| 1 | // © 2018 and later: Unicode, Inc. and others. | 
|---|
| 2 | // License & terms of use: http://www.unicode.org/copyright.html | 
|---|
| 3 | // | 
|---|
| 4 | // From the double-conversion library. Original license: | 
|---|
| 5 | // | 
|---|
| 6 | // Copyright 2010 the V8 project authors. All rights reserved. | 
|---|
| 7 | // Redistribution and use in source and binary forms, with or without | 
|---|
| 8 | // modification, are permitted provided that the following conditions are | 
|---|
| 9 | // met: | 
|---|
| 10 | // | 
|---|
| 11 | //     * Redistributions of source code must retain the above copyright | 
|---|
| 12 | //       notice, this list of conditions and the following disclaimer. | 
|---|
| 13 | //     * Redistributions in binary form must reproduce the above | 
|---|
| 14 | //       copyright notice, this list of conditions and the following | 
|---|
| 15 | //       disclaimer in the documentation and/or other materials provided | 
|---|
| 16 | //       with the distribution. | 
|---|
| 17 | //     * Neither the name of Google Inc. nor the names of its | 
|---|
| 18 | //       contributors may be used to endorse or promote products derived | 
|---|
| 19 | //       from this software without specific prior written permission. | 
|---|
| 20 | // | 
|---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|---|
| 32 |  | 
|---|
| 33 | // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING | 
|---|
| 34 | #include "unicode/utypes.h" | 
|---|
| 35 | #if !UCONFIG_NO_FORMATTING | 
|---|
| 36 |  | 
|---|
| 37 | #include <climits> | 
|---|
| 38 | #include <cstdarg> | 
|---|
| 39 |  | 
|---|
| 40 | // ICU PATCH: Customize header file paths for ICU. | 
|---|
| 41 |  | 
|---|
| 42 | #include "double-conversion-bignum.h" | 
|---|
| 43 | #include "double-conversion-cached-powers.h" | 
|---|
| 44 | #include "double-conversion-ieee.h" | 
|---|
| 45 | #include "double-conversion-strtod.h" | 
|---|
| 46 |  | 
|---|
| 47 | // ICU PATCH: Wrap in ICU namespace | 
|---|
| 48 | U_NAMESPACE_BEGIN | 
|---|
| 49 |  | 
|---|
| 50 | namespace double_conversion { | 
|---|
| 51 |  | 
|---|
| 52 | #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | 
|---|
| 53 | // 2^53 = 9007199254740992. | 
|---|
| 54 | // Any integer with at most 15 decimal digits will hence fit into a double | 
|---|
| 55 | // (which has a 53bit significand) without loss of precision. | 
|---|
| 56 | static const int kMaxExactDoubleIntegerDecimalDigits = 15; | 
|---|
| 57 | #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | 
|---|
| 58 | // 2^64 = 18446744073709551616 > 10^19 | 
|---|
| 59 | static const int kMaxUint64DecimalDigits = 19; | 
|---|
| 60 |  | 
|---|
| 61 | // Max double: 1.7976931348623157 x 10^308 | 
|---|
| 62 | // Min non-zero double: 4.9406564584124654 x 10^-324 | 
|---|
| 63 | // Any x >= 10^309 is interpreted as +infinity. | 
|---|
| 64 | // Any x <= 10^-324 is interpreted as 0. | 
|---|
| 65 | // Note that 2.5e-324 (despite being smaller than the min double) will be read | 
|---|
| 66 | // as non-zero (equal to the min non-zero double). | 
|---|
| 67 | static const int kMaxDecimalPower = 309; | 
|---|
| 68 | static const int kMinDecimalPower = -324; | 
|---|
| 69 |  | 
|---|
| 70 | // 2^64 = 18446744073709551616 | 
|---|
| 71 | static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); | 
|---|
| 72 |  | 
|---|
| 73 |  | 
|---|
| 74 | #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | 
|---|
| 75 | static const double exact_powers_of_ten[] = { | 
|---|
| 76 | 1.0,  // 10^0 | 
|---|
| 77 | 10.0, | 
|---|
| 78 | 100.0, | 
|---|
| 79 | 1000.0, | 
|---|
| 80 | 10000.0, | 
|---|
| 81 | 100000.0, | 
|---|
| 82 | 1000000.0, | 
|---|
| 83 | 10000000.0, | 
|---|
| 84 | 100000000.0, | 
|---|
| 85 | 1000000000.0, | 
|---|
| 86 | 10000000000.0,  // 10^10 | 
|---|
| 87 | 100000000000.0, | 
|---|
| 88 | 1000000000000.0, | 
|---|
| 89 | 10000000000000.0, | 
|---|
| 90 | 100000000000000.0, | 
|---|
| 91 | 1000000000000000.0, | 
|---|
| 92 | 10000000000000000.0, | 
|---|
| 93 | 100000000000000000.0, | 
|---|
| 94 | 1000000000000000000.0, | 
|---|
| 95 | 10000000000000000000.0, | 
|---|
| 96 | 100000000000000000000.0,  // 10^20 | 
|---|
| 97 | 1000000000000000000000.0, | 
|---|
| 98 | // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 | 
|---|
| 99 | 10000000000000000000000.0 | 
|---|
| 100 | }; | 
|---|
| 101 | static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten); | 
|---|
| 102 | #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | 
|---|
| 103 |  | 
|---|
| 104 | // Maximum number of significant digits in the decimal representation. | 
|---|
| 105 | // In fact the value is 772 (see conversions.cc), but to give us some margin | 
|---|
| 106 | // we round up to 780. | 
|---|
| 107 | static const int kMaxSignificantDecimalDigits = 780; | 
|---|
| 108 |  | 
|---|
| 109 | static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { | 
|---|
| 110 | for (int i = 0; i < buffer.length(); i++) { | 
|---|
| 111 | if (buffer[i] != '0') { | 
|---|
| 112 | return buffer.SubVector(i, buffer.length()); | 
|---|
| 113 | } | 
|---|
| 114 | } | 
|---|
| 115 | return Vector<const char>(buffer.start(), 0); | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 |  | 
|---|
| 119 | static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { | 
|---|
| 120 | for (int i = buffer.length() - 1; i >= 0; --i) { | 
|---|
| 121 | if (buffer[i] != '0') { | 
|---|
| 122 | return buffer.SubVector(0, i + 1); | 
|---|
| 123 | } | 
|---|
| 124 | } | 
|---|
| 125 | return Vector<const char>(buffer.start(), 0); | 
|---|
| 126 | } | 
|---|
| 127 |  | 
|---|
| 128 |  | 
|---|
| 129 | static void CutToMaxSignificantDigits(Vector<const char> buffer, | 
|---|
| 130 | int exponent, | 
|---|
| 131 | char* significant_buffer, | 
|---|
| 132 | int* significant_exponent) { | 
|---|
| 133 | for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { | 
|---|
| 134 | significant_buffer[i] = buffer[i]; | 
|---|
| 135 | } | 
|---|
| 136 | // The input buffer has been trimmed. Therefore the last digit must be | 
|---|
| 137 | // different from '0'. | 
|---|
| 138 | DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0'); | 
|---|
| 139 | // Set the last digit to be non-zero. This is sufficient to guarantee | 
|---|
| 140 | // correct rounding. | 
|---|
| 141 | significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; | 
|---|
| 142 | *significant_exponent = | 
|---|
| 143 | exponent + (buffer.length() - kMaxSignificantDecimalDigits); | 
|---|
| 144 | } | 
|---|
| 145 |  | 
|---|
| 146 |  | 
|---|
| 147 | // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. | 
|---|
| 148 | // If possible the input-buffer is reused, but if the buffer needs to be | 
|---|
| 149 | // modified (due to cutting), then the input needs to be copied into the | 
|---|
| 150 | // buffer_copy_space. | 
|---|
| 151 | static void TrimAndCut(Vector<const char> buffer, int exponent, | 
|---|
| 152 | char* buffer_copy_space, int space_size, | 
|---|
| 153 | Vector<const char>* trimmed, int* updated_exponent) { | 
|---|
| 154 | Vector<const char> left_trimmed = TrimLeadingZeros(buffer); | 
|---|
| 155 | Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed); | 
|---|
| 156 | exponent += left_trimmed.length() - right_trimmed.length(); | 
|---|
| 157 | if (right_trimmed.length() > kMaxSignificantDecimalDigits) { | 
|---|
| 158 | (void) space_size;  // Mark variable as used. | 
|---|
| 159 | DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits); | 
|---|
| 160 | CutToMaxSignificantDigits(right_trimmed, exponent, | 
|---|
| 161 | buffer_copy_space, updated_exponent); | 
|---|
| 162 | *trimmed = Vector<const char>(buffer_copy_space, | 
|---|
| 163 | kMaxSignificantDecimalDigits); | 
|---|
| 164 | } else { | 
|---|
| 165 | *trimmed = right_trimmed; | 
|---|
| 166 | *updated_exponent = exponent; | 
|---|
| 167 | } | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 |  | 
|---|
| 171 | // Reads digits from the buffer and converts them to a uint64. | 
|---|
| 172 | // Reads in as many digits as fit into a uint64. | 
|---|
| 173 | // When the string starts with "1844674407370955161" no further digit is read. | 
|---|
| 174 | // Since 2^64 = 18446744073709551616 it would still be possible read another | 
|---|
| 175 | // digit if it was less or equal than 6, but this would complicate the code. | 
|---|
| 176 | static uint64_t ReadUint64(Vector<const char> buffer, | 
|---|
| 177 | int* number_of_read_digits) { | 
|---|
| 178 | uint64_t result = 0; | 
|---|
| 179 | int i = 0; | 
|---|
| 180 | while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { | 
|---|
| 181 | int digit = buffer[i++] - '0'; | 
|---|
| 182 | DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9); | 
|---|
| 183 | result = 10 * result + digit; | 
|---|
| 184 | } | 
|---|
| 185 | *number_of_read_digits = i; | 
|---|
| 186 | return result; | 
|---|
| 187 | } | 
|---|
| 188 |  | 
|---|
| 189 |  | 
|---|
| 190 | // Reads a DiyFp from the buffer. | 
|---|
| 191 | // The returned DiyFp is not necessarily normalized. | 
|---|
| 192 | // If remaining_decimals is zero then the returned DiyFp is accurate. | 
|---|
| 193 | // Otherwise it has been rounded and has error of at most 1/2 ulp. | 
|---|
| 194 | static void ReadDiyFp(Vector<const char> buffer, | 
|---|
| 195 | DiyFp* result, | 
|---|
| 196 | int* remaining_decimals) { | 
|---|
| 197 | int read_digits; | 
|---|
| 198 | uint64_t significand = ReadUint64(buffer, &read_digits); | 
|---|
| 199 | if (buffer.length() == read_digits) { | 
|---|
| 200 | *result = DiyFp(significand, 0); | 
|---|
| 201 | *remaining_decimals = 0; | 
|---|
| 202 | } else { | 
|---|
| 203 | // Round the significand. | 
|---|
| 204 | if (buffer[read_digits] >= '5') { | 
|---|
| 205 | significand++; | 
|---|
| 206 | } | 
|---|
| 207 | // Compute the binary exponent. | 
|---|
| 208 | int exponent = 0; | 
|---|
| 209 | *result = DiyFp(significand, exponent); | 
|---|
| 210 | *remaining_decimals = buffer.length() - read_digits; | 
|---|
| 211 | } | 
|---|
| 212 | } | 
|---|
| 213 |  | 
|---|
| 214 |  | 
|---|
| 215 | static bool DoubleStrtod(Vector<const char> trimmed, | 
|---|
| 216 | int exponent, | 
|---|
| 217 | double* result) { | 
|---|
| 218 | #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) | 
|---|
| 219 | // On x86 the floating-point stack can be 64 or 80 bits wide. If it is | 
|---|
| 220 | // 80 bits wide (as is the case on Linux) then double-rounding occurs and the | 
|---|
| 221 | // result is not accurate. | 
|---|
| 222 | // We know that Windows32 uses 64 bits and is therefore accurate. | 
|---|
| 223 | // Note that the ARM simulator is compiled for 32bits. It therefore exhibits | 
|---|
| 224 | // the same problem. | 
|---|
| 225 | return false; | 
|---|
| 226 | #else | 
|---|
| 227 | if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { | 
|---|
| 228 | int read_digits; | 
|---|
| 229 | // The trimmed input fits into a double. | 
|---|
| 230 | // If the 10^exponent (resp. 10^-exponent) fits into a double too then we | 
|---|
| 231 | // can compute the result-double simply by multiplying (resp. dividing) the | 
|---|
| 232 | // two numbers. | 
|---|
| 233 | // This is possible because IEEE guarantees that floating-point operations | 
|---|
| 234 | // return the best possible approximation. | 
|---|
| 235 | if (exponent < 0 && -exponent < kExactPowersOfTenSize) { | 
|---|
| 236 | // 10^-exponent fits into a double. | 
|---|
| 237 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | 
|---|
| 238 | DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); | 
|---|
| 239 | *result /= exact_powers_of_ten[-exponent]; | 
|---|
| 240 | return true; | 
|---|
| 241 | } | 
|---|
| 242 | if (0 <= exponent && exponent < kExactPowersOfTenSize) { | 
|---|
| 243 | // 10^exponent fits into a double. | 
|---|
| 244 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | 
|---|
| 245 | DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); | 
|---|
| 246 | *result *= exact_powers_of_ten[exponent]; | 
|---|
| 247 | return true; | 
|---|
| 248 | } | 
|---|
| 249 | int remaining_digits = | 
|---|
| 250 | kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); | 
|---|
| 251 | if ((0 <= exponent) && | 
|---|
| 252 | (exponent - remaining_digits < kExactPowersOfTenSize)) { | 
|---|
| 253 | // The trimmed string was short and we can multiply it with | 
|---|
| 254 | // 10^remaining_digits. As a result the remaining exponent now fits | 
|---|
| 255 | // into a double too. | 
|---|
| 256 | *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); | 
|---|
| 257 | DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length()); | 
|---|
| 258 | *result *= exact_powers_of_ten[remaining_digits]; | 
|---|
| 259 | *result *= exact_powers_of_ten[exponent - remaining_digits]; | 
|---|
| 260 | return true; | 
|---|
| 261 | } | 
|---|
| 262 | } | 
|---|
| 263 | return false; | 
|---|
| 264 | #endif | 
|---|
| 265 | } | 
|---|
| 266 |  | 
|---|
| 267 |  | 
|---|
| 268 | // Returns 10^exponent as an exact DiyFp. | 
|---|
| 269 | // The given exponent must be in the range [1; kDecimalExponentDistance[. | 
|---|
| 270 | static DiyFp AdjustmentPowerOfTen(int exponent) { | 
|---|
| 271 | DOUBLE_CONVERSION_ASSERT(0 < exponent); | 
|---|
| 272 | DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); | 
|---|
| 273 | // Simply hardcode the remaining powers for the given decimal exponent | 
|---|
| 274 | // distance. | 
|---|
| 275 | DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); | 
|---|
| 276 | switch (exponent) { | 
|---|
| 277 | case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60); | 
|---|
| 278 | case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57); | 
|---|
| 279 | case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54); | 
|---|
| 280 | case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50); | 
|---|
| 281 | case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47); | 
|---|
| 282 | case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44); | 
|---|
| 283 | case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40); | 
|---|
| 284 | default: | 
|---|
| 285 | DOUBLE_CONVERSION_UNREACHABLE(); | 
|---|
| 286 | } | 
|---|
| 287 | } | 
|---|
| 288 |  | 
|---|
| 289 |  | 
|---|
| 290 | // If the function returns true then the result is the correct double. | 
|---|
| 291 | // Otherwise it is either the correct double or the double that is just below | 
|---|
| 292 | // the correct double. | 
|---|
| 293 | static bool DiyFpStrtod(Vector<const char> buffer, | 
|---|
| 294 | int exponent, | 
|---|
| 295 | double* result) { | 
|---|
| 296 | DiyFp input; | 
|---|
| 297 | int remaining_decimals; | 
|---|
| 298 | ReadDiyFp(buffer, &input, &remaining_decimals); | 
|---|
| 299 | // Since we may have dropped some digits the input is not accurate. | 
|---|
| 300 | // If remaining_decimals is different than 0 than the error is at most | 
|---|
| 301 | // .5 ulp (unit in the last place). | 
|---|
| 302 | // We don't want to deal with fractions and therefore keep a common | 
|---|
| 303 | // denominator. | 
|---|
| 304 | const int kDenominatorLog = 3; | 
|---|
| 305 | const int kDenominator = 1 << kDenominatorLog; | 
|---|
| 306 | // Move the remaining decimals into the exponent. | 
|---|
| 307 | exponent += remaining_decimals; | 
|---|
| 308 | uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2); | 
|---|
| 309 |  | 
|---|
| 310 | int old_e = input.e(); | 
|---|
| 311 | input.Normalize(); | 
|---|
| 312 | error <<= old_e - input.e(); | 
|---|
| 313 |  | 
|---|
| 314 | DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); | 
|---|
| 315 | if (exponent < PowersOfTenCache::kMinDecimalExponent) { | 
|---|
| 316 | *result = 0.0; | 
|---|
| 317 | return true; | 
|---|
| 318 | } | 
|---|
| 319 | DiyFp cached_power; | 
|---|
| 320 | int cached_decimal_exponent; | 
|---|
| 321 | PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, | 
|---|
| 322 | &cached_power, | 
|---|
| 323 | &cached_decimal_exponent); | 
|---|
| 324 |  | 
|---|
| 325 | if (cached_decimal_exponent != exponent) { | 
|---|
| 326 | int adjustment_exponent = exponent - cached_decimal_exponent; | 
|---|
| 327 | DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); | 
|---|
| 328 | input.Multiply(adjustment_power); | 
|---|
| 329 | if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { | 
|---|
| 330 | // The product of input with the adjustment power fits into a 64 bit | 
|---|
| 331 | // integer. | 
|---|
| 332 | DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64); | 
|---|
| 333 | } else { | 
|---|
| 334 | // The adjustment power is exact. There is hence only an error of 0.5. | 
|---|
| 335 | error += kDenominator / 2; | 
|---|
| 336 | } | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | input.Multiply(cached_power); | 
|---|
| 340 | // The error introduced by a multiplication of a*b equals | 
|---|
| 341 | //   error_a + error_b + error_a*error_b/2^64 + 0.5 | 
|---|
| 342 | // Substituting a with 'input' and b with 'cached_power' we have | 
|---|
| 343 | //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp), | 
|---|
| 344 | //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 | 
|---|
| 345 | int error_b = kDenominator / 2; | 
|---|
| 346 | int error_ab = (error == 0 ? 0 : 1);  // We round up to 1. | 
|---|
| 347 | int fixed_error = kDenominator / 2; | 
|---|
| 348 | error += error_b + error_ab + fixed_error; | 
|---|
| 349 |  | 
|---|
| 350 | old_e = input.e(); | 
|---|
| 351 | input.Normalize(); | 
|---|
| 352 | error <<= old_e - input.e(); | 
|---|
| 353 |  | 
|---|
| 354 | // See if the double's significand changes if we add/subtract the error. | 
|---|
| 355 | int order_of_magnitude = DiyFp::kSignificandSize + input.e(); | 
|---|
| 356 | int effective_significand_size = | 
|---|
| 357 | Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); | 
|---|
| 358 | int precision_digits_count = | 
|---|
| 359 | DiyFp::kSignificandSize - effective_significand_size; | 
|---|
| 360 | if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { | 
|---|
| 361 | // This can only happen for very small denormals. In this case the | 
|---|
| 362 | // half-way multiplied by the denominator exceeds the range of an uint64. | 
|---|
| 363 | // Simply shift everything to the right. | 
|---|
| 364 | int shift_amount = (precision_digits_count + kDenominatorLog) - | 
|---|
| 365 | DiyFp::kSignificandSize + 1; | 
|---|
| 366 | input.set_f(input.f() >> shift_amount); | 
|---|
| 367 | input.set_e(input.e() + shift_amount); | 
|---|
| 368 | // We add 1 for the lost precision of error, and kDenominator for | 
|---|
| 369 | // the lost precision of input.f(). | 
|---|
| 370 | error = (error >> shift_amount) + 1 + kDenominator; | 
|---|
| 371 | precision_digits_count -= shift_amount; | 
|---|
| 372 | } | 
|---|
| 373 | // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. | 
|---|
| 374 | DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64); | 
|---|
| 375 | DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64); | 
|---|
| 376 | uint64_t one64 = 1; | 
|---|
| 377 | uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; | 
|---|
| 378 | uint64_t precision_bits = input.f() & precision_bits_mask; | 
|---|
| 379 | uint64_t half_way = one64 << (precision_digits_count - 1); | 
|---|
| 380 | precision_bits *= kDenominator; | 
|---|
| 381 | half_way *= kDenominator; | 
|---|
| 382 | DiyFp rounded_input(input.f() >> precision_digits_count, | 
|---|
| 383 | input.e() + precision_digits_count); | 
|---|
| 384 | if (precision_bits >= half_way + error) { | 
|---|
| 385 | rounded_input.set_f(rounded_input.f() + 1); | 
|---|
| 386 | } | 
|---|
| 387 | // If the last_bits are too close to the half-way case than we are too | 
|---|
| 388 | // inaccurate and round down. In this case we return false so that we can | 
|---|
| 389 | // fall back to a more precise algorithm. | 
|---|
| 390 |  | 
|---|
| 391 | *result = Double(rounded_input).value(); | 
|---|
| 392 | if (half_way - error < precision_bits && precision_bits < half_way + error) { | 
|---|
| 393 | // Too imprecise. The caller will have to fall back to a slower version. | 
|---|
| 394 | // However the returned number is guaranteed to be either the correct | 
|---|
| 395 | // double, or the next-lower double. | 
|---|
| 396 | return false; | 
|---|
| 397 | } else { | 
|---|
| 398 | return true; | 
|---|
| 399 | } | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 |  | 
|---|
| 403 | // Returns | 
|---|
| 404 | //   - -1 if buffer*10^exponent < diy_fp. | 
|---|
| 405 | //   -  0 if buffer*10^exponent == diy_fp. | 
|---|
| 406 | //   - +1 if buffer*10^exponent > diy_fp. | 
|---|
| 407 | // Preconditions: | 
|---|
| 408 | //   buffer.length() + exponent <= kMaxDecimalPower + 1 | 
|---|
| 409 | //   buffer.length() + exponent > kMinDecimalPower | 
|---|
| 410 | //   buffer.length() <= kMaxDecimalSignificantDigits | 
|---|
| 411 | static int CompareBufferWithDiyFp(Vector<const char> buffer, | 
|---|
| 412 | int exponent, | 
|---|
| 413 | DiyFp diy_fp) { | 
|---|
| 414 | DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); | 
|---|
| 415 | DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower); | 
|---|
| 416 | DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); | 
|---|
| 417 | // Make sure that the Bignum will be able to hold all our numbers. | 
|---|
| 418 | // Our Bignum implementation has a separate field for exponents. Shifts will | 
|---|
| 419 | // consume at most one bigit (< 64 bits). | 
|---|
| 420 | // ln(10) == 3.3219... | 
|---|
| 421 | DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); | 
|---|
| 422 | Bignum buffer_bignum; | 
|---|
| 423 | Bignum diy_fp_bignum; | 
|---|
| 424 | buffer_bignum.AssignDecimalString(buffer); | 
|---|
| 425 | diy_fp_bignum.AssignUInt64(diy_fp.f()); | 
|---|
| 426 | if (exponent >= 0) { | 
|---|
| 427 | buffer_bignum.MultiplyByPowerOfTen(exponent); | 
|---|
| 428 | } else { | 
|---|
| 429 | diy_fp_bignum.MultiplyByPowerOfTen(-exponent); | 
|---|
| 430 | } | 
|---|
| 431 | if (diy_fp.e() > 0) { | 
|---|
| 432 | diy_fp_bignum.ShiftLeft(diy_fp.e()); | 
|---|
| 433 | } else { | 
|---|
| 434 | buffer_bignum.ShiftLeft(-diy_fp.e()); | 
|---|
| 435 | } | 
|---|
| 436 | return Bignum::Compare(buffer_bignum, diy_fp_bignum); | 
|---|
| 437 | } | 
|---|
| 438 |  | 
|---|
| 439 |  | 
|---|
| 440 | // Returns true if the guess is the correct double. | 
|---|
| 441 | // Returns false, when guess is either correct or the next-lower double. | 
|---|
| 442 | static bool ComputeGuess(Vector<const char> trimmed, int exponent, | 
|---|
| 443 | double* guess) { | 
|---|
| 444 | if (trimmed.length() == 0) { | 
|---|
| 445 | *guess = 0.0; | 
|---|
| 446 | return true; | 
|---|
| 447 | } | 
|---|
| 448 | if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { | 
|---|
| 449 | *guess = Double::Infinity(); | 
|---|
| 450 | return true; | 
|---|
| 451 | } | 
|---|
| 452 | if (exponent + trimmed.length() <= kMinDecimalPower) { | 
|---|
| 453 | *guess = 0.0; | 
|---|
| 454 | return true; | 
|---|
| 455 | } | 
|---|
| 456 |  | 
|---|
| 457 | if (DoubleStrtod(trimmed, exponent, guess) || | 
|---|
| 458 | DiyFpStrtod(trimmed, exponent, guess)) { | 
|---|
| 459 | return true; | 
|---|
| 460 | } | 
|---|
| 461 | if (*guess == Double::Infinity()) { | 
|---|
| 462 | return true; | 
|---|
| 463 | } | 
|---|
| 464 | return false; | 
|---|
| 465 | } | 
|---|
| 466 |  | 
|---|
| 467 | #if U_DEBUG // needed for ICU only in debug mode | 
|---|
| 468 | static bool IsDigit(const char d) { | 
|---|
| 469 | return ('0' <= d) && (d <= '9'); | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | static bool IsNonZeroDigit(const char d) { | 
|---|
| 473 | return ('1' <= d) && (d <= '9'); | 
|---|
| 474 | } | 
|---|
| 475 |  | 
|---|
| 476 | static bool AssertTrimmedDigits(const Vector<const char>& buffer) { | 
|---|
| 477 | for(int i = 0; i < buffer.length(); ++i) { | 
|---|
| 478 | if(!IsDigit(buffer[i])) { | 
|---|
| 479 | return false; | 
|---|
| 480 | } | 
|---|
| 481 | } | 
|---|
| 482 | return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1])); | 
|---|
| 483 | } | 
|---|
| 484 | #endif // needed for ICU only in debug mode | 
|---|
| 485 |  | 
|---|
| 486 | double StrtodTrimmed(Vector<const char> trimmed, int exponent) { | 
|---|
| 487 | DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits); | 
|---|
| 488 | DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed)); | 
|---|
| 489 | double guess; | 
|---|
| 490 | const bool is_correct = ComputeGuess(trimmed, exponent, &guess); | 
|---|
| 491 | if (is_correct) { | 
|---|
| 492 | return guess; | 
|---|
| 493 | } | 
|---|
| 494 | DiyFp upper_boundary = Double(guess).UpperBoundary(); | 
|---|
| 495 | int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); | 
|---|
| 496 | if (comparison < 0) { | 
|---|
| 497 | return guess; | 
|---|
| 498 | } else if (comparison > 0) { | 
|---|
| 499 | return Double(guess).NextDouble(); | 
|---|
| 500 | } else if ((Double(guess).Significand() & 1) == 0) { | 
|---|
| 501 | // Round towards even. | 
|---|
| 502 | return guess; | 
|---|
| 503 | } else { | 
|---|
| 504 | return Double(guess).NextDouble(); | 
|---|
| 505 | } | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | double Strtod(Vector<const char> buffer, int exponent) { | 
|---|
| 509 | char copy_buffer[kMaxSignificantDecimalDigits]; | 
|---|
| 510 | Vector<const char> trimmed; | 
|---|
| 511 | int updated_exponent; | 
|---|
| 512 | TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, | 
|---|
| 513 | &trimmed, &updated_exponent); | 
|---|
| 514 | return StrtodTrimmed(trimmed, updated_exponent); | 
|---|
| 515 | } | 
|---|
| 516 |  | 
|---|
| 517 | static float SanitizedDoubletof(double d) { | 
|---|
| 518 | DOUBLE_CONVERSION_ASSERT(d >= 0.0); | 
|---|
| 519 | // ASAN has a sanitize check that disallows casting doubles to floats if | 
|---|
| 520 | // they are too big. | 
|---|
| 521 | // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks | 
|---|
| 522 | // The behavior should be covered by IEEE 754, but some projects use this | 
|---|
| 523 | // flag, so work around it. | 
|---|
| 524 | float max_finite = 3.4028234663852885981170418348451692544e+38; | 
|---|
| 525 | // The half-way point between the max-finite and infinity value. | 
|---|
| 526 | // Since infinity has an even significand everything equal or greater than | 
|---|
| 527 | // this value should become infinity. | 
|---|
| 528 | double half_max_finite_infinity = | 
|---|
| 529 | 3.40282356779733661637539395458142568448e+38; | 
|---|
| 530 | if (d >= max_finite) { | 
|---|
| 531 | if (d >= half_max_finite_infinity) { | 
|---|
| 532 | return Single::Infinity(); | 
|---|
| 533 | } else { | 
|---|
| 534 | return max_finite; | 
|---|
| 535 | } | 
|---|
| 536 | } else { | 
|---|
| 537 | return static_cast<float>(d); | 
|---|
| 538 | } | 
|---|
| 539 | } | 
|---|
| 540 |  | 
|---|
| 541 | float Strtof(Vector<const char> buffer, int exponent) { | 
|---|
| 542 | char copy_buffer[kMaxSignificantDecimalDigits]; | 
|---|
| 543 | Vector<const char> trimmed; | 
|---|
| 544 | int updated_exponent; | 
|---|
| 545 | TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, | 
|---|
| 546 | &trimmed, &updated_exponent); | 
|---|
| 547 | exponent = updated_exponent; | 
|---|
| 548 |  | 
|---|
| 549 | double double_guess; | 
|---|
| 550 | bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); | 
|---|
| 551 |  | 
|---|
| 552 | float float_guess = SanitizedDoubletof(double_guess); | 
|---|
| 553 | if (float_guess == double_guess) { | 
|---|
| 554 | // This shortcut triggers for integer values. | 
|---|
| 555 | return float_guess; | 
|---|
| 556 | } | 
|---|
| 557 |  | 
|---|
| 558 | // We must catch double-rounding. Say the double has been rounded up, and is | 
|---|
| 559 | // now a boundary of a float, and rounds up again. This is why we have to | 
|---|
| 560 | // look at previous too. | 
|---|
| 561 | // Example (in decimal numbers): | 
|---|
| 562 | //    input: 12349 | 
|---|
| 563 | //    high-precision (4 digits): 1235 | 
|---|
| 564 | //    low-precision (3 digits): | 
|---|
| 565 | //       when read from input: 123 | 
|---|
| 566 | //       when rounded from high precision: 124. | 
|---|
| 567 | // To do this we simply look at the neigbors of the correct result and see | 
|---|
| 568 | // if they would round to the same float. If the guess is not correct we have | 
|---|
| 569 | // to look at four values (since two different doubles could be the correct | 
|---|
| 570 | // double). | 
|---|
| 571 |  | 
|---|
| 572 | double double_next = Double(double_guess).NextDouble(); | 
|---|
| 573 | double double_previous = Double(double_guess).PreviousDouble(); | 
|---|
| 574 |  | 
|---|
| 575 | float f1 = SanitizedDoubletof(double_previous); | 
|---|
| 576 | float f2 = float_guess; | 
|---|
| 577 | float f3 = SanitizedDoubletof(double_next); | 
|---|
| 578 | float f4; | 
|---|
| 579 | if (is_correct) { | 
|---|
| 580 | f4 = f3; | 
|---|
| 581 | } else { | 
|---|
| 582 | double double_next2 = Double(double_next).NextDouble(); | 
|---|
| 583 | f4 = SanitizedDoubletof(double_next2); | 
|---|
| 584 | } | 
|---|
| 585 | (void) f2;  // Mark variable as used. | 
|---|
| 586 | DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); | 
|---|
| 587 |  | 
|---|
| 588 | // If the guess doesn't lie near a single-precision boundary we can simply | 
|---|
| 589 | // return its float-value. | 
|---|
| 590 | if (f1 == f4) { | 
|---|
| 591 | return float_guess; | 
|---|
| 592 | } | 
|---|
| 593 |  | 
|---|
| 594 | DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || | 
|---|
| 595 | (f1 == f2 && f2 != f3 && f3 == f4) || | 
|---|
| 596 | (f1 == f2 && f2 == f3 && f3 != f4)); | 
|---|
| 597 |  | 
|---|
| 598 | // guess and next are the two possible candidates (in the same way that | 
|---|
| 599 | // double_guess was the lower candidate for a double-precision guess). | 
|---|
| 600 | float guess = f1; | 
|---|
| 601 | float next = f4; | 
|---|
| 602 | DiyFp upper_boundary; | 
|---|
| 603 | if (guess == 0.0f) { | 
|---|
| 604 | float min_float = 1e-45f; | 
|---|
| 605 | upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); | 
|---|
| 606 | } else { | 
|---|
| 607 | upper_boundary = Single(guess).UpperBoundary(); | 
|---|
| 608 | } | 
|---|
| 609 | int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); | 
|---|
| 610 | if (comparison < 0) { | 
|---|
| 611 | return guess; | 
|---|
| 612 | } else if (comparison > 0) { | 
|---|
| 613 | return next; | 
|---|
| 614 | } else if ((Single(guess).Significand() & 1) == 0) { | 
|---|
| 615 | // Round towards even. | 
|---|
| 616 | return guess; | 
|---|
| 617 | } else { | 
|---|
| 618 | return next; | 
|---|
| 619 | } | 
|---|
| 620 | } | 
|---|
| 621 |  | 
|---|
| 622 | }  // namespace double_conversion | 
|---|
| 623 |  | 
|---|
| 624 | // ICU PATCH: Close ICU namespace | 
|---|
| 625 | U_NAMESPACE_END | 
|---|
| 626 | #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING | 
|---|
| 627 |  | 
|---|