1 | // © 2017 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html |
3 | |
4 | #include "unicode/utypes.h" |
5 | |
6 | #if !UCONFIG_NO_FORMATTING |
7 | |
8 | #include <cstdlib> |
9 | #include <cmath> |
10 | #include <limits> |
11 | #include <stdlib.h> |
12 | |
13 | #include "unicode/plurrule.h" |
14 | #include "cmemory.h" |
15 | #include "number_decnum.h" |
16 | #include "putilimp.h" |
17 | #include "number_decimalquantity.h" |
18 | #include "number_roundingutils.h" |
19 | #include "double-conversion.h" |
20 | #include "charstr.h" |
21 | #include "number_utils.h" |
22 | #include "uassert.h" |
23 | |
24 | using namespace icu; |
25 | using namespace icu::number; |
26 | using namespace icu::number::impl; |
27 | |
28 | using icu::double_conversion::DoubleToStringConverter; |
29 | using icu::double_conversion::StringToDoubleConverter; |
30 | |
31 | namespace { |
32 | |
33 | int8_t NEGATIVE_FLAG = 1; |
34 | int8_t INFINITY_FLAG = 2; |
35 | int8_t NAN_FLAG = 4; |
36 | |
37 | /** Helper function for safe subtraction (no overflow). */ |
38 | inline int32_t safeSubtract(int32_t a, int32_t b) { |
39 | // Note: In C++, signed integer subtraction is undefined behavior. |
40 | int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b)); |
41 | if (b < 0 && diff < a) { return INT32_MAX; } |
42 | if (b > 0 && diff > a) { return INT32_MIN; } |
43 | return diff; |
44 | } |
45 | |
46 | static double DOUBLE_MULTIPLIERS[] = { |
47 | 1e0, |
48 | 1e1, |
49 | 1e2, |
50 | 1e3, |
51 | 1e4, |
52 | 1e5, |
53 | 1e6, |
54 | 1e7, |
55 | 1e8, |
56 | 1e9, |
57 | 1e10, |
58 | 1e11, |
59 | 1e12, |
60 | 1e13, |
61 | 1e14, |
62 | 1e15, |
63 | 1e16, |
64 | 1e17, |
65 | 1e18, |
66 | 1e19, |
67 | 1e20, |
68 | 1e21}; |
69 | |
70 | } // namespace |
71 | |
72 | icu::IFixedDecimal::~IFixedDecimal() = default; |
73 | |
74 | DecimalQuantity::DecimalQuantity() { |
75 | setBcdToZero(); |
76 | flags = 0; |
77 | } |
78 | |
79 | DecimalQuantity::~DecimalQuantity() { |
80 | if (usingBytes) { |
81 | uprv_free(fBCD.bcdBytes.ptr); |
82 | fBCD.bcdBytes.ptr = nullptr; |
83 | usingBytes = false; |
84 | } |
85 | } |
86 | |
87 | DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { |
88 | *this = other; |
89 | } |
90 | |
91 | DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT { |
92 | *this = std::move(src); |
93 | } |
94 | |
95 | DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { |
96 | if (this == &other) { |
97 | return *this; |
98 | } |
99 | copyBcdFrom(other); |
100 | copyFieldsFrom(other); |
101 | return *this; |
102 | } |
103 | |
104 | DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT { |
105 | if (this == &src) { |
106 | return *this; |
107 | } |
108 | moveBcdFrom(src); |
109 | copyFieldsFrom(src); |
110 | return *this; |
111 | } |
112 | |
113 | void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) { |
114 | bogus = other.bogus; |
115 | lReqPos = other.lReqPos; |
116 | rReqPos = other.rReqPos; |
117 | scale = other.scale; |
118 | precision = other.precision; |
119 | flags = other.flags; |
120 | origDouble = other.origDouble; |
121 | origDelta = other.origDelta; |
122 | isApproximate = other.isApproximate; |
123 | exponent = other.exponent; |
124 | } |
125 | |
126 | void DecimalQuantity::clear() { |
127 | lReqPos = 0; |
128 | rReqPos = 0; |
129 | flags = 0; |
130 | setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data |
131 | } |
132 | |
133 | void DecimalQuantity::setMinInteger(int32_t minInt) { |
134 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
135 | U_ASSERT(minInt >= 0); |
136 | |
137 | // Special behavior: do not set minInt to be less than what is already set. |
138 | // This is so significant digits rounding can set the integer length. |
139 | if (minInt < lReqPos) { |
140 | minInt = lReqPos; |
141 | } |
142 | |
143 | // Save values into internal state |
144 | lReqPos = minInt; |
145 | } |
146 | |
147 | void DecimalQuantity::setMinFraction(int32_t minFrac) { |
148 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
149 | U_ASSERT(minFrac >= 0); |
150 | |
151 | // Save values into internal state |
152 | // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE |
153 | rReqPos = -minFrac; |
154 | } |
155 | |
156 | void DecimalQuantity::applyMaxInteger(int32_t maxInt) { |
157 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
158 | U_ASSERT(maxInt >= 0); |
159 | |
160 | if (precision == 0) { |
161 | return; |
162 | } |
163 | |
164 | if (maxInt <= scale) { |
165 | setBcdToZero(); |
166 | return; |
167 | } |
168 | |
169 | int32_t magnitude = getMagnitude(); |
170 | if (maxInt <= magnitude) { |
171 | popFromLeft(magnitude - maxInt + 1); |
172 | compact(); |
173 | } |
174 | } |
175 | |
176 | uint64_t DecimalQuantity::getPositionFingerprint() const { |
177 | uint64_t fingerprint = 0; |
178 | fingerprint ^= (lReqPos << 16); |
179 | fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32); |
180 | return fingerprint; |
181 | } |
182 | |
183 | void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode, |
184 | UErrorCode& status) { |
185 | // Do not call this method with an increment having only a 1 or a 5 digit! |
186 | // Use a more efficient call to either roundToMagnitude() or roundToNickel(). |
187 | // Check a few popular rounding increments; a more thorough check is in Java. |
188 | U_ASSERT(roundingIncrement != 0.01); |
189 | U_ASSERT(roundingIncrement != 0.05); |
190 | U_ASSERT(roundingIncrement != 0.1); |
191 | U_ASSERT(roundingIncrement != 0.5); |
192 | U_ASSERT(roundingIncrement != 1); |
193 | U_ASSERT(roundingIncrement != 5); |
194 | |
195 | DecNum incrementDN; |
196 | incrementDN.setTo(roundingIncrement, status); |
197 | if (U_FAILURE(status)) { return; } |
198 | |
199 | // Divide this DecimalQuantity by the increment, round, then multiply back. |
200 | divideBy(incrementDN, status); |
201 | if (U_FAILURE(status)) { return; } |
202 | roundToMagnitude(0, roundingMode, status); |
203 | if (U_FAILURE(status)) { return; } |
204 | multiplyBy(incrementDN, status); |
205 | if (U_FAILURE(status)) { return; } |
206 | } |
207 | |
208 | void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) { |
209 | if (isZeroish()) { |
210 | return; |
211 | } |
212 | // Convert to DecNum, multiply, and convert back. |
213 | DecNum decnum; |
214 | toDecNum(decnum, status); |
215 | if (U_FAILURE(status)) { return; } |
216 | decnum.multiplyBy(multiplicand, status); |
217 | if (U_FAILURE(status)) { return; } |
218 | setToDecNum(decnum, status); |
219 | } |
220 | |
221 | void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) { |
222 | if (isZeroish()) { |
223 | return; |
224 | } |
225 | // Convert to DecNum, multiply, and convert back. |
226 | DecNum decnum; |
227 | toDecNum(decnum, status); |
228 | if (U_FAILURE(status)) { return; } |
229 | decnum.divideBy(divisor, status); |
230 | if (U_FAILURE(status)) { return; } |
231 | setToDecNum(decnum, status); |
232 | } |
233 | |
234 | void DecimalQuantity::negate() { |
235 | flags ^= NEGATIVE_FLAG; |
236 | } |
237 | |
238 | int32_t DecimalQuantity::getMagnitude() const { |
239 | U_ASSERT(precision != 0); |
240 | return scale + precision - 1; |
241 | } |
242 | |
243 | bool DecimalQuantity::adjustMagnitude(int32_t delta) { |
244 | if (precision != 0) { |
245 | // i.e., scale += delta; origDelta += delta |
246 | bool overflow = uprv_add32_overflow(scale, delta, &scale); |
247 | overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow; |
248 | // Make sure that precision + scale won't overflow, either |
249 | int32_t dummy; |
250 | overflow = overflow || uprv_add32_overflow(scale, precision, &dummy); |
251 | return overflow; |
252 | } |
253 | return false; |
254 | } |
255 | |
256 | double DecimalQuantity::getPluralOperand(PluralOperand operand) const { |
257 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
258 | // See the comment at the top of this file explaining the "isApproximate" field. |
259 | U_ASSERT(!isApproximate); |
260 | |
261 | switch (operand) { |
262 | case PLURAL_OPERAND_I: |
263 | // Invert the negative sign if necessary |
264 | return static_cast<double>(isNegative() ? -toLong(true) : toLong(true)); |
265 | case PLURAL_OPERAND_F: |
266 | return static_cast<double>(toFractionLong(true)); |
267 | case PLURAL_OPERAND_T: |
268 | return static_cast<double>(toFractionLong(false)); |
269 | case PLURAL_OPERAND_V: |
270 | return fractionCount(); |
271 | case PLURAL_OPERAND_W: |
272 | return fractionCountWithoutTrailingZeros(); |
273 | case PLURAL_OPERAND_E: |
274 | return static_cast<double>(getExponent()); |
275 | default: |
276 | return std::abs(toDouble()); |
277 | } |
278 | } |
279 | |
280 | int32_t DecimalQuantity::getExponent() const { |
281 | return exponent; |
282 | } |
283 | |
284 | void DecimalQuantity::adjustExponent(int delta) { |
285 | exponent = exponent + delta; |
286 | } |
287 | |
288 | bool DecimalQuantity::hasIntegerValue() const { |
289 | return scale >= 0; |
290 | } |
291 | |
292 | int32_t DecimalQuantity::getUpperDisplayMagnitude() const { |
293 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
294 | // See the comment in the header file explaining the "isApproximate" field. |
295 | U_ASSERT(!isApproximate); |
296 | |
297 | int32_t magnitude = scale + precision; |
298 | int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude; |
299 | return result - 1; |
300 | } |
301 | |
302 | int32_t DecimalQuantity::getLowerDisplayMagnitude() const { |
303 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
304 | // See the comment in the header file explaining the "isApproximate" field. |
305 | U_ASSERT(!isApproximate); |
306 | |
307 | int32_t magnitude = scale; |
308 | int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude; |
309 | return result; |
310 | } |
311 | |
312 | int8_t DecimalQuantity::getDigit(int32_t magnitude) const { |
313 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
314 | // See the comment at the top of this file explaining the "isApproximate" field. |
315 | U_ASSERT(!isApproximate); |
316 | |
317 | return getDigitPos(magnitude - scale); |
318 | } |
319 | |
320 | int32_t DecimalQuantity::fractionCount() const { |
321 | int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent; |
322 | return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; |
323 | } |
324 | |
325 | int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { |
326 | int32_t fractionCountWithExponent = -scale - exponent; |
327 | return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; // max(-fractionCountWithExponent, 0) |
328 | } |
329 | |
330 | bool DecimalQuantity::isNegative() const { |
331 | return (flags & NEGATIVE_FLAG) != 0; |
332 | } |
333 | |
334 | Signum DecimalQuantity::signum() const { |
335 | bool isZero = (isZeroish() && !isInfinite()); |
336 | bool isNeg = isNegative(); |
337 | if (isZero && isNeg) { |
338 | return SIGNUM_NEG_ZERO; |
339 | } else if (isZero) { |
340 | return SIGNUM_POS_ZERO; |
341 | } else if (isNeg) { |
342 | return SIGNUM_NEG; |
343 | } else { |
344 | return SIGNUM_POS; |
345 | } |
346 | } |
347 | |
348 | bool DecimalQuantity::isInfinite() const { |
349 | return (flags & INFINITY_FLAG) != 0; |
350 | } |
351 | |
352 | bool DecimalQuantity::isNaN() const { |
353 | return (flags & NAN_FLAG) != 0; |
354 | } |
355 | |
356 | bool DecimalQuantity::isZeroish() const { |
357 | return precision == 0; |
358 | } |
359 | |
360 | DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { |
361 | setBcdToZero(); |
362 | flags = 0; |
363 | if (n == INT32_MIN) { |
364 | flags |= NEGATIVE_FLAG; |
365 | // leave as INT32_MIN; handled below in _setToInt() |
366 | } else if (n < 0) { |
367 | flags |= NEGATIVE_FLAG; |
368 | n = -n; |
369 | } |
370 | if (n != 0) { |
371 | _setToInt(n); |
372 | compact(); |
373 | } |
374 | return *this; |
375 | } |
376 | |
377 | void DecimalQuantity::_setToInt(int32_t n) { |
378 | if (n == INT32_MIN) { |
379 | readLongToBcd(-static_cast<int64_t>(n)); |
380 | } else { |
381 | readIntToBcd(n); |
382 | } |
383 | } |
384 | |
385 | DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { |
386 | setBcdToZero(); |
387 | flags = 0; |
388 | if (n < 0 && n > INT64_MIN) { |
389 | flags |= NEGATIVE_FLAG; |
390 | n = -n; |
391 | } |
392 | if (n != 0) { |
393 | _setToLong(n); |
394 | compact(); |
395 | } |
396 | return *this; |
397 | } |
398 | |
399 | void DecimalQuantity::_setToLong(int64_t n) { |
400 | if (n == INT64_MIN) { |
401 | DecNum decnum; |
402 | UErrorCode localStatus = U_ZERO_ERROR; |
403 | decnum.setTo("9.223372036854775808E+18" , localStatus); |
404 | if (U_FAILURE(localStatus)) { return; } // unexpected |
405 | flags |= NEGATIVE_FLAG; |
406 | readDecNumberToBcd(decnum); |
407 | } else if (n <= INT32_MAX) { |
408 | readIntToBcd(static_cast<int32_t>(n)); |
409 | } else { |
410 | readLongToBcd(n); |
411 | } |
412 | } |
413 | |
414 | DecimalQuantity &DecimalQuantity::setToDouble(double n) { |
415 | setBcdToZero(); |
416 | flags = 0; |
417 | // signbit() from <math.h> handles +0.0 vs -0.0 |
418 | if (std::signbit(n)) { |
419 | flags |= NEGATIVE_FLAG; |
420 | n = -n; |
421 | } |
422 | if (std::isnan(n) != 0) { |
423 | flags |= NAN_FLAG; |
424 | } else if (std::isfinite(n) == 0) { |
425 | flags |= INFINITY_FLAG; |
426 | } else if (n != 0) { |
427 | _setToDoubleFast(n); |
428 | compact(); |
429 | } |
430 | return *this; |
431 | } |
432 | |
433 | void DecimalQuantity::_setToDoubleFast(double n) { |
434 | isApproximate = true; |
435 | origDouble = n; |
436 | origDelta = 0; |
437 | |
438 | // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now. |
439 | // TODO: Make a fast path for other types of doubles. |
440 | if (!std::numeric_limits<double>::is_iec559) { |
441 | convertToAccurateDouble(); |
442 | return; |
443 | } |
444 | |
445 | // To get the bits from the double, use memcpy, which takes care of endianness. |
446 | uint64_t ieeeBits; |
447 | uprv_memcpy(&ieeeBits, &n, sizeof(n)); |
448 | int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; |
449 | |
450 | // Not all integers can be represented exactly for exponent > 52 |
451 | if (exponent <= 52 && static_cast<int64_t>(n) == n) { |
452 | _setToLong(static_cast<int64_t>(n)); |
453 | return; |
454 | } |
455 | |
456 | if (exponent == -1023 || exponent == 1024) { |
457 | // The extreme values of exponent are special; use slow path. |
458 | convertToAccurateDouble(); |
459 | return; |
460 | } |
461 | |
462 | // 3.3219... is log2(10) |
463 | auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586); |
464 | if (fracLength >= 0) { |
465 | int32_t i = fracLength; |
466 | // 1e22 is the largest exact double. |
467 | for (; i >= 22; i -= 22) n *= 1e22; |
468 | n *= DOUBLE_MULTIPLIERS[i]; |
469 | } else { |
470 | int32_t i = fracLength; |
471 | // 1e22 is the largest exact double. |
472 | for (; i <= -22; i += 22) n /= 1e22; |
473 | n /= DOUBLE_MULTIPLIERS[-i]; |
474 | } |
475 | auto result = static_cast<int64_t>(uprv_round(n)); |
476 | if (result != 0) { |
477 | _setToLong(result); |
478 | scale -= fracLength; |
479 | } |
480 | } |
481 | |
482 | void DecimalQuantity::convertToAccurateDouble() { |
483 | U_ASSERT(origDouble != 0); |
484 | int32_t delta = origDelta; |
485 | |
486 | // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++). |
487 | char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
488 | bool sign; // unused; always positive |
489 | int32_t length; |
490 | int32_t point; |
491 | DoubleToStringConverter::DoubleToAscii( |
492 | origDouble, |
493 | DoubleToStringConverter::DtoaMode::SHORTEST, |
494 | 0, |
495 | buffer, |
496 | sizeof(buffer), |
497 | &sign, |
498 | &length, |
499 | &point |
500 | ); |
501 | |
502 | setBcdToZero(); |
503 | readDoubleConversionToBcd(buffer, length, point); |
504 | scale += delta; |
505 | explicitExactDouble = true; |
506 | } |
507 | |
508 | DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) { |
509 | setBcdToZero(); |
510 | flags = 0; |
511 | |
512 | // Compute the decNumber representation |
513 | DecNum decnum; |
514 | decnum.setTo(n, status); |
515 | |
516 | _setToDecNum(decnum, status); |
517 | return *this; |
518 | } |
519 | |
520 | DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) { |
521 | setBcdToZero(); |
522 | flags = 0; |
523 | |
524 | _setToDecNum(decnum, status); |
525 | return *this; |
526 | } |
527 | |
528 | void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) { |
529 | if (U_FAILURE(status)) { return; } |
530 | if (decnum.isNegative()) { |
531 | flags |= NEGATIVE_FLAG; |
532 | } |
533 | if (!decnum.isZero()) { |
534 | readDecNumberToBcd(decnum); |
535 | compact(); |
536 | } |
537 | } |
538 | |
539 | int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const { |
540 | // NOTE: Call sites should be guarded by fitsInLong(), like this: |
541 | // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } |
542 | // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits. |
543 | uint64_t result = 0L; |
544 | int32_t upperMagnitude = exponent + scale + precision - 1; |
545 | if (truncateIfOverflow) { |
546 | upperMagnitude = std::min(upperMagnitude, 17); |
547 | } |
548 | for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) { |
549 | result = result * 10 + getDigitPos(magnitude - scale - exponent); |
550 | } |
551 | if (isNegative()) { |
552 | return static_cast<int64_t>(0LL - result); // i.e., -result |
553 | } |
554 | return static_cast<int64_t>(result); |
555 | } |
556 | |
557 | uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { |
558 | uint64_t result = 0L; |
559 | int32_t magnitude = -1 - exponent; |
560 | int32_t lowerMagnitude = scale; |
561 | if (includeTrailingZeros) { |
562 | lowerMagnitude = std::min(lowerMagnitude, rReqPos); |
563 | } |
564 | for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) { |
565 | result = result * 10 + getDigitPos(magnitude - scale); |
566 | } |
567 | // Remove trailing zeros; this can happen during integer overflow cases. |
568 | if (!includeTrailingZeros) { |
569 | while (result > 0 && (result % 10) == 0) { |
570 | result /= 10; |
571 | } |
572 | } |
573 | return result; |
574 | } |
575 | |
576 | bool DecimalQuantity::fitsInLong(bool ignoreFraction) const { |
577 | if (isInfinite() || isNaN()) { |
578 | return false; |
579 | } |
580 | if (isZeroish()) { |
581 | return true; |
582 | } |
583 | if (exponent + scale < 0 && !ignoreFraction) { |
584 | return false; |
585 | } |
586 | int magnitude = getMagnitude(); |
587 | if (magnitude < 18) { |
588 | return true; |
589 | } |
590 | if (magnitude > 18) { |
591 | return false; |
592 | } |
593 | // Hard case: the magnitude is 10^18. |
594 | // The largest int64 is: 9,223,372,036,854,775,807 |
595 | for (int p = 0; p < precision; p++) { |
596 | int8_t digit = getDigit(18 - p); |
597 | static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; |
598 | if (digit < INT64_BCD[p]) { |
599 | return true; |
600 | } else if (digit > INT64_BCD[p]) { |
601 | return false; |
602 | } |
603 | } |
604 | // Exactly equal to max long plus one. |
605 | return isNegative(); |
606 | } |
607 | |
608 | double DecimalQuantity::toDouble() const { |
609 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
610 | // See the comment in the header file explaining the "isApproximate" field. |
611 | U_ASSERT(!isApproximate); |
612 | |
613 | if (isNaN()) { |
614 | return NAN; |
615 | } else if (isInfinite()) { |
616 | return isNegative() ? -INFINITY : INFINITY; |
617 | } |
618 | |
619 | // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter. |
620 | StringToDoubleConverter converter(0, 0, 0, "" , "" ); |
621 | UnicodeString numberString = this->toScientificString(); |
622 | int32_t count; |
623 | return converter.StringToDouble( |
624 | reinterpret_cast<const uint16_t*>(numberString.getBuffer()), |
625 | numberString.length(), |
626 | &count); |
627 | } |
628 | |
629 | void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const { |
630 | // Special handling for zero |
631 | if (precision == 0) { |
632 | output.setTo("0" , status); |
633 | } |
634 | |
635 | // Use the BCD constructor. We need to do a little bit of work to convert, though. |
636 | // The decNumber constructor expects most-significant first, but we store least-significant first. |
637 | MaybeStackArray<uint8_t, 20> ubcd(precision); |
638 | for (int32_t m = 0; m < precision; m++) { |
639 | ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m)); |
640 | } |
641 | output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status); |
642 | } |
643 | |
644 | void DecimalQuantity::truncate() { |
645 | if (scale < 0) { |
646 | shiftRight(-scale); |
647 | scale = 0; |
648 | compact(); |
649 | } |
650 | } |
651 | |
652 | void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
653 | roundToMagnitude(magnitude, roundingMode, true, status); |
654 | } |
655 | |
656 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
657 | roundToMagnitude(magnitude, roundingMode, false, status); |
658 | } |
659 | |
660 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) { |
661 | // The position in the BCD at which rounding will be performed; digits to the right of position |
662 | // will be rounded away. |
663 | int position = safeSubtract(magnitude, scale); |
664 | |
665 | // "trailing" = least significant digit to the left of rounding |
666 | int8_t trailingDigit = getDigitPos(position); |
667 | |
668 | if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
669 | // All digits are to the left of the rounding magnitude. |
670 | } else if (precision == 0) { |
671 | // No rounding for zero. |
672 | } else { |
673 | // Perform rounding logic. |
674 | // "leading" = most significant digit to the right of rounding |
675 | int8_t leadingDigit = getDigitPos(safeSubtract(position, 1)); |
676 | |
677 | // Compute which section of the number we are in. |
678 | // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) |
679 | // LOWER means we are between the bottom edge and the midpoint, like 1.391 |
680 | // MIDPOINT means we are exactly in the middle, like 1.500 |
681 | // UPPER means we are between the midpoint and the top edge, like 1.916 |
682 | roundingutils::Section section; |
683 | if (!isApproximate) { |
684 | if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
685 | // Nickel rounding, and not at .02x or .07x |
686 | if (trailingDigit < 2) { |
687 | // .00, .01 => down to .00 |
688 | section = roundingutils::SECTION_LOWER; |
689 | } else if (trailingDigit < 5) { |
690 | // .03, .04 => up to .05 |
691 | section = roundingutils::SECTION_UPPER; |
692 | } else if (trailingDigit < 7) { |
693 | // .05, .06 => down to .05 |
694 | section = roundingutils::SECTION_LOWER; |
695 | } else { |
696 | // .08, .09 => up to .10 |
697 | section = roundingutils::SECTION_UPPER; |
698 | } |
699 | } else if (leadingDigit < 5) { |
700 | // Includes nickel rounding .020-.024 and .070-.074 |
701 | section = roundingutils::SECTION_LOWER; |
702 | } else if (leadingDigit > 5) { |
703 | // Includes nickel rounding .026-.029 and .076-.079 |
704 | section = roundingutils::SECTION_UPPER; |
705 | } else { |
706 | // Includes nickel rounding .025 and .075 |
707 | section = roundingutils::SECTION_MIDPOINT; |
708 | for (int p = safeSubtract(position, 2); p >= 0; p--) { |
709 | if (getDigitPos(p) != 0) { |
710 | section = roundingutils::SECTION_UPPER; |
711 | break; |
712 | } |
713 | } |
714 | } |
715 | } else { |
716 | int32_t p = safeSubtract(position, 2); |
717 | int32_t minP = uprv_max(0, precision - 14); |
718 | if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
719 | section = roundingutils::SECTION_LOWER_EDGE; |
720 | for (; p >= minP; p--) { |
721 | if (getDigitPos(p) != 0) { |
722 | section = roundingutils::SECTION_LOWER; |
723 | break; |
724 | } |
725 | } |
726 | } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
727 | section = roundingutils::SECTION_MIDPOINT; |
728 | for (; p >= minP; p--) { |
729 | if (getDigitPos(p) != 9) { |
730 | section = roundingutils::SECTION_LOWER; |
731 | break; |
732 | } |
733 | } |
734 | } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
735 | section = roundingutils::SECTION_MIDPOINT; |
736 | for (; p >= minP; p--) { |
737 | if (getDigitPos(p) != 0) { |
738 | section = roundingutils::SECTION_UPPER; |
739 | break; |
740 | } |
741 | } |
742 | } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { |
743 | section = roundingutils::SECTION_UPPER_EDGE; |
744 | for (; p >= minP; p--) { |
745 | if (getDigitPos(p) != 9) { |
746 | section = roundingutils::SECTION_UPPER; |
747 | break; |
748 | } |
749 | } |
750 | } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
751 | // Nickel rounding, and not at .02x or .07x |
752 | if (trailingDigit < 2) { |
753 | // .00, .01 => down to .00 |
754 | section = roundingutils::SECTION_LOWER; |
755 | } else if (trailingDigit < 5) { |
756 | // .03, .04 => up to .05 |
757 | section = roundingutils::SECTION_UPPER; |
758 | } else if (trailingDigit < 7) { |
759 | // .05, .06 => down to .05 |
760 | section = roundingutils::SECTION_LOWER; |
761 | } else { |
762 | // .08, .09 => up to .10 |
763 | section = roundingutils::SECTION_UPPER; |
764 | } |
765 | } else if (leadingDigit < 5) { |
766 | // Includes nickel rounding .020-.024 and .070-.074 |
767 | section = roundingutils::SECTION_LOWER; |
768 | } else { |
769 | // Includes nickel rounding .026-.029 and .076-.079 |
770 | section = roundingutils::SECTION_UPPER; |
771 | } |
772 | |
773 | bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode); |
774 | if (safeSubtract(position, 1) < precision - 14 || |
775 | (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) || |
776 | (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { |
777 | // Oops! This means that we have to get the exact representation of the double, |
778 | // because the zone of uncertainty is along the rounding boundary. |
779 | convertToAccurateDouble(); |
780 | roundToMagnitude(magnitude, roundingMode, nickel, status); // start over |
781 | return; |
782 | } |
783 | |
784 | // Turn off the approximate double flag, since the value is now confirmed to be exact. |
785 | isApproximate = false; |
786 | origDouble = 0.0; |
787 | origDelta = 0; |
788 | |
789 | if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
790 | // All digits are to the left of the rounding magnitude. |
791 | return; |
792 | } |
793 | |
794 | // Good to continue rounding. |
795 | if (section == -1) { section = roundingutils::SECTION_LOWER; } |
796 | if (section == -2) { section = roundingutils::SECTION_UPPER; } |
797 | } |
798 | |
799 | // Nickel rounding "half even" goes to the nearest whole (away from the 5). |
800 | bool isEven = nickel |
801 | ? (trailingDigit < 2 || trailingDigit > 7 |
802 | || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER) |
803 | || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER)) |
804 | : (trailingDigit % 2) == 0; |
805 | |
806 | bool roundDown = roundingutils::getRoundingDirection(isEven, |
807 | isNegative(), |
808 | section, |
809 | roundingMode, |
810 | status); |
811 | if (U_FAILURE(status)) { |
812 | return; |
813 | } |
814 | |
815 | // Perform truncation |
816 | if (position >= precision) { |
817 | setBcdToZero(); |
818 | scale = magnitude; |
819 | } else { |
820 | shiftRight(position); |
821 | } |
822 | |
823 | if (nickel) { |
824 | if (trailingDigit < 5 && roundDown) { |
825 | setDigitPos(0, 0); |
826 | compact(); |
827 | return; |
828 | } else if (trailingDigit >= 5 && !roundDown) { |
829 | setDigitPos(0, 9); |
830 | trailingDigit = 9; |
831 | // do not return: use the bubbling logic below |
832 | } else { |
833 | setDigitPos(0, 5); |
834 | // compact not necessary: digit at position 0 is nonzero |
835 | return; |
836 | } |
837 | } |
838 | |
839 | // Bubble the result to the higher digits |
840 | if (!roundDown) { |
841 | if (trailingDigit == 9) { |
842 | int bubblePos = 0; |
843 | // Note: in the long implementation, the most digits BCD can have at this point is |
844 | // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe. |
845 | for (; getDigitPos(bubblePos) == 9; bubblePos++) {} |
846 | shiftRight(bubblePos); // shift off the trailing 9s |
847 | } |
848 | int8_t digit0 = getDigitPos(0); |
849 | U_ASSERT(digit0 != 9); |
850 | setDigitPos(0, static_cast<int8_t>(digit0 + 1)); |
851 | precision += 1; // in case an extra digit got added |
852 | } |
853 | |
854 | compact(); |
855 | } |
856 | } |
857 | |
858 | void DecimalQuantity::roundToInfinity() { |
859 | if (isApproximate) { |
860 | convertToAccurateDouble(); |
861 | } |
862 | } |
863 | |
864 | void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { |
865 | U_ASSERT(leadingZeros >= 0); |
866 | |
867 | // Zero requires special handling to maintain the invariant that the least-significant digit |
868 | // in the BCD is nonzero. |
869 | if (value == 0) { |
870 | if (appendAsInteger && precision != 0) { |
871 | scale += leadingZeros + 1; |
872 | } |
873 | return; |
874 | } |
875 | |
876 | // Deal with trailing zeros |
877 | if (scale > 0) { |
878 | leadingZeros += scale; |
879 | if (appendAsInteger) { |
880 | scale = 0; |
881 | } |
882 | } |
883 | |
884 | // Append digit |
885 | shiftLeft(leadingZeros + 1); |
886 | setDigitPos(0, value); |
887 | |
888 | // Fix scale if in integer mode |
889 | if (appendAsInteger) { |
890 | scale += leadingZeros + 1; |
891 | } |
892 | } |
893 | |
894 | UnicodeString DecimalQuantity::toPlainString() const { |
895 | U_ASSERT(!isApproximate); |
896 | UnicodeString sb; |
897 | if (isNegative()) { |
898 | sb.append(u'-'); |
899 | } |
900 | if (precision == 0) { |
901 | sb.append(u'0'); |
902 | return sb; |
903 | } |
904 | int32_t upper = scale + precision + exponent - 1; |
905 | int32_t lower = scale + exponent; |
906 | if (upper < lReqPos - 1) { |
907 | upper = lReqPos - 1; |
908 | } |
909 | if (lower > rReqPos) { |
910 | lower = rReqPos; |
911 | } |
912 | int32_t p = upper; |
913 | if (p < 0) { |
914 | sb.append(u'0'); |
915 | } |
916 | for (; p >= 0; p--) { |
917 | sb.append(u'0' + getDigitPos(p - scale - exponent)); |
918 | } |
919 | if (lower < 0) { |
920 | sb.append(u'.'); |
921 | } |
922 | for(; p >= lower; p--) { |
923 | sb.append(u'0' + getDigitPos(p - scale - exponent)); |
924 | } |
925 | return sb; |
926 | } |
927 | |
928 | UnicodeString DecimalQuantity::toScientificString() const { |
929 | U_ASSERT(!isApproximate); |
930 | UnicodeString result; |
931 | if (isNegative()) { |
932 | result.append(u'-'); |
933 | } |
934 | if (precision == 0) { |
935 | result.append(u"0E+0" , -1); |
936 | return result; |
937 | } |
938 | int32_t upperPos = precision - 1; |
939 | int32_t lowerPos = 0; |
940 | int32_t p = upperPos; |
941 | result.append(u'0' + getDigitPos(p)); |
942 | if ((--p) >= lowerPos) { |
943 | result.append(u'.'); |
944 | for (; p >= lowerPos; p--) { |
945 | result.append(u'0' + getDigitPos(p)); |
946 | } |
947 | } |
948 | result.append(u'E'); |
949 | int32_t _scale = upperPos + scale + exponent; |
950 | if (_scale == INT32_MIN) { |
951 | result.append({u"-2147483648" , -1}); |
952 | return result; |
953 | } else if (_scale < 0) { |
954 | _scale *= -1; |
955 | result.append(u'-'); |
956 | } else { |
957 | result.append(u'+'); |
958 | } |
959 | if (_scale == 0) { |
960 | result.append(u'0'); |
961 | } |
962 | int32_t insertIndex = result.length(); |
963 | while (_scale > 0) { |
964 | std::div_t res = std::div(_scale, 10); |
965 | result.insert(insertIndex, u'0' + res.rem); |
966 | _scale = res.quot; |
967 | } |
968 | return result; |
969 | } |
970 | |
971 | //////////////////////////////////////////////////// |
972 | /// End of DecimalQuantity_AbstractBCD.java /// |
973 | /// Start of DecimalQuantity_DualStorageBCD.java /// |
974 | //////////////////////////////////////////////////// |
975 | |
976 | int8_t DecimalQuantity::getDigitPos(int32_t position) const { |
977 | if (usingBytes) { |
978 | if (position < 0 || position >= precision) { return 0; } |
979 | return fBCD.bcdBytes.ptr[position]; |
980 | } else { |
981 | if (position < 0 || position >= 16) { return 0; } |
982 | return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf); |
983 | } |
984 | } |
985 | |
986 | void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { |
987 | U_ASSERT(position >= 0); |
988 | if (usingBytes) { |
989 | ensureCapacity(position + 1); |
990 | fBCD.bcdBytes.ptr[position] = value; |
991 | } else if (position >= 16) { |
992 | switchStorage(); |
993 | ensureCapacity(position + 1); |
994 | fBCD.bcdBytes.ptr[position] = value; |
995 | } else { |
996 | int shift = position * 4; |
997 | fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift); |
998 | } |
999 | } |
1000 | |
1001 | void DecimalQuantity::shiftLeft(int32_t numDigits) { |
1002 | if (!usingBytes && precision + numDigits > 16) { |
1003 | switchStorage(); |
1004 | } |
1005 | if (usingBytes) { |
1006 | ensureCapacity(precision + numDigits); |
1007 | int i = precision + numDigits - 1; |
1008 | for (; i >= numDigits; i--) { |
1009 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits]; |
1010 | } |
1011 | for (; i >= 0; i--) { |
1012 | fBCD.bcdBytes.ptr[i] = 0; |
1013 | } |
1014 | } else { |
1015 | fBCD.bcdLong <<= (numDigits * 4); |
1016 | } |
1017 | scale -= numDigits; |
1018 | precision += numDigits; |
1019 | } |
1020 | |
1021 | void DecimalQuantity::shiftRight(int32_t numDigits) { |
1022 | if (usingBytes) { |
1023 | int i = 0; |
1024 | for (; i < precision - numDigits; i++) { |
1025 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits]; |
1026 | } |
1027 | for (; i < precision; i++) { |
1028 | fBCD.bcdBytes.ptr[i] = 0; |
1029 | } |
1030 | } else { |
1031 | fBCD.bcdLong >>= (numDigits * 4); |
1032 | } |
1033 | scale += numDigits; |
1034 | precision -= numDigits; |
1035 | } |
1036 | |
1037 | void DecimalQuantity::popFromLeft(int32_t numDigits) { |
1038 | U_ASSERT(numDigits <= precision); |
1039 | if (usingBytes) { |
1040 | int i = precision - 1; |
1041 | for (; i >= precision - numDigits; i--) { |
1042 | fBCD.bcdBytes.ptr[i] = 0; |
1043 | } |
1044 | } else { |
1045 | fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1; |
1046 | } |
1047 | precision -= numDigits; |
1048 | } |
1049 | |
1050 | void DecimalQuantity::setBcdToZero() { |
1051 | if (usingBytes) { |
1052 | uprv_free(fBCD.bcdBytes.ptr); |
1053 | fBCD.bcdBytes.ptr = nullptr; |
1054 | usingBytes = false; |
1055 | } |
1056 | fBCD.bcdLong = 0L; |
1057 | scale = 0; |
1058 | precision = 0; |
1059 | isApproximate = false; |
1060 | origDouble = 0; |
1061 | origDelta = 0; |
1062 | exponent = 0; |
1063 | } |
1064 | |
1065 | void DecimalQuantity::readIntToBcd(int32_t n) { |
1066 | U_ASSERT(n != 0); |
1067 | // ints always fit inside the long implementation. |
1068 | uint64_t result = 0L; |
1069 | int i = 16; |
1070 | for (; n != 0; n /= 10, i--) { |
1071 | result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60); |
1072 | } |
1073 | U_ASSERT(!usingBytes); |
1074 | fBCD.bcdLong = result >> (i * 4); |
1075 | scale = 0; |
1076 | precision = 16 - i; |
1077 | } |
1078 | |
1079 | void DecimalQuantity::readLongToBcd(int64_t n) { |
1080 | U_ASSERT(n != 0); |
1081 | if (n >= 10000000000000000L) { |
1082 | ensureCapacity(); |
1083 | int i = 0; |
1084 | for (; n != 0L; n /= 10L, i++) { |
1085 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10); |
1086 | } |
1087 | U_ASSERT(usingBytes); |
1088 | scale = 0; |
1089 | precision = i; |
1090 | } else { |
1091 | uint64_t result = 0L; |
1092 | int i = 16; |
1093 | for (; n != 0L; n /= 10L, i--) { |
1094 | result = (result >> 4) + ((n % 10) << 60); |
1095 | } |
1096 | U_ASSERT(i >= 0); |
1097 | U_ASSERT(!usingBytes); |
1098 | fBCD.bcdLong = result >> (i * 4); |
1099 | scale = 0; |
1100 | precision = 16 - i; |
1101 | } |
1102 | } |
1103 | |
1104 | void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) { |
1105 | const decNumber* dn = decnum.getRawDecNumber(); |
1106 | if (dn->digits > 16) { |
1107 | ensureCapacity(dn->digits); |
1108 | for (int32_t i = 0; i < dn->digits; i++) { |
1109 | fBCD.bcdBytes.ptr[i] = dn->lsu[i]; |
1110 | } |
1111 | } else { |
1112 | uint64_t result = 0L; |
1113 | for (int32_t i = 0; i < dn->digits; i++) { |
1114 | result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i); |
1115 | } |
1116 | fBCD.bcdLong = result; |
1117 | } |
1118 | scale = dn->exponent; |
1119 | precision = dn->digits; |
1120 | } |
1121 | |
1122 | void DecimalQuantity::readDoubleConversionToBcd( |
1123 | const char* buffer, int32_t length, int32_t point) { |
1124 | // NOTE: Despite the fact that double-conversion's API is called |
1125 | // "DoubleToAscii", they actually use '0' (as opposed to u8'0'). |
1126 | if (length > 16) { |
1127 | ensureCapacity(length); |
1128 | for (int32_t i = 0; i < length; i++) { |
1129 | fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0'; |
1130 | } |
1131 | } else { |
1132 | uint64_t result = 0L; |
1133 | for (int32_t i = 0; i < length; i++) { |
1134 | result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i); |
1135 | } |
1136 | fBCD.bcdLong = result; |
1137 | } |
1138 | scale = point - length; |
1139 | precision = length; |
1140 | } |
1141 | |
1142 | void DecimalQuantity::compact() { |
1143 | if (usingBytes) { |
1144 | int32_t delta = 0; |
1145 | for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++); |
1146 | if (delta == precision) { |
1147 | // Number is zero |
1148 | setBcdToZero(); |
1149 | return; |
1150 | } else { |
1151 | // Remove trailing zeros |
1152 | shiftRight(delta); |
1153 | } |
1154 | |
1155 | // Compute precision |
1156 | int32_t leading = precision - 1; |
1157 | for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--); |
1158 | precision = leading + 1; |
1159 | |
1160 | // Switch storage mechanism if possible |
1161 | if (precision <= 16) { |
1162 | switchStorage(); |
1163 | } |
1164 | |
1165 | } else { |
1166 | if (fBCD.bcdLong == 0L) { |
1167 | // Number is zero |
1168 | setBcdToZero(); |
1169 | return; |
1170 | } |
1171 | |
1172 | // Compact the number (remove trailing zeros) |
1173 | // TODO: Use a more efficient algorithm here and below. There is a logarithmic one. |
1174 | int32_t delta = 0; |
1175 | for (; delta < precision && getDigitPos(delta) == 0; delta++); |
1176 | fBCD.bcdLong >>= delta * 4; |
1177 | scale += delta; |
1178 | |
1179 | // Compute precision |
1180 | int32_t leading = precision - 1; |
1181 | for (; leading >= 0 && getDigitPos(leading) == 0; leading--); |
1182 | precision = leading + 1; |
1183 | } |
1184 | } |
1185 | |
1186 | void DecimalQuantity::ensureCapacity() { |
1187 | ensureCapacity(40); |
1188 | } |
1189 | |
1190 | void DecimalQuantity::ensureCapacity(int32_t capacity) { |
1191 | if (capacity == 0) { return; } |
1192 | int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0; |
1193 | if (!usingBytes) { |
1194 | // TODO: There is nothing being done to check for memory allocation failures. |
1195 | // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can |
1196 | // make these arrays half the size. |
1197 | fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t))); |
1198 | fBCD.bcdBytes.len = capacity; |
1199 | // Initialize the byte array to zeros (this is done automatically in Java) |
1200 | uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)); |
1201 | } else if (oldCapacity < capacity) { |
1202 | auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t))); |
1203 | uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); |
1204 | // Initialize the rest of the byte array to zeros (this is done automatically in Java) |
1205 | uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)); |
1206 | uprv_free(fBCD.bcdBytes.ptr); |
1207 | fBCD.bcdBytes.ptr = bcd1; |
1208 | fBCD.bcdBytes.len = capacity * 2; |
1209 | } |
1210 | usingBytes = true; |
1211 | } |
1212 | |
1213 | void DecimalQuantity::switchStorage() { |
1214 | if (usingBytes) { |
1215 | // Change from bytes to long |
1216 | uint64_t bcdLong = 0L; |
1217 | for (int i = precision - 1; i >= 0; i--) { |
1218 | bcdLong <<= 4; |
1219 | bcdLong |= fBCD.bcdBytes.ptr[i]; |
1220 | } |
1221 | uprv_free(fBCD.bcdBytes.ptr); |
1222 | fBCD.bcdBytes.ptr = nullptr; |
1223 | fBCD.bcdLong = bcdLong; |
1224 | usingBytes = false; |
1225 | } else { |
1226 | // Change from long to bytes |
1227 | // Copy the long into a local variable since it will get munged when we allocate the bytes |
1228 | uint64_t bcdLong = fBCD.bcdLong; |
1229 | ensureCapacity(); |
1230 | for (int i = 0; i < precision; i++) { |
1231 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf); |
1232 | bcdLong >>= 4; |
1233 | } |
1234 | U_ASSERT(usingBytes); |
1235 | } |
1236 | } |
1237 | |
1238 | void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { |
1239 | setBcdToZero(); |
1240 | if (other.usingBytes) { |
1241 | ensureCapacity(other.precision); |
1242 | uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t)); |
1243 | } else { |
1244 | fBCD.bcdLong = other.fBCD.bcdLong; |
1245 | } |
1246 | } |
1247 | |
1248 | void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) { |
1249 | setBcdToZero(); |
1250 | if (other.usingBytes) { |
1251 | usingBytes = true; |
1252 | fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr; |
1253 | fBCD.bcdBytes.len = other.fBCD.bcdBytes.len; |
1254 | // Take ownership away from the old instance: |
1255 | other.fBCD.bcdBytes.ptr = nullptr; |
1256 | other.usingBytes = false; |
1257 | } else { |
1258 | fBCD.bcdLong = other.fBCD.bcdLong; |
1259 | } |
1260 | } |
1261 | |
1262 | const char16_t* DecimalQuantity::checkHealth() const { |
1263 | if (usingBytes) { |
1264 | if (precision == 0) { return u"Zero precision but we are in byte mode" ; } |
1265 | int32_t capacity = fBCD.bcdBytes.len; |
1266 | if (precision > capacity) { return u"Precision exceeds length of byte array" ; } |
1267 | if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode" ; } |
1268 | if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode" ; } |
1269 | for (int i = 0; i < precision; i++) { |
1270 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array" ; } |
1271 | if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array" ; } |
1272 | } |
1273 | for (int i = precision; i < capacity; i++) { |
1274 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array" ; } |
1275 | } |
1276 | } else { |
1277 | if (precision == 0 && fBCD.bcdLong != 0) { |
1278 | return u"Value in bcdLong even though precision is zero" ; |
1279 | } |
1280 | if (precision > 16) { return u"Precision exceeds length of long" ; } |
1281 | if (precision != 0 && getDigitPos(precision - 1) == 0) { |
1282 | return u"Most significant digit is zero in long mode" ; |
1283 | } |
1284 | if (precision != 0 && getDigitPos(0) == 0) { |
1285 | return u"Least significant digit is zero in long mode" ; |
1286 | } |
1287 | for (int i = 0; i < precision; i++) { |
1288 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long" ; } |
1289 | if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)" ; } |
1290 | } |
1291 | for (int i = precision; i < 16; i++) { |
1292 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long" ; } |
1293 | } |
1294 | } |
1295 | |
1296 | // No error |
1297 | return nullptr; |
1298 | } |
1299 | |
1300 | bool DecimalQuantity::operator==(const DecimalQuantity& other) const { |
1301 | bool basicEquals = |
1302 | scale == other.scale |
1303 | && precision == other.precision |
1304 | && flags == other.flags |
1305 | && lReqPos == other.lReqPos |
1306 | && rReqPos == other.rReqPos |
1307 | && isApproximate == other.isApproximate; |
1308 | if (!basicEquals) { |
1309 | return false; |
1310 | } |
1311 | |
1312 | if (precision == 0) { |
1313 | return true; |
1314 | } else if (isApproximate) { |
1315 | return origDouble == other.origDouble && origDelta == other.origDelta; |
1316 | } else { |
1317 | for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { |
1318 | if (getDigit(m) != other.getDigit(m)) { |
1319 | return false; |
1320 | } |
1321 | } |
1322 | return true; |
1323 | } |
1324 | } |
1325 | |
1326 | UnicodeString DecimalQuantity::toString() const { |
1327 | MaybeStackArray<char, 30> digits(precision + 1); |
1328 | for (int32_t i = 0; i < precision; i++) { |
1329 | digits[i] = getDigitPos(precision - i - 1) + '0'; |
1330 | } |
1331 | digits[precision] = 0; // terminate buffer |
1332 | char buffer8[100]; |
1333 | snprintf( |
1334 | buffer8, |
1335 | sizeof(buffer8), |
1336 | "<DecimalQuantity %d:%d %s %s%s%s%d>" , |
1337 | lReqPos, |
1338 | rReqPos, |
1339 | (usingBytes ? "bytes" : "long" ), |
1340 | (isNegative() ? "-" : "" ), |
1341 | (precision == 0 ? "0" : digits.getAlias()), |
1342 | "E" , |
1343 | scale); |
1344 | return UnicodeString(buffer8, -1, US_INV); |
1345 | } |
1346 | |
1347 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
1348 | |