| 1 | // © 2017 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | |
| 4 | #include "unicode/utypes.h" |
| 5 | |
| 6 | #if !UCONFIG_NO_FORMATTING |
| 7 | |
| 8 | #include <cstdlib> |
| 9 | #include <cmath> |
| 10 | #include <limits> |
| 11 | #include <stdlib.h> |
| 12 | |
| 13 | #include "unicode/plurrule.h" |
| 14 | #include "cmemory.h" |
| 15 | #include "number_decnum.h" |
| 16 | #include "putilimp.h" |
| 17 | #include "number_decimalquantity.h" |
| 18 | #include "number_roundingutils.h" |
| 19 | #include "double-conversion.h" |
| 20 | #include "charstr.h" |
| 21 | #include "number_utils.h" |
| 22 | #include "uassert.h" |
| 23 | |
| 24 | using namespace icu; |
| 25 | using namespace icu::number; |
| 26 | using namespace icu::number::impl; |
| 27 | |
| 28 | using icu::double_conversion::DoubleToStringConverter; |
| 29 | using icu::double_conversion::StringToDoubleConverter; |
| 30 | |
| 31 | namespace { |
| 32 | |
| 33 | int8_t NEGATIVE_FLAG = 1; |
| 34 | int8_t INFINITY_FLAG = 2; |
| 35 | int8_t NAN_FLAG = 4; |
| 36 | |
| 37 | /** Helper function for safe subtraction (no overflow). */ |
| 38 | inline int32_t safeSubtract(int32_t a, int32_t b) { |
| 39 | // Note: In C++, signed integer subtraction is undefined behavior. |
| 40 | int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b)); |
| 41 | if (b < 0 && diff < a) { return INT32_MAX; } |
| 42 | if (b > 0 && diff > a) { return INT32_MIN; } |
| 43 | return diff; |
| 44 | } |
| 45 | |
| 46 | static double DOUBLE_MULTIPLIERS[] = { |
| 47 | 1e0, |
| 48 | 1e1, |
| 49 | 1e2, |
| 50 | 1e3, |
| 51 | 1e4, |
| 52 | 1e5, |
| 53 | 1e6, |
| 54 | 1e7, |
| 55 | 1e8, |
| 56 | 1e9, |
| 57 | 1e10, |
| 58 | 1e11, |
| 59 | 1e12, |
| 60 | 1e13, |
| 61 | 1e14, |
| 62 | 1e15, |
| 63 | 1e16, |
| 64 | 1e17, |
| 65 | 1e18, |
| 66 | 1e19, |
| 67 | 1e20, |
| 68 | 1e21}; |
| 69 | |
| 70 | } // namespace |
| 71 | |
| 72 | icu::IFixedDecimal::~IFixedDecimal() = default; |
| 73 | |
| 74 | DecimalQuantity::DecimalQuantity() { |
| 75 | setBcdToZero(); |
| 76 | flags = 0; |
| 77 | } |
| 78 | |
| 79 | DecimalQuantity::~DecimalQuantity() { |
| 80 | if (usingBytes) { |
| 81 | uprv_free(fBCD.bcdBytes.ptr); |
| 82 | fBCD.bcdBytes.ptr = nullptr; |
| 83 | usingBytes = false; |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) { |
| 88 | *this = other; |
| 89 | } |
| 90 | |
| 91 | DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT { |
| 92 | *this = std::move(src); |
| 93 | } |
| 94 | |
| 95 | DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) { |
| 96 | if (this == &other) { |
| 97 | return *this; |
| 98 | } |
| 99 | copyBcdFrom(other); |
| 100 | copyFieldsFrom(other); |
| 101 | return *this; |
| 102 | } |
| 103 | |
| 104 | DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT { |
| 105 | if (this == &src) { |
| 106 | return *this; |
| 107 | } |
| 108 | moveBcdFrom(src); |
| 109 | copyFieldsFrom(src); |
| 110 | return *this; |
| 111 | } |
| 112 | |
| 113 | void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) { |
| 114 | bogus = other.bogus; |
| 115 | lReqPos = other.lReqPos; |
| 116 | rReqPos = other.rReqPos; |
| 117 | scale = other.scale; |
| 118 | precision = other.precision; |
| 119 | flags = other.flags; |
| 120 | origDouble = other.origDouble; |
| 121 | origDelta = other.origDelta; |
| 122 | isApproximate = other.isApproximate; |
| 123 | exponent = other.exponent; |
| 124 | } |
| 125 | |
| 126 | void DecimalQuantity::clear() { |
| 127 | lReqPos = 0; |
| 128 | rReqPos = 0; |
| 129 | flags = 0; |
| 130 | setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data |
| 131 | } |
| 132 | |
| 133 | void DecimalQuantity::setMinInteger(int32_t minInt) { |
| 134 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
| 135 | U_ASSERT(minInt >= 0); |
| 136 | |
| 137 | // Special behavior: do not set minInt to be less than what is already set. |
| 138 | // This is so significant digits rounding can set the integer length. |
| 139 | if (minInt < lReqPos) { |
| 140 | minInt = lReqPos; |
| 141 | } |
| 142 | |
| 143 | // Save values into internal state |
| 144 | lReqPos = minInt; |
| 145 | } |
| 146 | |
| 147 | void DecimalQuantity::setMinFraction(int32_t minFrac) { |
| 148 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
| 149 | U_ASSERT(minFrac >= 0); |
| 150 | |
| 151 | // Save values into internal state |
| 152 | // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE |
| 153 | rReqPos = -minFrac; |
| 154 | } |
| 155 | |
| 156 | void DecimalQuantity::applyMaxInteger(int32_t maxInt) { |
| 157 | // Validation should happen outside of DecimalQuantity, e.g., in the Precision class. |
| 158 | U_ASSERT(maxInt >= 0); |
| 159 | |
| 160 | if (precision == 0) { |
| 161 | return; |
| 162 | } |
| 163 | |
| 164 | if (maxInt <= scale) { |
| 165 | setBcdToZero(); |
| 166 | return; |
| 167 | } |
| 168 | |
| 169 | int32_t magnitude = getMagnitude(); |
| 170 | if (maxInt <= magnitude) { |
| 171 | popFromLeft(magnitude - maxInt + 1); |
| 172 | compact(); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | uint64_t DecimalQuantity::getPositionFingerprint() const { |
| 177 | uint64_t fingerprint = 0; |
| 178 | fingerprint ^= (lReqPos << 16); |
| 179 | fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32); |
| 180 | return fingerprint; |
| 181 | } |
| 182 | |
| 183 | void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode, |
| 184 | UErrorCode& status) { |
| 185 | // Do not call this method with an increment having only a 1 or a 5 digit! |
| 186 | // Use a more efficient call to either roundToMagnitude() or roundToNickel(). |
| 187 | // Check a few popular rounding increments; a more thorough check is in Java. |
| 188 | U_ASSERT(roundingIncrement != 0.01); |
| 189 | U_ASSERT(roundingIncrement != 0.05); |
| 190 | U_ASSERT(roundingIncrement != 0.1); |
| 191 | U_ASSERT(roundingIncrement != 0.5); |
| 192 | U_ASSERT(roundingIncrement != 1); |
| 193 | U_ASSERT(roundingIncrement != 5); |
| 194 | |
| 195 | DecNum incrementDN; |
| 196 | incrementDN.setTo(roundingIncrement, status); |
| 197 | if (U_FAILURE(status)) { return; } |
| 198 | |
| 199 | // Divide this DecimalQuantity by the increment, round, then multiply back. |
| 200 | divideBy(incrementDN, status); |
| 201 | if (U_FAILURE(status)) { return; } |
| 202 | roundToMagnitude(0, roundingMode, status); |
| 203 | if (U_FAILURE(status)) { return; } |
| 204 | multiplyBy(incrementDN, status); |
| 205 | if (U_FAILURE(status)) { return; } |
| 206 | } |
| 207 | |
| 208 | void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) { |
| 209 | if (isZeroish()) { |
| 210 | return; |
| 211 | } |
| 212 | // Convert to DecNum, multiply, and convert back. |
| 213 | DecNum decnum; |
| 214 | toDecNum(decnum, status); |
| 215 | if (U_FAILURE(status)) { return; } |
| 216 | decnum.multiplyBy(multiplicand, status); |
| 217 | if (U_FAILURE(status)) { return; } |
| 218 | setToDecNum(decnum, status); |
| 219 | } |
| 220 | |
| 221 | void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) { |
| 222 | if (isZeroish()) { |
| 223 | return; |
| 224 | } |
| 225 | // Convert to DecNum, multiply, and convert back. |
| 226 | DecNum decnum; |
| 227 | toDecNum(decnum, status); |
| 228 | if (U_FAILURE(status)) { return; } |
| 229 | decnum.divideBy(divisor, status); |
| 230 | if (U_FAILURE(status)) { return; } |
| 231 | setToDecNum(decnum, status); |
| 232 | } |
| 233 | |
| 234 | void DecimalQuantity::negate() { |
| 235 | flags ^= NEGATIVE_FLAG; |
| 236 | } |
| 237 | |
| 238 | int32_t DecimalQuantity::getMagnitude() const { |
| 239 | U_ASSERT(precision != 0); |
| 240 | return scale + precision - 1; |
| 241 | } |
| 242 | |
| 243 | bool DecimalQuantity::adjustMagnitude(int32_t delta) { |
| 244 | if (precision != 0) { |
| 245 | // i.e., scale += delta; origDelta += delta |
| 246 | bool overflow = uprv_add32_overflow(scale, delta, &scale); |
| 247 | overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow; |
| 248 | // Make sure that precision + scale won't overflow, either |
| 249 | int32_t dummy; |
| 250 | overflow = overflow || uprv_add32_overflow(scale, precision, &dummy); |
| 251 | return overflow; |
| 252 | } |
| 253 | return false; |
| 254 | } |
| 255 | |
| 256 | double DecimalQuantity::getPluralOperand(PluralOperand operand) const { |
| 257 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| 258 | // See the comment at the top of this file explaining the "isApproximate" field. |
| 259 | U_ASSERT(!isApproximate); |
| 260 | |
| 261 | switch (operand) { |
| 262 | case PLURAL_OPERAND_I: |
| 263 | // Invert the negative sign if necessary |
| 264 | return static_cast<double>(isNegative() ? -toLong(true) : toLong(true)); |
| 265 | case PLURAL_OPERAND_F: |
| 266 | return static_cast<double>(toFractionLong(true)); |
| 267 | case PLURAL_OPERAND_T: |
| 268 | return static_cast<double>(toFractionLong(false)); |
| 269 | case PLURAL_OPERAND_V: |
| 270 | return fractionCount(); |
| 271 | case PLURAL_OPERAND_W: |
| 272 | return fractionCountWithoutTrailingZeros(); |
| 273 | case PLURAL_OPERAND_E: |
| 274 | return static_cast<double>(getExponent()); |
| 275 | default: |
| 276 | return std::abs(toDouble()); |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | int32_t DecimalQuantity::getExponent() const { |
| 281 | return exponent; |
| 282 | } |
| 283 | |
| 284 | void DecimalQuantity::adjustExponent(int delta) { |
| 285 | exponent = exponent + delta; |
| 286 | } |
| 287 | |
| 288 | bool DecimalQuantity::hasIntegerValue() const { |
| 289 | return scale >= 0; |
| 290 | } |
| 291 | |
| 292 | int32_t DecimalQuantity::getUpperDisplayMagnitude() const { |
| 293 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| 294 | // See the comment in the header file explaining the "isApproximate" field. |
| 295 | U_ASSERT(!isApproximate); |
| 296 | |
| 297 | int32_t magnitude = scale + precision; |
| 298 | int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude; |
| 299 | return result - 1; |
| 300 | } |
| 301 | |
| 302 | int32_t DecimalQuantity::getLowerDisplayMagnitude() const { |
| 303 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| 304 | // See the comment in the header file explaining the "isApproximate" field. |
| 305 | U_ASSERT(!isApproximate); |
| 306 | |
| 307 | int32_t magnitude = scale; |
| 308 | int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude; |
| 309 | return result; |
| 310 | } |
| 311 | |
| 312 | int8_t DecimalQuantity::getDigit(int32_t magnitude) const { |
| 313 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| 314 | // See the comment at the top of this file explaining the "isApproximate" field. |
| 315 | U_ASSERT(!isApproximate); |
| 316 | |
| 317 | return getDigitPos(magnitude - scale); |
| 318 | } |
| 319 | |
| 320 | int32_t DecimalQuantity::fractionCount() const { |
| 321 | int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent; |
| 322 | return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; |
| 323 | } |
| 324 | |
| 325 | int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const { |
| 326 | int32_t fractionCountWithExponent = -scale - exponent; |
| 327 | return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0; // max(-fractionCountWithExponent, 0) |
| 328 | } |
| 329 | |
| 330 | bool DecimalQuantity::isNegative() const { |
| 331 | return (flags & NEGATIVE_FLAG) != 0; |
| 332 | } |
| 333 | |
| 334 | Signum DecimalQuantity::signum() const { |
| 335 | bool isZero = (isZeroish() && !isInfinite()); |
| 336 | bool isNeg = isNegative(); |
| 337 | if (isZero && isNeg) { |
| 338 | return SIGNUM_NEG_ZERO; |
| 339 | } else if (isZero) { |
| 340 | return SIGNUM_POS_ZERO; |
| 341 | } else if (isNeg) { |
| 342 | return SIGNUM_NEG; |
| 343 | } else { |
| 344 | return SIGNUM_POS; |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | bool DecimalQuantity::isInfinite() const { |
| 349 | return (flags & INFINITY_FLAG) != 0; |
| 350 | } |
| 351 | |
| 352 | bool DecimalQuantity::isNaN() const { |
| 353 | return (flags & NAN_FLAG) != 0; |
| 354 | } |
| 355 | |
| 356 | bool DecimalQuantity::isZeroish() const { |
| 357 | return precision == 0; |
| 358 | } |
| 359 | |
| 360 | DecimalQuantity &DecimalQuantity::setToInt(int32_t n) { |
| 361 | setBcdToZero(); |
| 362 | flags = 0; |
| 363 | if (n == INT32_MIN) { |
| 364 | flags |= NEGATIVE_FLAG; |
| 365 | // leave as INT32_MIN; handled below in _setToInt() |
| 366 | } else if (n < 0) { |
| 367 | flags |= NEGATIVE_FLAG; |
| 368 | n = -n; |
| 369 | } |
| 370 | if (n != 0) { |
| 371 | _setToInt(n); |
| 372 | compact(); |
| 373 | } |
| 374 | return *this; |
| 375 | } |
| 376 | |
| 377 | void DecimalQuantity::_setToInt(int32_t n) { |
| 378 | if (n == INT32_MIN) { |
| 379 | readLongToBcd(-static_cast<int64_t>(n)); |
| 380 | } else { |
| 381 | readIntToBcd(n); |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | DecimalQuantity &DecimalQuantity::setToLong(int64_t n) { |
| 386 | setBcdToZero(); |
| 387 | flags = 0; |
| 388 | if (n < 0 && n > INT64_MIN) { |
| 389 | flags |= NEGATIVE_FLAG; |
| 390 | n = -n; |
| 391 | } |
| 392 | if (n != 0) { |
| 393 | _setToLong(n); |
| 394 | compact(); |
| 395 | } |
| 396 | return *this; |
| 397 | } |
| 398 | |
| 399 | void DecimalQuantity::_setToLong(int64_t n) { |
| 400 | if (n == INT64_MIN) { |
| 401 | DecNum decnum; |
| 402 | UErrorCode localStatus = U_ZERO_ERROR; |
| 403 | decnum.setTo("9.223372036854775808E+18" , localStatus); |
| 404 | if (U_FAILURE(localStatus)) { return; } // unexpected |
| 405 | flags |= NEGATIVE_FLAG; |
| 406 | readDecNumberToBcd(decnum); |
| 407 | } else if (n <= INT32_MAX) { |
| 408 | readIntToBcd(static_cast<int32_t>(n)); |
| 409 | } else { |
| 410 | readLongToBcd(n); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | DecimalQuantity &DecimalQuantity::setToDouble(double n) { |
| 415 | setBcdToZero(); |
| 416 | flags = 0; |
| 417 | // signbit() from <math.h> handles +0.0 vs -0.0 |
| 418 | if (std::signbit(n)) { |
| 419 | flags |= NEGATIVE_FLAG; |
| 420 | n = -n; |
| 421 | } |
| 422 | if (std::isnan(n) != 0) { |
| 423 | flags |= NAN_FLAG; |
| 424 | } else if (std::isfinite(n) == 0) { |
| 425 | flags |= INFINITY_FLAG; |
| 426 | } else if (n != 0) { |
| 427 | _setToDoubleFast(n); |
| 428 | compact(); |
| 429 | } |
| 430 | return *this; |
| 431 | } |
| 432 | |
| 433 | void DecimalQuantity::_setToDoubleFast(double n) { |
| 434 | isApproximate = true; |
| 435 | origDouble = n; |
| 436 | origDelta = 0; |
| 437 | |
| 438 | // Make sure the double is an IEEE 754 double. If not, fall back to the slow path right now. |
| 439 | // TODO: Make a fast path for other types of doubles. |
| 440 | if (!std::numeric_limits<double>::is_iec559) { |
| 441 | convertToAccurateDouble(); |
| 442 | return; |
| 443 | } |
| 444 | |
| 445 | // To get the bits from the double, use memcpy, which takes care of endianness. |
| 446 | uint64_t ieeeBits; |
| 447 | uprv_memcpy(&ieeeBits, &n, sizeof(n)); |
| 448 | int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff; |
| 449 | |
| 450 | // Not all integers can be represented exactly for exponent > 52 |
| 451 | if (exponent <= 52 && static_cast<int64_t>(n) == n) { |
| 452 | _setToLong(static_cast<int64_t>(n)); |
| 453 | return; |
| 454 | } |
| 455 | |
| 456 | if (exponent == -1023 || exponent == 1024) { |
| 457 | // The extreme values of exponent are special; use slow path. |
| 458 | convertToAccurateDouble(); |
| 459 | return; |
| 460 | } |
| 461 | |
| 462 | // 3.3219... is log2(10) |
| 463 | auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586); |
| 464 | if (fracLength >= 0) { |
| 465 | int32_t i = fracLength; |
| 466 | // 1e22 is the largest exact double. |
| 467 | for (; i >= 22; i -= 22) n *= 1e22; |
| 468 | n *= DOUBLE_MULTIPLIERS[i]; |
| 469 | } else { |
| 470 | int32_t i = fracLength; |
| 471 | // 1e22 is the largest exact double. |
| 472 | for (; i <= -22; i += 22) n /= 1e22; |
| 473 | n /= DOUBLE_MULTIPLIERS[-i]; |
| 474 | } |
| 475 | auto result = static_cast<int64_t>(uprv_round(n)); |
| 476 | if (result != 0) { |
| 477 | _setToLong(result); |
| 478 | scale -= fracLength; |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | void DecimalQuantity::convertToAccurateDouble() { |
| 483 | U_ASSERT(origDouble != 0); |
| 484 | int32_t delta = origDelta; |
| 485 | |
| 486 | // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++). |
| 487 | char buffer[DoubleToStringConverter::kBase10MaximalLength + 1]; |
| 488 | bool sign; // unused; always positive |
| 489 | int32_t length; |
| 490 | int32_t point; |
| 491 | DoubleToStringConverter::DoubleToAscii( |
| 492 | origDouble, |
| 493 | DoubleToStringConverter::DtoaMode::SHORTEST, |
| 494 | 0, |
| 495 | buffer, |
| 496 | sizeof(buffer), |
| 497 | &sign, |
| 498 | &length, |
| 499 | &point |
| 500 | ); |
| 501 | |
| 502 | setBcdToZero(); |
| 503 | readDoubleConversionToBcd(buffer, length, point); |
| 504 | scale += delta; |
| 505 | explicitExactDouble = true; |
| 506 | } |
| 507 | |
| 508 | DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) { |
| 509 | setBcdToZero(); |
| 510 | flags = 0; |
| 511 | |
| 512 | // Compute the decNumber representation |
| 513 | DecNum decnum; |
| 514 | decnum.setTo(n, status); |
| 515 | |
| 516 | _setToDecNum(decnum, status); |
| 517 | return *this; |
| 518 | } |
| 519 | |
| 520 | DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) { |
| 521 | setBcdToZero(); |
| 522 | flags = 0; |
| 523 | |
| 524 | _setToDecNum(decnum, status); |
| 525 | return *this; |
| 526 | } |
| 527 | |
| 528 | void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) { |
| 529 | if (U_FAILURE(status)) { return; } |
| 530 | if (decnum.isNegative()) { |
| 531 | flags |= NEGATIVE_FLAG; |
| 532 | } |
| 533 | if (!decnum.isZero()) { |
| 534 | readDecNumberToBcd(decnum); |
| 535 | compact(); |
| 536 | } |
| 537 | } |
| 538 | |
| 539 | int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const { |
| 540 | // NOTE: Call sites should be guarded by fitsInLong(), like this: |
| 541 | // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ } |
| 542 | // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits. |
| 543 | uint64_t result = 0L; |
| 544 | int32_t upperMagnitude = exponent + scale + precision - 1; |
| 545 | if (truncateIfOverflow) { |
| 546 | upperMagnitude = std::min(upperMagnitude, 17); |
| 547 | } |
| 548 | for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) { |
| 549 | result = result * 10 + getDigitPos(magnitude - scale - exponent); |
| 550 | } |
| 551 | if (isNegative()) { |
| 552 | return static_cast<int64_t>(0LL - result); // i.e., -result |
| 553 | } |
| 554 | return static_cast<int64_t>(result); |
| 555 | } |
| 556 | |
| 557 | uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const { |
| 558 | uint64_t result = 0L; |
| 559 | int32_t magnitude = -1 - exponent; |
| 560 | int32_t lowerMagnitude = scale; |
| 561 | if (includeTrailingZeros) { |
| 562 | lowerMagnitude = std::min(lowerMagnitude, rReqPos); |
| 563 | } |
| 564 | for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) { |
| 565 | result = result * 10 + getDigitPos(magnitude - scale); |
| 566 | } |
| 567 | // Remove trailing zeros; this can happen during integer overflow cases. |
| 568 | if (!includeTrailingZeros) { |
| 569 | while (result > 0 && (result % 10) == 0) { |
| 570 | result /= 10; |
| 571 | } |
| 572 | } |
| 573 | return result; |
| 574 | } |
| 575 | |
| 576 | bool DecimalQuantity::fitsInLong(bool ignoreFraction) const { |
| 577 | if (isInfinite() || isNaN()) { |
| 578 | return false; |
| 579 | } |
| 580 | if (isZeroish()) { |
| 581 | return true; |
| 582 | } |
| 583 | if (exponent + scale < 0 && !ignoreFraction) { |
| 584 | return false; |
| 585 | } |
| 586 | int magnitude = getMagnitude(); |
| 587 | if (magnitude < 18) { |
| 588 | return true; |
| 589 | } |
| 590 | if (magnitude > 18) { |
| 591 | return false; |
| 592 | } |
| 593 | // Hard case: the magnitude is 10^18. |
| 594 | // The largest int64 is: 9,223,372,036,854,775,807 |
| 595 | for (int p = 0; p < precision; p++) { |
| 596 | int8_t digit = getDigit(18 - p); |
| 597 | static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 }; |
| 598 | if (digit < INT64_BCD[p]) { |
| 599 | return true; |
| 600 | } else if (digit > INT64_BCD[p]) { |
| 601 | return false; |
| 602 | } |
| 603 | } |
| 604 | // Exactly equal to max long plus one. |
| 605 | return isNegative(); |
| 606 | } |
| 607 | |
| 608 | double DecimalQuantity::toDouble() const { |
| 609 | // If this assertion fails, you need to call roundToInfinity() or some other rounding method. |
| 610 | // See the comment in the header file explaining the "isApproximate" field. |
| 611 | U_ASSERT(!isApproximate); |
| 612 | |
| 613 | if (isNaN()) { |
| 614 | return NAN; |
| 615 | } else if (isInfinite()) { |
| 616 | return isNegative() ? -INFINITY : INFINITY; |
| 617 | } |
| 618 | |
| 619 | // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter. |
| 620 | StringToDoubleConverter converter(0, 0, 0, "" , "" ); |
| 621 | UnicodeString numberString = this->toScientificString(); |
| 622 | int32_t count; |
| 623 | return converter.StringToDouble( |
| 624 | reinterpret_cast<const uint16_t*>(numberString.getBuffer()), |
| 625 | numberString.length(), |
| 626 | &count); |
| 627 | } |
| 628 | |
| 629 | void DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const { |
| 630 | // Special handling for zero |
| 631 | if (precision == 0) { |
| 632 | output.setTo("0" , status); |
| 633 | } |
| 634 | |
| 635 | // Use the BCD constructor. We need to do a little bit of work to convert, though. |
| 636 | // The decNumber constructor expects most-significant first, but we store least-significant first. |
| 637 | MaybeStackArray<uint8_t, 20> ubcd(precision); |
| 638 | for (int32_t m = 0; m < precision; m++) { |
| 639 | ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m)); |
| 640 | } |
| 641 | output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status); |
| 642 | } |
| 643 | |
| 644 | void DecimalQuantity::truncate() { |
| 645 | if (scale < 0) { |
| 646 | shiftRight(-scale); |
| 647 | scale = 0; |
| 648 | compact(); |
| 649 | } |
| 650 | } |
| 651 | |
| 652 | void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
| 653 | roundToMagnitude(magnitude, roundingMode, true, status); |
| 654 | } |
| 655 | |
| 656 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) { |
| 657 | roundToMagnitude(magnitude, roundingMode, false, status); |
| 658 | } |
| 659 | |
| 660 | void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) { |
| 661 | // The position in the BCD at which rounding will be performed; digits to the right of position |
| 662 | // will be rounded away. |
| 663 | int position = safeSubtract(magnitude, scale); |
| 664 | |
| 665 | // "trailing" = least significant digit to the left of rounding |
| 666 | int8_t trailingDigit = getDigitPos(position); |
| 667 | |
| 668 | if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
| 669 | // All digits are to the left of the rounding magnitude. |
| 670 | } else if (precision == 0) { |
| 671 | // No rounding for zero. |
| 672 | } else { |
| 673 | // Perform rounding logic. |
| 674 | // "leading" = most significant digit to the right of rounding |
| 675 | int8_t leadingDigit = getDigitPos(safeSubtract(position, 1)); |
| 676 | |
| 677 | // Compute which section of the number we are in. |
| 678 | // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles) |
| 679 | // LOWER means we are between the bottom edge and the midpoint, like 1.391 |
| 680 | // MIDPOINT means we are exactly in the middle, like 1.500 |
| 681 | // UPPER means we are between the midpoint and the top edge, like 1.916 |
| 682 | roundingutils::Section section; |
| 683 | if (!isApproximate) { |
| 684 | if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
| 685 | // Nickel rounding, and not at .02x or .07x |
| 686 | if (trailingDigit < 2) { |
| 687 | // .00, .01 => down to .00 |
| 688 | section = roundingutils::SECTION_LOWER; |
| 689 | } else if (trailingDigit < 5) { |
| 690 | // .03, .04 => up to .05 |
| 691 | section = roundingutils::SECTION_UPPER; |
| 692 | } else if (trailingDigit < 7) { |
| 693 | // .05, .06 => down to .05 |
| 694 | section = roundingutils::SECTION_LOWER; |
| 695 | } else { |
| 696 | // .08, .09 => up to .10 |
| 697 | section = roundingutils::SECTION_UPPER; |
| 698 | } |
| 699 | } else if (leadingDigit < 5) { |
| 700 | // Includes nickel rounding .020-.024 and .070-.074 |
| 701 | section = roundingutils::SECTION_LOWER; |
| 702 | } else if (leadingDigit > 5) { |
| 703 | // Includes nickel rounding .026-.029 and .076-.079 |
| 704 | section = roundingutils::SECTION_UPPER; |
| 705 | } else { |
| 706 | // Includes nickel rounding .025 and .075 |
| 707 | section = roundingutils::SECTION_MIDPOINT; |
| 708 | for (int p = safeSubtract(position, 2); p >= 0; p--) { |
| 709 | if (getDigitPos(p) != 0) { |
| 710 | section = roundingutils::SECTION_UPPER; |
| 711 | break; |
| 712 | } |
| 713 | } |
| 714 | } |
| 715 | } else { |
| 716 | int32_t p = safeSubtract(position, 2); |
| 717 | int32_t minP = uprv_max(0, precision - 14); |
| 718 | if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
| 719 | section = roundingutils::SECTION_LOWER_EDGE; |
| 720 | for (; p >= minP; p--) { |
| 721 | if (getDigitPos(p) != 0) { |
| 722 | section = roundingutils::SECTION_LOWER; |
| 723 | break; |
| 724 | } |
| 725 | } |
| 726 | } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
| 727 | section = roundingutils::SECTION_MIDPOINT; |
| 728 | for (; p >= minP; p--) { |
| 729 | if (getDigitPos(p) != 9) { |
| 730 | section = roundingutils::SECTION_LOWER; |
| 731 | break; |
| 732 | } |
| 733 | } |
| 734 | } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) { |
| 735 | section = roundingutils::SECTION_MIDPOINT; |
| 736 | for (; p >= minP; p--) { |
| 737 | if (getDigitPos(p) != 0) { |
| 738 | section = roundingutils::SECTION_UPPER; |
| 739 | break; |
| 740 | } |
| 741 | } |
| 742 | } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) { |
| 743 | section = roundingutils::SECTION_UPPER_EDGE; |
| 744 | for (; p >= minP; p--) { |
| 745 | if (getDigitPos(p) != 9) { |
| 746 | section = roundingutils::SECTION_UPPER; |
| 747 | break; |
| 748 | } |
| 749 | } |
| 750 | } else if (nickel && trailingDigit != 2 && trailingDigit != 7) { |
| 751 | // Nickel rounding, and not at .02x or .07x |
| 752 | if (trailingDigit < 2) { |
| 753 | // .00, .01 => down to .00 |
| 754 | section = roundingutils::SECTION_LOWER; |
| 755 | } else if (trailingDigit < 5) { |
| 756 | // .03, .04 => up to .05 |
| 757 | section = roundingutils::SECTION_UPPER; |
| 758 | } else if (trailingDigit < 7) { |
| 759 | // .05, .06 => down to .05 |
| 760 | section = roundingutils::SECTION_LOWER; |
| 761 | } else { |
| 762 | // .08, .09 => up to .10 |
| 763 | section = roundingutils::SECTION_UPPER; |
| 764 | } |
| 765 | } else if (leadingDigit < 5) { |
| 766 | // Includes nickel rounding .020-.024 and .070-.074 |
| 767 | section = roundingutils::SECTION_LOWER; |
| 768 | } else { |
| 769 | // Includes nickel rounding .026-.029 and .076-.079 |
| 770 | section = roundingutils::SECTION_UPPER; |
| 771 | } |
| 772 | |
| 773 | bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode); |
| 774 | if (safeSubtract(position, 1) < precision - 14 || |
| 775 | (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) || |
| 776 | (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) { |
| 777 | // Oops! This means that we have to get the exact representation of the double, |
| 778 | // because the zone of uncertainty is along the rounding boundary. |
| 779 | convertToAccurateDouble(); |
| 780 | roundToMagnitude(magnitude, roundingMode, nickel, status); // start over |
| 781 | return; |
| 782 | } |
| 783 | |
| 784 | // Turn off the approximate double flag, since the value is now confirmed to be exact. |
| 785 | isApproximate = false; |
| 786 | origDouble = 0.0; |
| 787 | origDelta = 0; |
| 788 | |
| 789 | if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) { |
| 790 | // All digits are to the left of the rounding magnitude. |
| 791 | return; |
| 792 | } |
| 793 | |
| 794 | // Good to continue rounding. |
| 795 | if (section == -1) { section = roundingutils::SECTION_LOWER; } |
| 796 | if (section == -2) { section = roundingutils::SECTION_UPPER; } |
| 797 | } |
| 798 | |
| 799 | // Nickel rounding "half even" goes to the nearest whole (away from the 5). |
| 800 | bool isEven = nickel |
| 801 | ? (trailingDigit < 2 || trailingDigit > 7 |
| 802 | || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER) |
| 803 | || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER)) |
| 804 | : (trailingDigit % 2) == 0; |
| 805 | |
| 806 | bool roundDown = roundingutils::getRoundingDirection(isEven, |
| 807 | isNegative(), |
| 808 | section, |
| 809 | roundingMode, |
| 810 | status); |
| 811 | if (U_FAILURE(status)) { |
| 812 | return; |
| 813 | } |
| 814 | |
| 815 | // Perform truncation |
| 816 | if (position >= precision) { |
| 817 | setBcdToZero(); |
| 818 | scale = magnitude; |
| 819 | } else { |
| 820 | shiftRight(position); |
| 821 | } |
| 822 | |
| 823 | if (nickel) { |
| 824 | if (trailingDigit < 5 && roundDown) { |
| 825 | setDigitPos(0, 0); |
| 826 | compact(); |
| 827 | return; |
| 828 | } else if (trailingDigit >= 5 && !roundDown) { |
| 829 | setDigitPos(0, 9); |
| 830 | trailingDigit = 9; |
| 831 | // do not return: use the bubbling logic below |
| 832 | } else { |
| 833 | setDigitPos(0, 5); |
| 834 | // compact not necessary: digit at position 0 is nonzero |
| 835 | return; |
| 836 | } |
| 837 | } |
| 838 | |
| 839 | // Bubble the result to the higher digits |
| 840 | if (!roundDown) { |
| 841 | if (trailingDigit == 9) { |
| 842 | int bubblePos = 0; |
| 843 | // Note: in the long implementation, the most digits BCD can have at this point is |
| 844 | // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe. |
| 845 | for (; getDigitPos(bubblePos) == 9; bubblePos++) {} |
| 846 | shiftRight(bubblePos); // shift off the trailing 9s |
| 847 | } |
| 848 | int8_t digit0 = getDigitPos(0); |
| 849 | U_ASSERT(digit0 != 9); |
| 850 | setDigitPos(0, static_cast<int8_t>(digit0 + 1)); |
| 851 | precision += 1; // in case an extra digit got added |
| 852 | } |
| 853 | |
| 854 | compact(); |
| 855 | } |
| 856 | } |
| 857 | |
| 858 | void DecimalQuantity::roundToInfinity() { |
| 859 | if (isApproximate) { |
| 860 | convertToAccurateDouble(); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) { |
| 865 | U_ASSERT(leadingZeros >= 0); |
| 866 | |
| 867 | // Zero requires special handling to maintain the invariant that the least-significant digit |
| 868 | // in the BCD is nonzero. |
| 869 | if (value == 0) { |
| 870 | if (appendAsInteger && precision != 0) { |
| 871 | scale += leadingZeros + 1; |
| 872 | } |
| 873 | return; |
| 874 | } |
| 875 | |
| 876 | // Deal with trailing zeros |
| 877 | if (scale > 0) { |
| 878 | leadingZeros += scale; |
| 879 | if (appendAsInteger) { |
| 880 | scale = 0; |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | // Append digit |
| 885 | shiftLeft(leadingZeros + 1); |
| 886 | setDigitPos(0, value); |
| 887 | |
| 888 | // Fix scale if in integer mode |
| 889 | if (appendAsInteger) { |
| 890 | scale += leadingZeros + 1; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | UnicodeString DecimalQuantity::toPlainString() const { |
| 895 | U_ASSERT(!isApproximate); |
| 896 | UnicodeString sb; |
| 897 | if (isNegative()) { |
| 898 | sb.append(u'-'); |
| 899 | } |
| 900 | if (precision == 0) { |
| 901 | sb.append(u'0'); |
| 902 | return sb; |
| 903 | } |
| 904 | int32_t upper = scale + precision + exponent - 1; |
| 905 | int32_t lower = scale + exponent; |
| 906 | if (upper < lReqPos - 1) { |
| 907 | upper = lReqPos - 1; |
| 908 | } |
| 909 | if (lower > rReqPos) { |
| 910 | lower = rReqPos; |
| 911 | } |
| 912 | int32_t p = upper; |
| 913 | if (p < 0) { |
| 914 | sb.append(u'0'); |
| 915 | } |
| 916 | for (; p >= 0; p--) { |
| 917 | sb.append(u'0' + getDigitPos(p - scale - exponent)); |
| 918 | } |
| 919 | if (lower < 0) { |
| 920 | sb.append(u'.'); |
| 921 | } |
| 922 | for(; p >= lower; p--) { |
| 923 | sb.append(u'0' + getDigitPos(p - scale - exponent)); |
| 924 | } |
| 925 | return sb; |
| 926 | } |
| 927 | |
| 928 | UnicodeString DecimalQuantity::toScientificString() const { |
| 929 | U_ASSERT(!isApproximate); |
| 930 | UnicodeString result; |
| 931 | if (isNegative()) { |
| 932 | result.append(u'-'); |
| 933 | } |
| 934 | if (precision == 0) { |
| 935 | result.append(u"0E+0" , -1); |
| 936 | return result; |
| 937 | } |
| 938 | int32_t upperPos = precision - 1; |
| 939 | int32_t lowerPos = 0; |
| 940 | int32_t p = upperPos; |
| 941 | result.append(u'0' + getDigitPos(p)); |
| 942 | if ((--p) >= lowerPos) { |
| 943 | result.append(u'.'); |
| 944 | for (; p >= lowerPos; p--) { |
| 945 | result.append(u'0' + getDigitPos(p)); |
| 946 | } |
| 947 | } |
| 948 | result.append(u'E'); |
| 949 | int32_t _scale = upperPos + scale + exponent; |
| 950 | if (_scale == INT32_MIN) { |
| 951 | result.append({u"-2147483648" , -1}); |
| 952 | return result; |
| 953 | } else if (_scale < 0) { |
| 954 | _scale *= -1; |
| 955 | result.append(u'-'); |
| 956 | } else { |
| 957 | result.append(u'+'); |
| 958 | } |
| 959 | if (_scale == 0) { |
| 960 | result.append(u'0'); |
| 961 | } |
| 962 | int32_t insertIndex = result.length(); |
| 963 | while (_scale > 0) { |
| 964 | std::div_t res = std::div(_scale, 10); |
| 965 | result.insert(insertIndex, u'0' + res.rem); |
| 966 | _scale = res.quot; |
| 967 | } |
| 968 | return result; |
| 969 | } |
| 970 | |
| 971 | //////////////////////////////////////////////////// |
| 972 | /// End of DecimalQuantity_AbstractBCD.java /// |
| 973 | /// Start of DecimalQuantity_DualStorageBCD.java /// |
| 974 | //////////////////////////////////////////////////// |
| 975 | |
| 976 | int8_t DecimalQuantity::getDigitPos(int32_t position) const { |
| 977 | if (usingBytes) { |
| 978 | if (position < 0 || position >= precision) { return 0; } |
| 979 | return fBCD.bcdBytes.ptr[position]; |
| 980 | } else { |
| 981 | if (position < 0 || position >= 16) { return 0; } |
| 982 | return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf); |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | void DecimalQuantity::setDigitPos(int32_t position, int8_t value) { |
| 987 | U_ASSERT(position >= 0); |
| 988 | if (usingBytes) { |
| 989 | ensureCapacity(position + 1); |
| 990 | fBCD.bcdBytes.ptr[position] = value; |
| 991 | } else if (position >= 16) { |
| 992 | switchStorage(); |
| 993 | ensureCapacity(position + 1); |
| 994 | fBCD.bcdBytes.ptr[position] = value; |
| 995 | } else { |
| 996 | int shift = position * 4; |
| 997 | fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift); |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | void DecimalQuantity::shiftLeft(int32_t numDigits) { |
| 1002 | if (!usingBytes && precision + numDigits > 16) { |
| 1003 | switchStorage(); |
| 1004 | } |
| 1005 | if (usingBytes) { |
| 1006 | ensureCapacity(precision + numDigits); |
| 1007 | int i = precision + numDigits - 1; |
| 1008 | for (; i >= numDigits; i--) { |
| 1009 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i - numDigits]; |
| 1010 | } |
| 1011 | for (; i >= 0; i--) { |
| 1012 | fBCD.bcdBytes.ptr[i] = 0; |
| 1013 | } |
| 1014 | } else { |
| 1015 | fBCD.bcdLong <<= (numDigits * 4); |
| 1016 | } |
| 1017 | scale -= numDigits; |
| 1018 | precision += numDigits; |
| 1019 | } |
| 1020 | |
| 1021 | void DecimalQuantity::shiftRight(int32_t numDigits) { |
| 1022 | if (usingBytes) { |
| 1023 | int i = 0; |
| 1024 | for (; i < precision - numDigits; i++) { |
| 1025 | fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits]; |
| 1026 | } |
| 1027 | for (; i < precision; i++) { |
| 1028 | fBCD.bcdBytes.ptr[i] = 0; |
| 1029 | } |
| 1030 | } else { |
| 1031 | fBCD.bcdLong >>= (numDigits * 4); |
| 1032 | } |
| 1033 | scale += numDigits; |
| 1034 | precision -= numDigits; |
| 1035 | } |
| 1036 | |
| 1037 | void DecimalQuantity::popFromLeft(int32_t numDigits) { |
| 1038 | U_ASSERT(numDigits <= precision); |
| 1039 | if (usingBytes) { |
| 1040 | int i = precision - 1; |
| 1041 | for (; i >= precision - numDigits; i--) { |
| 1042 | fBCD.bcdBytes.ptr[i] = 0; |
| 1043 | } |
| 1044 | } else { |
| 1045 | fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1; |
| 1046 | } |
| 1047 | precision -= numDigits; |
| 1048 | } |
| 1049 | |
| 1050 | void DecimalQuantity::setBcdToZero() { |
| 1051 | if (usingBytes) { |
| 1052 | uprv_free(fBCD.bcdBytes.ptr); |
| 1053 | fBCD.bcdBytes.ptr = nullptr; |
| 1054 | usingBytes = false; |
| 1055 | } |
| 1056 | fBCD.bcdLong = 0L; |
| 1057 | scale = 0; |
| 1058 | precision = 0; |
| 1059 | isApproximate = false; |
| 1060 | origDouble = 0; |
| 1061 | origDelta = 0; |
| 1062 | exponent = 0; |
| 1063 | } |
| 1064 | |
| 1065 | void DecimalQuantity::readIntToBcd(int32_t n) { |
| 1066 | U_ASSERT(n != 0); |
| 1067 | // ints always fit inside the long implementation. |
| 1068 | uint64_t result = 0L; |
| 1069 | int i = 16; |
| 1070 | for (; n != 0; n /= 10, i--) { |
| 1071 | result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60); |
| 1072 | } |
| 1073 | U_ASSERT(!usingBytes); |
| 1074 | fBCD.bcdLong = result >> (i * 4); |
| 1075 | scale = 0; |
| 1076 | precision = 16 - i; |
| 1077 | } |
| 1078 | |
| 1079 | void DecimalQuantity::readLongToBcd(int64_t n) { |
| 1080 | U_ASSERT(n != 0); |
| 1081 | if (n >= 10000000000000000L) { |
| 1082 | ensureCapacity(); |
| 1083 | int i = 0; |
| 1084 | for (; n != 0L; n /= 10L, i++) { |
| 1085 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10); |
| 1086 | } |
| 1087 | U_ASSERT(usingBytes); |
| 1088 | scale = 0; |
| 1089 | precision = i; |
| 1090 | } else { |
| 1091 | uint64_t result = 0L; |
| 1092 | int i = 16; |
| 1093 | for (; n != 0L; n /= 10L, i--) { |
| 1094 | result = (result >> 4) + ((n % 10) << 60); |
| 1095 | } |
| 1096 | U_ASSERT(i >= 0); |
| 1097 | U_ASSERT(!usingBytes); |
| 1098 | fBCD.bcdLong = result >> (i * 4); |
| 1099 | scale = 0; |
| 1100 | precision = 16 - i; |
| 1101 | } |
| 1102 | } |
| 1103 | |
| 1104 | void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) { |
| 1105 | const decNumber* dn = decnum.getRawDecNumber(); |
| 1106 | if (dn->digits > 16) { |
| 1107 | ensureCapacity(dn->digits); |
| 1108 | for (int32_t i = 0; i < dn->digits; i++) { |
| 1109 | fBCD.bcdBytes.ptr[i] = dn->lsu[i]; |
| 1110 | } |
| 1111 | } else { |
| 1112 | uint64_t result = 0L; |
| 1113 | for (int32_t i = 0; i < dn->digits; i++) { |
| 1114 | result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i); |
| 1115 | } |
| 1116 | fBCD.bcdLong = result; |
| 1117 | } |
| 1118 | scale = dn->exponent; |
| 1119 | precision = dn->digits; |
| 1120 | } |
| 1121 | |
| 1122 | void DecimalQuantity::readDoubleConversionToBcd( |
| 1123 | const char* buffer, int32_t length, int32_t point) { |
| 1124 | // NOTE: Despite the fact that double-conversion's API is called |
| 1125 | // "DoubleToAscii", they actually use '0' (as opposed to u8'0'). |
| 1126 | if (length > 16) { |
| 1127 | ensureCapacity(length); |
| 1128 | for (int32_t i = 0; i < length; i++) { |
| 1129 | fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0'; |
| 1130 | } |
| 1131 | } else { |
| 1132 | uint64_t result = 0L; |
| 1133 | for (int32_t i = 0; i < length; i++) { |
| 1134 | result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i); |
| 1135 | } |
| 1136 | fBCD.bcdLong = result; |
| 1137 | } |
| 1138 | scale = point - length; |
| 1139 | precision = length; |
| 1140 | } |
| 1141 | |
| 1142 | void DecimalQuantity::compact() { |
| 1143 | if (usingBytes) { |
| 1144 | int32_t delta = 0; |
| 1145 | for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++); |
| 1146 | if (delta == precision) { |
| 1147 | // Number is zero |
| 1148 | setBcdToZero(); |
| 1149 | return; |
| 1150 | } else { |
| 1151 | // Remove trailing zeros |
| 1152 | shiftRight(delta); |
| 1153 | } |
| 1154 | |
| 1155 | // Compute precision |
| 1156 | int32_t leading = precision - 1; |
| 1157 | for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--); |
| 1158 | precision = leading + 1; |
| 1159 | |
| 1160 | // Switch storage mechanism if possible |
| 1161 | if (precision <= 16) { |
| 1162 | switchStorage(); |
| 1163 | } |
| 1164 | |
| 1165 | } else { |
| 1166 | if (fBCD.bcdLong == 0L) { |
| 1167 | // Number is zero |
| 1168 | setBcdToZero(); |
| 1169 | return; |
| 1170 | } |
| 1171 | |
| 1172 | // Compact the number (remove trailing zeros) |
| 1173 | // TODO: Use a more efficient algorithm here and below. There is a logarithmic one. |
| 1174 | int32_t delta = 0; |
| 1175 | for (; delta < precision && getDigitPos(delta) == 0; delta++); |
| 1176 | fBCD.bcdLong >>= delta * 4; |
| 1177 | scale += delta; |
| 1178 | |
| 1179 | // Compute precision |
| 1180 | int32_t leading = precision - 1; |
| 1181 | for (; leading >= 0 && getDigitPos(leading) == 0; leading--); |
| 1182 | precision = leading + 1; |
| 1183 | } |
| 1184 | } |
| 1185 | |
| 1186 | void DecimalQuantity::ensureCapacity() { |
| 1187 | ensureCapacity(40); |
| 1188 | } |
| 1189 | |
| 1190 | void DecimalQuantity::ensureCapacity(int32_t capacity) { |
| 1191 | if (capacity == 0) { return; } |
| 1192 | int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0; |
| 1193 | if (!usingBytes) { |
| 1194 | // TODO: There is nothing being done to check for memory allocation failures. |
| 1195 | // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can |
| 1196 | // make these arrays half the size. |
| 1197 | fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t))); |
| 1198 | fBCD.bcdBytes.len = capacity; |
| 1199 | // Initialize the byte array to zeros (this is done automatically in Java) |
| 1200 | uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t)); |
| 1201 | } else if (oldCapacity < capacity) { |
| 1202 | auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t))); |
| 1203 | uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t)); |
| 1204 | // Initialize the rest of the byte array to zeros (this is done automatically in Java) |
| 1205 | uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t)); |
| 1206 | uprv_free(fBCD.bcdBytes.ptr); |
| 1207 | fBCD.bcdBytes.ptr = bcd1; |
| 1208 | fBCD.bcdBytes.len = capacity * 2; |
| 1209 | } |
| 1210 | usingBytes = true; |
| 1211 | } |
| 1212 | |
| 1213 | void DecimalQuantity::switchStorage() { |
| 1214 | if (usingBytes) { |
| 1215 | // Change from bytes to long |
| 1216 | uint64_t bcdLong = 0L; |
| 1217 | for (int i = precision - 1; i >= 0; i--) { |
| 1218 | bcdLong <<= 4; |
| 1219 | bcdLong |= fBCD.bcdBytes.ptr[i]; |
| 1220 | } |
| 1221 | uprv_free(fBCD.bcdBytes.ptr); |
| 1222 | fBCD.bcdBytes.ptr = nullptr; |
| 1223 | fBCD.bcdLong = bcdLong; |
| 1224 | usingBytes = false; |
| 1225 | } else { |
| 1226 | // Change from long to bytes |
| 1227 | // Copy the long into a local variable since it will get munged when we allocate the bytes |
| 1228 | uint64_t bcdLong = fBCD.bcdLong; |
| 1229 | ensureCapacity(); |
| 1230 | for (int i = 0; i < precision; i++) { |
| 1231 | fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf); |
| 1232 | bcdLong >>= 4; |
| 1233 | } |
| 1234 | U_ASSERT(usingBytes); |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) { |
| 1239 | setBcdToZero(); |
| 1240 | if (other.usingBytes) { |
| 1241 | ensureCapacity(other.precision); |
| 1242 | uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t)); |
| 1243 | } else { |
| 1244 | fBCD.bcdLong = other.fBCD.bcdLong; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) { |
| 1249 | setBcdToZero(); |
| 1250 | if (other.usingBytes) { |
| 1251 | usingBytes = true; |
| 1252 | fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr; |
| 1253 | fBCD.bcdBytes.len = other.fBCD.bcdBytes.len; |
| 1254 | // Take ownership away from the old instance: |
| 1255 | other.fBCD.bcdBytes.ptr = nullptr; |
| 1256 | other.usingBytes = false; |
| 1257 | } else { |
| 1258 | fBCD.bcdLong = other.fBCD.bcdLong; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | const char16_t* DecimalQuantity::checkHealth() const { |
| 1263 | if (usingBytes) { |
| 1264 | if (precision == 0) { return u"Zero precision but we are in byte mode" ; } |
| 1265 | int32_t capacity = fBCD.bcdBytes.len; |
| 1266 | if (precision > capacity) { return u"Precision exceeds length of byte array" ; } |
| 1267 | if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode" ; } |
| 1268 | if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode" ; } |
| 1269 | for (int i = 0; i < precision; i++) { |
| 1270 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array" ; } |
| 1271 | if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array" ; } |
| 1272 | } |
| 1273 | for (int i = precision; i < capacity; i++) { |
| 1274 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array" ; } |
| 1275 | } |
| 1276 | } else { |
| 1277 | if (precision == 0 && fBCD.bcdLong != 0) { |
| 1278 | return u"Value in bcdLong even though precision is zero" ; |
| 1279 | } |
| 1280 | if (precision > 16) { return u"Precision exceeds length of long" ; } |
| 1281 | if (precision != 0 && getDigitPos(precision - 1) == 0) { |
| 1282 | return u"Most significant digit is zero in long mode" ; |
| 1283 | } |
| 1284 | if (precision != 0 && getDigitPos(0) == 0) { |
| 1285 | return u"Least significant digit is zero in long mode" ; |
| 1286 | } |
| 1287 | for (int i = 0; i < precision; i++) { |
| 1288 | if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long" ; } |
| 1289 | if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)" ; } |
| 1290 | } |
| 1291 | for (int i = precision; i < 16; i++) { |
| 1292 | if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long" ; } |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | // No error |
| 1297 | return nullptr; |
| 1298 | } |
| 1299 | |
| 1300 | bool DecimalQuantity::operator==(const DecimalQuantity& other) const { |
| 1301 | bool basicEquals = |
| 1302 | scale == other.scale |
| 1303 | && precision == other.precision |
| 1304 | && flags == other.flags |
| 1305 | && lReqPos == other.lReqPos |
| 1306 | && rReqPos == other.rReqPos |
| 1307 | && isApproximate == other.isApproximate; |
| 1308 | if (!basicEquals) { |
| 1309 | return false; |
| 1310 | } |
| 1311 | |
| 1312 | if (precision == 0) { |
| 1313 | return true; |
| 1314 | } else if (isApproximate) { |
| 1315 | return origDouble == other.origDouble && origDelta == other.origDelta; |
| 1316 | } else { |
| 1317 | for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) { |
| 1318 | if (getDigit(m) != other.getDigit(m)) { |
| 1319 | return false; |
| 1320 | } |
| 1321 | } |
| 1322 | return true; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | UnicodeString DecimalQuantity::toString() const { |
| 1327 | MaybeStackArray<char, 30> digits(precision + 1); |
| 1328 | for (int32_t i = 0; i < precision; i++) { |
| 1329 | digits[i] = getDigitPos(precision - i - 1) + '0'; |
| 1330 | } |
| 1331 | digits[precision] = 0; // terminate buffer |
| 1332 | char buffer8[100]; |
| 1333 | snprintf( |
| 1334 | buffer8, |
| 1335 | sizeof(buffer8), |
| 1336 | "<DecimalQuantity %d:%d %s %s%s%s%d>" , |
| 1337 | lReqPos, |
| 1338 | rReqPos, |
| 1339 | (usingBytes ? "bytes" : "long" ), |
| 1340 | (isNegative() ? "-" : "" ), |
| 1341 | (precision == 0 ? "0" : digits.getAlias()), |
| 1342 | "E" , |
| 1343 | scale); |
| 1344 | return UnicodeString(buffer8, -1, US_INV); |
| 1345 | } |
| 1346 | |
| 1347 | #endif /* #if !UCONFIG_NO_FORMATTING */ |
| 1348 | |