| 1463 | break; |
| 1464 | default: |
| 1465 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 1466 | return; |
| 1467 | } |
| 1468 | |
| 1469 | #ifdef UTRIE2_DEBUG |
| 1470 | utrie2_printLengths(trie, "" ); |
| 1471 | #endif |
| 1472 | |
| 1473 | #ifdef UCPTRIE_DEBUG |
| 1474 | umutablecptrie_setName(newTrie->t3, trie->name); |
| 1475 | ucptrie_close( |
| 1476 | umutablecptrie_buildImmutable( |
| 1477 | newTrie->t3, UCPTRIE_TYPE_FAST, (UCPTrieValueWidth)valueBits, pErrorCode)); |
| 1478 | #endif |
| 1479 | /* Delete the UNewTrie2. */ |
| 1480 | uprv_free(newTrie->data); |
| 1481 | uprv_free(newTrie); |
| 1482 | trie->newTrie=NULL; |
| 1483 | } |
| 1484 | |