1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4 **********************************************************************
5 * Copyright (C) 1999-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Date Name Description
9 * 11/17/99 aliu Creation.
10 **********************************************************************
11 */
12
13#include "utypeinfo.h" // for 'typeid' to work
14
15#include "unicode/utypes.h"
16
17#if !UCONFIG_NO_TRANSLITERATION
18
19#include "unicode/putil.h"
20#include "unicode/translit.h"
21#include "unicode/locid.h"
22#include "unicode/msgfmt.h"
23#include "unicode/rep.h"
24#include "unicode/resbund.h"
25#include "unicode/unifilt.h"
26#include "unicode/uniset.h"
27#include "unicode/uscript.h"
28#include "unicode/strenum.h"
29#include "unicode/utf16.h"
30#include "cpdtrans.h"
31#include "nultrans.h"
32#include "rbt_data.h"
33#include "rbt_pars.h"
34#include "rbt.h"
35#include "transreg.h"
36#include "name2uni.h"
37#include "nortrans.h"
38#include "remtrans.h"
39#include "titletrn.h"
40#include "tolowtrn.h"
41#include "toupptrn.h"
42#include "uni2name.h"
43#include "brktrans.h"
44#include "esctrn.h"
45#include "unesctrn.h"
46#include "tridpars.h"
47#include "anytrans.h"
48#include "util.h"
49#include "hash.h"
50#include "mutex.h"
51#include "ucln_in.h"
52#include "uassert.h"
53#include "cmemory.h"
54#include "cstring.h"
55#include "uinvchar.h"
56
57static const UChar TARGET_SEP = 0x002D; /*-*/
58static const UChar ID_DELIM = 0x003B; /*;*/
59static const UChar VARIANT_SEP = 0x002F; // '/'
60
61/**
62 * Prefix for resource bundle key for the display name for a
63 * transliterator. The ID is appended to this to form the key.
64 * The resource bundle value should be a String.
65 */
66static const char RB_DISPLAY_NAME_PREFIX[] = "%Translit%%";
67
68/**
69 * Prefix for resource bundle key for the display name for a
70 * transliterator SCRIPT. The ID is appended to this to form the key.
71 * The resource bundle value should be a String.
72 */
73static const char RB_SCRIPT_DISPLAY_NAME_PREFIX[] = "%Translit%";
74
75/**
76 * Resource bundle key for display name pattern.
77 * The resource bundle value should be a String forming a
78 * MessageFormat pattern, e.g.:
79 * "{0,choice,0#|1#{1} Transliterator|2#{1} to {2} Transliterator}".
80 */
81static const char RB_DISPLAY_NAME_PATTERN[] = "TransliteratorNamePattern";
82
83/**
84 * Resource bundle key for the list of RuleBasedTransliterator IDs.
85 * The resource bundle value should be a String[] with each element
86 * being a valid ID. The ID will be appended to RB_RULE_BASED_PREFIX
87 * to obtain the class name in which the RB_RULE key will be sought.
88 */
89static const char RB_RULE_BASED_IDS[] = "RuleBasedTransliteratorIDs";
90
91/**
92 * The mutex controlling access to registry object.
93 */
94static icu::UMutex registryMutex;
95
96/**
97 * System transliterator registry; non-null when initialized.
98 */
99static icu::TransliteratorRegistry* registry = 0;
100
101// Macro to check/initialize the registry. ONLY USE WITHIN
102// MUTEX. Avoids function call when registry is initialized.
103#define HAVE_REGISTRY(status) (registry!=0 || initializeRegistry(status))
104
105U_NAMESPACE_BEGIN
106
107UOBJECT_DEFINE_ABSTRACT_RTTI_IMPLEMENTATION(Transliterator)
108
109/**
110 * Return TRUE if the given UTransPosition is valid for text of
111 * the given length.
112 */
113static inline UBool positionIsValid(UTransPosition& index, int32_t len) {
114 return !(index.contextStart < 0 ||
115 index.start < index.contextStart ||
116 index.limit < index.start ||
117 index.contextLimit < index.limit ||
118 len < index.contextLimit);
119}
120
121/**
122 * Default constructor.
123 * @param theID the string identifier for this transliterator
124 * @param theFilter the filter. Any character for which
125 * <tt>filter.contains()</tt> returns <tt>FALSE</tt> will not be
126 * altered by this transliterator. If <tt>filter</tt> is
127 * <tt>null</tt> then no filtering is applied.
128 */
129Transliterator::Transliterator(const UnicodeString& theID,
130 UnicodeFilter* adoptedFilter) :
131 UObject(), ID(theID), filter(adoptedFilter),
132 maximumContextLength(0)
133{
134 // NUL-terminate the ID string, which is a non-aliased copy.
135 ID.append((UChar)0);
136 ID.truncate(ID.length()-1);
137}
138
139/**
140 * Destructor.
141 */
142Transliterator::~Transliterator() {
143 if (filter) {
144 delete filter;
145 }
146}
147
148/**
149 * Copy constructor.
150 */
151Transliterator::Transliterator(const Transliterator& other) :
152 UObject(other), ID(other.ID), filter(0),
153 maximumContextLength(other.maximumContextLength)
154{
155 // NUL-terminate the ID string, which is a non-aliased copy.
156 ID.append((UChar)0);
157 ID.truncate(ID.length()-1);
158
159 if (other.filter != 0) {
160 // We own the filter, so we must have our own copy
161 filter = other.filter->clone();
162 }
163}
164
165Transliterator* Transliterator::clone() const {
166 return NULL;
167}
168
169/**
170 * Assignment operator.
171 */
172Transliterator& Transliterator::operator=(const Transliterator& other) {
173 ID = other.ID;
174 // NUL-terminate the ID string
175 ID.getTerminatedBuffer();
176
177 maximumContextLength = other.maximumContextLength;
178 adoptFilter((other.filter == 0) ? 0 : other.filter->clone());
179 return *this;
180}
181
182/**
183 * Transliterates a segment of a string. <code>Transliterator</code> API.
184 * @param text the string to be transliterated
185 * @param start the beginning index, inclusive; <code>0 <= start
186 * <= limit</code>.
187 * @param limit the ending index, exclusive; <code>start <= limit
188 * <= text.length()</code>.
189 * @return the new limit index, or -1
190 */
191int32_t Transliterator::transliterate(Replaceable& text,
192 int32_t start, int32_t limit) const {
193 if (start < 0 ||
194 limit < start ||
195 text.length() < limit) {
196 return -1;
197 }
198
199 UTransPosition offsets;
200 offsets.contextStart= start;
201 offsets.contextLimit = limit;
202 offsets.start = start;
203 offsets.limit = limit;
204 filteredTransliterate(text, offsets, FALSE, TRUE);
205 return offsets.limit;
206}
207
208/**
209 * Transliterates an entire string in place. Convenience method.
210 * @param text the string to be transliterated
211 */
212void Transliterator::transliterate(Replaceable& text) const {
213 transliterate(text, 0, text.length());
214}
215
216/**
217 * Transliterates the portion of the text buffer that can be
218 * transliterated unambiguosly after new text has been inserted,
219 * typically as a result of a keyboard event. The new text in
220 * <code>insertion</code> will be inserted into <code>text</code>
221 * at <code>index.contextLimit</code>, advancing
222 * <code>index.contextLimit</code> by <code>insertion.length()</code>.
223 * Then the transliterator will try to transliterate characters of
224 * <code>text</code> between <code>index.start</code> and
225 * <code>index.contextLimit</code>. Characters before
226 * <code>index.start</code> will not be changed.
227 *
228 * <p>Upon return, values in <code>index</code> will be updated.
229 * <code>index.contextStart</code> will be advanced to the first
230 * character that future calls to this method will read.
231 * <code>index.start</code> and <code>index.contextLimit</code> will
232 * be adjusted to delimit the range of text that future calls to
233 * this method may change.
234 *
235 * <p>Typical usage of this method begins with an initial call
236 * with <code>index.contextStart</code> and <code>index.contextLimit</code>
237 * set to indicate the portion of <code>text</code> to be
238 * transliterated, and <code>index.start == index.contextStart</code>.
239 * Thereafter, <code>index</code> can be used without
240 * modification in future calls, provided that all changes to
241 * <code>text</code> are made via this method.
242 *
243 * <p>This method assumes that future calls may be made that will
244 * insert new text into the buffer. As a result, it only performs
245 * unambiguous transliterations. After the last call to this
246 * method, there may be untransliterated text that is waiting for
247 * more input to resolve an ambiguity. In order to perform these
248 * pending transliterations, clients should call {@link
249 * #finishKeyboardTransliteration} after the last call to this
250 * method has been made.
251 *
252 * @param text the buffer holding transliterated and untransliterated text
253 * @param index an array of three integers.
254 *
255 * <ul><li><code>index.contextStart</code>: the beginning index,
256 * inclusive; <code>0 <= index.contextStart <= index.contextLimit</code>.
257 *
258 * <li><code>index.contextLimit</code>: the ending index, exclusive;
259 * <code>index.contextStart <= index.contextLimit <= text.length()</code>.
260 * <code>insertion</code> is inserted at
261 * <code>index.contextLimit</code>.
262 *
263 * <li><code>index.start</code>: the next character to be
264 * considered for transliteration; <code>index.contextStart <=
265 * index.start <= index.contextLimit</code>. Characters before
266 * <code>index.start</code> will not be changed by future calls
267 * to this method.</ul>
268 *
269 * @param insertion text to be inserted and possibly
270 * transliterated into the translation buffer at
271 * <code>index.contextLimit</code>. If <code>null</code> then no text
272 * is inserted.
273 * @see #START
274 * @see #LIMIT
275 * @see #CURSOR
276 * @see #handleTransliterate
277 * @exception IllegalArgumentException if <code>index</code>
278 * is invalid
279 */
280void Transliterator::transliterate(Replaceable& text,
281 UTransPosition& index,
282 const UnicodeString& insertion,
283 UErrorCode &status) const {
284 _transliterate(text, index, &insertion, status);
285}
286
287/**
288 * Transliterates the portion of the text buffer that can be
289 * transliterated unambiguosly after a new character has been
290 * inserted, typically as a result of a keyboard event. This is a
291 * convenience method; see {@link
292 * #transliterate(Replaceable, int[], String)} for details.
293 * @param text the buffer holding transliterated and
294 * untransliterated text
295 * @param index an array of three integers. See {@link
296 * #transliterate(Replaceable, int[], String)}.
297 * @param insertion text to be inserted and possibly
298 * transliterated into the translation buffer at
299 * <code>index.contextLimit</code>.
300 * @see #transliterate(Replaceable, int[], String)
301 */
302void Transliterator::transliterate(Replaceable& text,
303 UTransPosition& index,
304 UChar32 insertion,
305 UErrorCode& status) const {
306 UnicodeString str(insertion);
307 _transliterate(text, index, &str, status);
308}
309
310/**
311 * Transliterates the portion of the text buffer that can be
312 * transliterated unambiguosly. This is a convenience method; see
313 * {@link #transliterate(Replaceable, int[], String)} for
314 * details.
315 * @param text the buffer holding transliterated and
316 * untransliterated text
317 * @param index an array of three integers. See {@link
318 * #transliterate(Replaceable, int[], String)}.
319 * @see #transliterate(Replaceable, int[], String)
320 */
321void Transliterator::transliterate(Replaceable& text,
322 UTransPosition& index,
323 UErrorCode& status) const {
324 _transliterate(text, index, 0, status);
325}
326
327/**
328 * Finishes any pending transliterations that were waiting for
329 * more characters. Clients should call this method as the last
330 * call after a sequence of one or more calls to
331 * <code>transliterate()</code>.
332 * @param text the buffer holding transliterated and
333 * untransliterated text.
334 * @param index the array of indices previously passed to {@link
335 * #transliterate}
336 */
337void Transliterator::finishTransliteration(Replaceable& text,
338 UTransPosition& index) const {
339 if (!positionIsValid(index, text.length())) {
340 return;
341 }
342
343 filteredTransliterate(text, index, FALSE, TRUE);
344}
345
346/**
347 * This internal method does keyboard transliteration. If the
348 * 'insertion' is non-null then we append it to 'text' before
349 * proceeding. This method calls through to the pure virtual
350 * framework method handleTransliterate() to do the actual
351 * work.
352 */
353void Transliterator::_transliterate(Replaceable& text,
354 UTransPosition& index,
355 const UnicodeString* insertion,
356 UErrorCode &status) const {
357 if (U_FAILURE(status)) {
358 return;
359 }
360
361 if (!positionIsValid(index, text.length())) {
362 status = U_ILLEGAL_ARGUMENT_ERROR;
363 return;
364 }
365
366// int32_t originalStart = index.contextStart;
367 if (insertion != 0) {
368 text.handleReplaceBetween(index.limit, index.limit, *insertion);
369 index.limit += insertion->length();
370 index.contextLimit += insertion->length();
371 }
372
373 if (index.limit > 0 &&
374 U16_IS_LEAD(text.charAt(index.limit - 1))) {
375 // Oops, there is a dangling lead surrogate in the buffer.
376 // This will break most transliterators, since they will
377 // assume it is part of a pair. Don't transliterate until
378 // more text comes in.
379 return;
380 }
381
382 filteredTransliterate(text, index, TRUE, TRUE);
383
384#if 0
385 // TODO
386 // I CAN'T DO what I'm attempting below now that the Kleene star
387 // operator is supported. For example, in the rule
388
389 // ([:Lu:]+) { x } > $1;
390
391 // what is the maximum context length? getMaximumContextLength()
392 // will return 1, but this is just the length of the ante context
393 // part of the pattern string -- 1 character, which is a standin
394 // for a Quantifier, which contains a StringMatcher, which
395 // contains a UnicodeSet.
396
397 // There is a complicated way to make this work again, and that's
398 // to add a "maximum left context" protocol into the
399 // UnicodeMatcher hierarchy. At present I'm not convinced this is
400 // worth it.
401
402 // ---
403
404 // The purpose of the code below is to keep the context small
405 // while doing incremental transliteration. When part of the left
406 // context (between contextStart and start) is no longer needed,
407 // we try to advance contextStart past that portion. We use the
408 // maximum context length to do so.
409 int32_t newCS = index.start;
410 int32_t n = getMaximumContextLength();
411 while (newCS > originalStart && n-- > 0) {
412 --newCS;
413 newCS -= U16_LENGTH(text.char32At(newCS)) - 1;
414 }
415 index.contextStart = uprv_max(newCS, originalStart);
416#endif
417}
418
419/**
420 * This method breaks up the input text into runs of unfiltered
421 * characters. It passes each such run to
422 * <subclass>.handleTransliterate(). Subclasses that can handle the
423 * filter logic more efficiently themselves may override this method.
424 *
425 * All transliteration calls in this class go through this method.
426 */
427void Transliterator::filteredTransliterate(Replaceable& text,
428 UTransPosition& index,
429 UBool incremental,
430 UBool rollback) const {
431 // Short circuit path for transliterators with no filter in
432 // non-incremental mode.
433 if (filter == 0 && !rollback) {
434 handleTransliterate(text, index, incremental);
435 return;
436 }
437
438 //----------------------------------------------------------------------
439 // This method processes text in two groupings:
440 //
441 // RUNS -- A run is a contiguous group of characters which are contained
442 // in the filter for this transliterator (filter.contains(ch) == TRUE).
443 // Text outside of runs may appear as context but it is not modified.
444 // The start and limit Position values are narrowed to each run.
445 //
446 // PASSES (incremental only) -- To make incremental mode work correctly,
447 // each run is broken up into n passes, where n is the length (in code
448 // points) of the run. Each pass contains the first n characters. If a
449 // pass is completely transliterated, it is committed, and further passes
450 // include characters after the committed text. If a pass is blocked,
451 // and does not transliterate completely, then this method rolls back
452 // the changes made during the pass, extends the pass by one code point,
453 // and tries again.
454 //----------------------------------------------------------------------
455
456 // globalLimit is the limit value for the entire operation. We
457 // set index.limit to the end of each unfiltered run before
458 // calling handleTransliterate(), so we need to maintain the real
459 // value of index.limit here. After each transliteration, we
460 // update globalLimit for insertions or deletions that have
461 // happened.
462 int32_t globalLimit = index.limit;
463
464 // If there is a non-null filter, then break the input text up. Say the
465 // input text has the form:
466 // xxxabcxxdefxx
467 // where 'x' represents a filtered character (filter.contains('x') ==
468 // false). Then we break this up into:
469 // xxxabc xxdef xx
470 // Each pass through the loop consumes a run of filtered
471 // characters (which are ignored) and a subsequent run of
472 // unfiltered characters (which are transliterated).
473
474 for (;;) {
475
476 if (filter != NULL) {
477 // Narrow the range to be transliterated to the first segment
478 // of unfiltered characters at or after index.start.
479
480 // Advance past filtered chars
481 UChar32 c;
482 while (index.start < globalLimit &&
483 !filter->contains(c=text.char32At(index.start))) {
484 index.start += U16_LENGTH(c);
485 }
486
487 // Find the end of this run of unfiltered chars
488 index.limit = index.start;
489 while (index.limit < globalLimit &&
490 filter->contains(c=text.char32At(index.limit))) {
491 index.limit += U16_LENGTH(c);
492 }
493 }
494
495 // Check to see if the unfiltered run is empty. This only
496 // happens at the end of the string when all the remaining
497 // characters are filtered.
498 if (index.limit == index.start) {
499 // assert(index.start == globalLimit);
500 break;
501 }
502
503 // Is this run incremental? If there is additional
504 // filtered text (if limit < globalLimit) then we pass in
505 // an incremental value of FALSE to force the subclass to
506 // complete the transliteration for this run.
507 UBool isIncrementalRun =
508 (index.limit < globalLimit ? FALSE : incremental);
509
510 int32_t delta;
511
512 // Implement rollback. To understand the need for rollback,
513 // consider the following transliterator:
514 //
515 // "t" is "a > A;"
516 // "u" is "A > b;"
517 // "v" is a compound of "t; NFD; u" with a filter [:Ll:]
518 //
519 // Now apply "c" to the input text "a". The result is "b". But if
520 // the transliteration is done incrementally, then the NFD holds
521 // things up after "t" has already transformed "a" to "A". When
522 // finishTransliterate() is called, "A" is _not_ processed because
523 // it gets excluded by the [:Ll:] filter, and the end result is "A"
524 // -- incorrect. The problem is that the filter is applied to a
525 // partially-transliterated result, when we only want it to apply to
526 // input text. Although this example hinges on a compound
527 // transliterator containing NFD and a specific filter, it can
528 // actually happen with any transliterator which may do a partial
529 // transformation in incremental mode into characters outside its
530 // filter.
531 //
532 // To handle this, when in incremental mode we supply characters to
533 // handleTransliterate() in several passes. Each pass adds one more
534 // input character to the input text. That is, for input "ABCD", we
535 // first try "A", then "AB", then "ABC", and finally "ABCD". If at
536 // any point we block (upon return, start < limit) then we roll
537 // back. If at any point we complete the run (upon return start ==
538 // limit) then we commit that run.
539
540 if (rollback && isIncrementalRun) {
541
542 int32_t runStart = index.start;
543 int32_t runLimit = index.limit;
544 int32_t runLength = runLimit - runStart;
545
546 // Make a rollback copy at the end of the string
547 int32_t rollbackOrigin = text.length();
548 text.copy(runStart, runLimit, rollbackOrigin);
549
550 // Variables reflecting the commitment of completely
551 // transliterated text. passStart is the runStart, advanced
552 // past committed text. rollbackStart is the rollbackOrigin,
553 // advanced past rollback text that corresponds to committed
554 // text.
555 int32_t passStart = runStart;
556 int32_t rollbackStart = rollbackOrigin;
557
558 // The limit for each pass; we advance by one code point with
559 // each iteration.
560 int32_t passLimit = index.start;
561
562 // Total length, in 16-bit code units, of uncommitted text.
563 // This is the length to be rolled back.
564 int32_t uncommittedLength = 0;
565
566 // Total delta (change in length) for all passes
567 int32_t totalDelta = 0;
568
569 // PASS MAIN LOOP -- Start with a single character, and extend
570 // the text by one character at a time. Roll back partial
571 // transliterations and commit complete transliterations.
572 for (;;) {
573 // Length of additional code point, either one or two
574 int32_t charLength = U16_LENGTH(text.char32At(passLimit));
575 passLimit += charLength;
576 if (passLimit > runLimit) {
577 break;
578 }
579 uncommittedLength += charLength;
580
581 index.limit = passLimit;
582
583 // Delegate to subclass for actual transliteration. Upon
584 // return, start will be updated to point after the
585 // transliterated text, and limit and contextLimit will be
586 // adjusted for length changes.
587 handleTransliterate(text, index, TRUE);
588
589 delta = index.limit - passLimit; // change in length
590
591 // We failed to completely transliterate this pass.
592 // Roll back the text. Indices remain unchanged; reset
593 // them where necessary.
594 if (index.start != index.limit) {
595 // Find the rollbackStart, adjusted for length changes
596 // and the deletion of partially transliterated text.
597 int32_t rs = rollbackStart + delta - (index.limit - passStart);
598
599 // Delete the partially transliterated text
600 text.handleReplaceBetween(passStart, index.limit, UnicodeString());
601
602 // Copy the rollback text back
603 text.copy(rs, rs + uncommittedLength, passStart);
604
605 // Restore indices to their original values
606 index.start = passStart;
607 index.limit = passLimit;
608 index.contextLimit -= delta;
609 }
610
611 // We did completely transliterate this pass. Update the
612 // commit indices to record how far we got. Adjust indices
613 // for length change.
614 else {
615 // Move the pass indices past the committed text.
616 passStart = passLimit = index.start;
617
618 // Adjust the rollbackStart for length changes and move
619 // it past the committed text. All characters we've
620 // processed to this point are committed now, so zero
621 // out the uncommittedLength.
622 rollbackStart += delta + uncommittedLength;
623 uncommittedLength = 0;
624
625 // Adjust indices for length changes.
626 runLimit += delta;
627 totalDelta += delta;
628 }
629 }
630
631 // Adjust overall limit and rollbackOrigin for insertions and
632 // deletions. Don't need to worry about contextLimit because
633 // handleTransliterate() maintains that.
634 rollbackOrigin += totalDelta;
635 globalLimit += totalDelta;
636
637 // Delete the rollback copy
638 text.handleReplaceBetween(rollbackOrigin, rollbackOrigin + runLength, UnicodeString());
639
640 // Move start past committed text
641 index.start = passStart;
642 }
643
644 else {
645 // Delegate to subclass for actual transliteration.
646 int32_t limit = index.limit;
647 handleTransliterate(text, index, isIncrementalRun);
648 delta = index.limit - limit; // change in length
649
650 // In a properly written transliterator, start == limit after
651 // handleTransliterate() returns when incremental is false.
652 // Catch cases where the subclass doesn't do this, and throw
653 // an exception. (Just pinning start to limit is a bad idea,
654 // because what's probably happening is that the subclass
655 // isn't transliterating all the way to the end, and it should
656 // in non-incremental mode.)
657 if (!incremental && index.start != index.limit) {
658 // We can't throw an exception, so just fudge things
659 index.start = index.limit;
660 }
661
662 // Adjust overall limit for insertions/deletions. Don't need
663 // to worry about contextLimit because handleTransliterate()
664 // maintains that.
665 globalLimit += delta;
666 }
667
668 if (filter == NULL || isIncrementalRun) {
669 break;
670 }
671
672 // If we did completely transliterate this
673 // run, then repeat with the next unfiltered run.
674 }
675
676 // Start is valid where it is. Limit needs to be put back where
677 // it was, modulo adjustments for deletions/insertions.
678 index.limit = globalLimit;
679}
680
681void Transliterator::filteredTransliterate(Replaceable& text,
682 UTransPosition& index,
683 UBool incremental) const {
684 filteredTransliterate(text, index, incremental, FALSE);
685}
686
687/**
688 * Method for subclasses to use to set the maximum context length.
689 * @see #getMaximumContextLength
690 */
691void Transliterator::setMaximumContextLength(int32_t maxContextLength) {
692 maximumContextLength = maxContextLength;
693}
694
695/**
696 * Returns a programmatic identifier for this transliterator.
697 * If this identifier is passed to <code>getInstance()</code>, it
698 * will return this object, if it has been registered.
699 * @see #registerInstance
700 * @see #getAvailableIDs
701 */
702const UnicodeString& Transliterator::getID(void) const {
703 return ID;
704}
705
706/**
707 * Returns a name for this transliterator that is appropriate for
708 * display to the user in the default locale. See {@link
709 * #getDisplayName(Locale)} for details.
710 */
711UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& ID,
712 UnicodeString& result) {
713 return getDisplayName(ID, Locale::getDefault(), result);
714}
715
716/**
717 * Returns a name for this transliterator that is appropriate for
718 * display to the user in the given locale. This name is taken
719 * from the locale resource data in the standard manner of the
720 * <code>java.text</code> package.
721 *
722 * <p>If no localized names exist in the system resource bundles,
723 * a name is synthesized using a localized
724 * <code>MessageFormat</code> pattern from the resource data. The
725 * arguments to this pattern are an integer followed by one or two
726 * strings. The integer is the number of strings, either 1 or 2.
727 * The strings are formed by splitting the ID for this
728 * transliterator at the first TARGET_SEP. If there is no TARGET_SEP, then the
729 * entire ID forms the only string.
730 * @param inLocale the Locale in which the display name should be
731 * localized.
732 * @see java.text.MessageFormat
733 */
734UnicodeString& U_EXPORT2 Transliterator::getDisplayName(const UnicodeString& id,
735 const Locale& inLocale,
736 UnicodeString& result) {
737 UErrorCode status = U_ZERO_ERROR;
738
739 ResourceBundle bundle(U_ICUDATA_TRANSLIT, inLocale, status);
740
741 // Suspend checking status until later...
742
743 result.truncate(0);
744
745 // Normalize the ID
746 UnicodeString source, target, variant;
747 UBool sawSource;
748 TransliteratorIDParser::IDtoSTV(id, source, target, variant, sawSource);
749 if (target.length() < 1) {
750 // No target; malformed id
751 return result;
752 }
753 if (variant.length() > 0) { // Change "Foo" to "/Foo"
754 variant.insert(0, VARIANT_SEP);
755 }
756 UnicodeString ID(source);
757 ID.append(TARGET_SEP).append(target).append(variant);
758
759 // build the char* key
760 if (uprv_isInvariantUString(ID.getBuffer(), ID.length())) {
761 char key[200];
762 uprv_strcpy(key, RB_DISPLAY_NAME_PREFIX);
763 int32_t length=(int32_t)uprv_strlen(RB_DISPLAY_NAME_PREFIX);
764 ID.extract(0, (int32_t)(sizeof(key)-length), key+length, (int32_t)(sizeof(key)-length), US_INV);
765
766 // Try to retrieve a UnicodeString from the bundle.
767 UnicodeString resString = bundle.getStringEx(key, status);
768
769 if (U_SUCCESS(status) && resString.length() != 0) {
770 return result = resString; // [sic] assign & return
771 }
772
773#if !UCONFIG_NO_FORMATTING
774 // We have failed to get a name from the locale data. This is
775 // typical, since most transliterators will not have localized
776 // name data. The next step is to retrieve the MessageFormat
777 // pattern from the locale data and to use it to synthesize the
778 // name from the ID.
779
780 status = U_ZERO_ERROR;
781 resString = bundle.getStringEx(RB_DISPLAY_NAME_PATTERN, status);
782
783 if (U_SUCCESS(status) && resString.length() != 0) {
784 MessageFormat msg(resString, inLocale, status);
785 // Suspend checking status until later...
786
787 // We pass either 2 or 3 Formattable objects to msg.
788 Formattable args[3];
789 int32_t nargs;
790 args[0].setLong(2); // # of args to follow
791 args[1].setString(source);
792 args[2].setString(target);
793 nargs = 3;
794
795 // Use display names for the scripts, if they exist
796 UnicodeString s;
797 length=(int32_t)uprv_strlen(RB_SCRIPT_DISPLAY_NAME_PREFIX);
798 for (int j=1; j<=2; ++j) {
799 status = U_ZERO_ERROR;
800 uprv_strcpy(key, RB_SCRIPT_DISPLAY_NAME_PREFIX);
801 args[j].getString(s);
802 if (uprv_isInvariantUString(s.getBuffer(), s.length())) {
803 s.extract(0, sizeof(key)-length-1, key+length, (int32_t)sizeof(key)-length-1, US_INV);
804
805 resString = bundle.getStringEx(key, status);
806
807 if (U_SUCCESS(status)) {
808 args[j] = resString;
809 }
810 }
811 }
812
813 status = U_ZERO_ERROR;
814 FieldPosition pos; // ignored by msg
815 msg.format(args, nargs, result, pos, status);
816 if (U_SUCCESS(status)) {
817 result.append(variant);
818 return result;
819 }
820 }
821#endif
822 }
823
824 // We should not reach this point unless there is something
825 // wrong with the build or the RB_DISPLAY_NAME_PATTERN has
826 // been deleted from the root RB_LOCALE_ELEMENTS resource.
827 result = ID;
828 return result;
829}
830
831/**
832 * Returns the filter used by this transliterator, or <tt>null</tt>
833 * if this transliterator uses no filter. Caller musn't delete
834 * the result!
835 */
836const UnicodeFilter* Transliterator::getFilter(void) const {
837 return filter;
838}
839
840/**
841 * Returns the filter used by this transliterator, or
842 * <tt>NULL</tt> if this transliterator uses no filter. The
843 * caller must eventually delete the result. After this call,
844 * this transliterator's filter is set to <tt>NULL</tt>.
845 */
846UnicodeFilter* Transliterator::orphanFilter(void) {
847 UnicodeFilter *result = filter;
848 filter = NULL;
849 return result;
850}
851
852/**
853 * Changes the filter used by this transliterator. If the filter
854 * is set to <tt>null</tt> then no filtering will occur.
855 *
856 * <p>Callers must take care if a transliterator is in use by
857 * multiple threads. The filter should not be changed by one
858 * thread while another thread may be transliterating.
859 */
860void Transliterator::adoptFilter(UnicodeFilter* filterToAdopt) {
861 delete filter;
862 filter = filterToAdopt;
863}
864
865/**
866 * Returns this transliterator's inverse. See the class
867 * documentation for details. This implementation simply inverts
868 * the two entities in the ID and attempts to retrieve the
869 * resulting transliterator. That is, if <code>getID()</code>
870 * returns "A-B", then this method will return the result of
871 * <code>getInstance("B-A")</code>, or <code>null</code> if that
872 * call fails.
873 *
874 * <p>This method does not take filtering into account. The
875 * returned transliterator will have no filter.
876 *
877 * <p>Subclasses with knowledge of their inverse may wish to
878 * override this method.
879 *
880 * @return a transliterator that is an inverse, not necessarily
881 * exact, of this transliterator, or <code>null</code> if no such
882 * transliterator is registered.
883 * @see #registerInstance
884 */
885Transliterator* Transliterator::createInverse(UErrorCode& status) const {
886 UParseError parseError;
887 return Transliterator::createInstance(ID, UTRANS_REVERSE,parseError,status);
888}
889
890Transliterator* U_EXPORT2
891Transliterator::createInstance(const UnicodeString& ID,
892 UTransDirection dir,
893 UErrorCode& status)
894{
895 UParseError parseError;
896 return createInstance(ID, dir, parseError, status);
897}
898
899/**
900 * Returns a <code>Transliterator</code> object given its ID.
901 * The ID must be either a system transliterator ID or a ID registered
902 * using <code>registerInstance()</code>.
903 *
904 * @param ID a valid ID, as enumerated by <code>getAvailableIDs()</code>
905 * @return A <code>Transliterator</code> object with the given ID
906 * @see #registerInstance
907 * @see #getAvailableIDs
908 * @see #getID
909 */
910Transliterator* U_EXPORT2
911Transliterator::createInstance(const UnicodeString& ID,
912 UTransDirection dir,
913 UParseError& parseError,
914 UErrorCode& status)
915{
916 if (U_FAILURE(status)) {
917 return 0;
918 }
919
920 UnicodeString canonID;
921 UVector list(status);
922 if (U_FAILURE(status)) {
923 return NULL;
924 }
925
926 UnicodeSet* globalFilter = nullptr;
927 // TODO add code for parseError...currently unused, but
928 // later may be used by parsing code...
929 if (!TransliteratorIDParser::parseCompoundID(ID, dir, canonID, list, globalFilter)) {
930 status = U_INVALID_ID;
931 delete globalFilter;
932 return NULL;
933 }
934 LocalPointer<UnicodeSet> lpGlobalFilter(globalFilter);
935
936 TransliteratorIDParser::instantiateList(list, status);
937 if (U_FAILURE(status)) {
938 return NULL;
939 }
940
941 U_ASSERT(list.size() > 0);
942 Transliterator* t = NULL;
943
944 if (list.size() > 1 || canonID.indexOf(ID_DELIM) >= 0) {
945 // [NOTE: If it's a compoundID, we instantiate a CompoundTransliterator even if it only
946 // has one child transliterator. This is so that toRules() will return the right thing
947 // (without any inactive ID), but our main ID still comes out correct. That is, if we
948 // instantiate "(Lower);Latin-Greek;", we want the rules to come out as "::Latin-Greek;"
949 // even though the ID is "(Lower);Latin-Greek;".
950 t = new CompoundTransliterator(list, parseError, status);
951 }
952 else {
953 t = (Transliterator*)list.elementAt(0);
954 }
955 // Check null pointer
956 if (t != NULL) {
957 t->setID(canonID);
958 if (lpGlobalFilter.isValid()) {
959 t->adoptFilter(lpGlobalFilter.orphan());
960 }
961 }
962 else if (U_SUCCESS(status)) {
963 status = U_MEMORY_ALLOCATION_ERROR;
964 }
965 return t;
966}
967
968/**
969 * Create a transliterator from a basic ID. This is an ID
970 * containing only the forward direction source, target, and
971 * variant.
972 * @param id a basic ID of the form S-T or S-T/V.
973 * @return a newly created Transliterator or null if the ID is
974 * invalid.
975 */
976Transliterator* Transliterator::createBasicInstance(const UnicodeString& id,
977 const UnicodeString* canon) {
978 UParseError pe;
979 UErrorCode ec = U_ZERO_ERROR;
980 TransliteratorAlias* alias = 0;
981 Transliterator* t = 0;
982
983 umtx_lock(&registryMutex);
984 if (HAVE_REGISTRY(ec)) {
985 t = registry->get(id, alias, ec);
986 }
987 umtx_unlock(&registryMutex);
988
989 if (U_FAILURE(ec)) {
990 delete t;
991 delete alias;
992 return 0;
993 }
994
995 // We may have not gotten a transliterator: Because we can't
996 // instantiate a transliterator from inside TransliteratorRegistry::
997 // get() (that would deadlock), we sometimes pass back an alias. This
998 // contains the data we need to finish the instantiation outside the
999 // registry mutex. The alias may, in turn, generate another alias, so
1000 // we handle aliases in a loop. The max times through the loop is two.
1001 // [alan]
1002 while (alias != 0) {
1003 U_ASSERT(t==0);
1004 // Rule-based aliases are handled with TransliteratorAlias::
1005 // parse(), followed by TransliteratorRegistry::reget().
1006 // Other aliases are handled with TransliteratorAlias::create().
1007 if (alias->isRuleBased()) {
1008 // Step 1. parse
1009 TransliteratorParser parser(ec);
1010 alias->parse(parser, pe, ec);
1011 delete alias;
1012 alias = 0;
1013
1014 // Step 2. reget
1015 umtx_lock(&registryMutex);
1016 if (HAVE_REGISTRY(ec)) {
1017 t = registry->reget(id, parser, alias, ec);
1018 }
1019 umtx_unlock(&registryMutex);
1020
1021 // Step 3. Loop back around!
1022 } else {
1023 t = alias->create(pe, ec);
1024 delete alias;
1025 alias = 0;
1026 break;
1027 }
1028 if (U_FAILURE(ec)) {
1029 delete t;
1030 delete alias;
1031 t = NULL;
1032 break;
1033 }
1034 }
1035
1036 if (t != NULL && canon != NULL) {
1037 t->setID(*canon);
1038 }
1039
1040 return t;
1041}
1042
1043/**
1044 * Returns a <code>Transliterator</code> object constructed from
1045 * the given rule string. This will be a RuleBasedTransliterator,
1046 * if the rule string contains only rules, or a
1047 * CompoundTransliterator, if it contains ID blocks, or a
1048 * NullTransliterator, if it contains ID blocks which parse as
1049 * empty for the given direction.
1050 */
1051Transliterator* U_EXPORT2
1052Transliterator::createFromRules(const UnicodeString& ID,
1053 const UnicodeString& rules,
1054 UTransDirection dir,
1055 UParseError& parseError,
1056 UErrorCode& status)
1057{
1058 Transliterator* t = NULL;
1059
1060 TransliteratorParser parser(status);
1061 parser.parse(rules, dir, parseError, status);
1062
1063 if (U_FAILURE(status)) {
1064 return 0;
1065 }
1066
1067 // NOTE: The logic here matches that in TransliteratorRegistry.
1068 if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 0) {
1069 t = new NullTransliterator();
1070 }
1071 else if (parser.idBlockVector.size() == 0 && parser.dataVector.size() == 1) {
1072 t = new RuleBasedTransliterator(ID, (TransliterationRuleData*)parser.dataVector.orphanElementAt(0), TRUE);
1073 }
1074 else if (parser.idBlockVector.size() == 1 && parser.dataVector.size() == 0) {
1075 // idBlock, no data -- this is an alias. The ID has
1076 // been munged from reverse into forward mode, if
1077 // necessary, so instantiate the ID in the forward
1078 // direction.
1079 if (parser.compoundFilter != NULL) {
1080 UnicodeString filterPattern;
1081 parser.compoundFilter->toPattern(filterPattern, FALSE);
1082 t = createInstance(filterPattern + UnicodeString(ID_DELIM)
1083 + *((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status);
1084 }
1085 else
1086 t = createInstance(*((UnicodeString*)parser.idBlockVector.elementAt(0)), UTRANS_FORWARD, parseError, status);
1087
1088
1089 if (t != NULL) {
1090 t->setID(ID);
1091 }
1092 }
1093 else {
1094 UVector transliterators(status);
1095 int32_t passNumber = 1;
1096
1097 int32_t limit = parser.idBlockVector.size();
1098 if (parser.dataVector.size() > limit)
1099 limit = parser.dataVector.size();
1100
1101 for (int32_t i = 0; i < limit; i++) {
1102 if (i < parser.idBlockVector.size()) {
1103 UnicodeString* idBlock = (UnicodeString*)parser.idBlockVector.elementAt(i);
1104 if (!idBlock->isEmpty()) {
1105 Transliterator* temp = createInstance(*idBlock, UTRANS_FORWARD, parseError, status);
1106 if (U_FAILURE(status)) {
1107 delete temp;
1108 return nullptr;
1109 }
1110 if (temp != NULL && typeid(*temp) != typeid(NullTransliterator))
1111 transliterators.addElement(temp, status);
1112 else
1113 delete temp;
1114 }
1115 }
1116 if (!parser.dataVector.isEmpty()) {
1117 TransliterationRuleData* data = (TransliterationRuleData*)parser.dataVector.orphanElementAt(0);
1118 // TODO: Should passNumber be turned into a decimal-string representation (1 -> "1")?
1119 RuleBasedTransliterator* temprbt = new RuleBasedTransliterator(UnicodeString(CompoundTransliterator::PASS_STRING) + UnicodeString(passNumber++),
1120 data, TRUE);
1121 // Check if NULL before adding it to transliterators to avoid future usage of NULL pointer.
1122 if (temprbt == NULL) {
1123 if (U_SUCCESS(status)) {
1124 status = U_MEMORY_ALLOCATION_ERROR;
1125 }
1126 return t;
1127 }
1128 transliterators.addElement(temprbt, status);
1129 }
1130 }
1131
1132 t = new CompoundTransliterator(transliterators, passNumber - 1, parseError, status);
1133 // Null pointer check
1134 if (t != NULL) {
1135 t->setID(ID);
1136 t->adoptFilter(parser.orphanCompoundFilter());
1137 }
1138 }
1139 if (U_SUCCESS(status) && t == NULL) {
1140 status = U_MEMORY_ALLOCATION_ERROR;
1141 }
1142 return t;
1143}
1144
1145UnicodeString& Transliterator::toRules(UnicodeString& rulesSource,
1146 UBool escapeUnprintable) const {
1147 // The base class implementation of toRules munges the ID into
1148 // the correct format. That is: foo => ::foo
1149 if (escapeUnprintable) {
1150 rulesSource.truncate(0);
1151 UnicodeString id = getID();
1152 for (int32_t i=0; i<id.length();) {
1153 UChar32 c = id.char32At(i);
1154 if (!ICU_Utility::escapeUnprintable(rulesSource, c)) {
1155 rulesSource.append(c);
1156 }
1157 i += U16_LENGTH(c);
1158 }
1159 } else {
1160 rulesSource = getID();
1161 }
1162 // KEEP in sync with rbt_pars
1163 rulesSource.insert(0, UNICODE_STRING_SIMPLE("::"));
1164 rulesSource.append(ID_DELIM);
1165 return rulesSource;
1166}
1167
1168int32_t Transliterator::countElements() const {
1169 const CompoundTransliterator* ct = dynamic_cast<const CompoundTransliterator*>(this);
1170 return ct != NULL ? ct->getCount() : 0;
1171}
1172
1173const Transliterator& Transliterator::getElement(int32_t index, UErrorCode& ec) const {
1174 if (U_FAILURE(ec)) {
1175 return *this;
1176 }
1177 const CompoundTransliterator* cpd = dynamic_cast<const CompoundTransliterator*>(this);
1178 int32_t n = (cpd == NULL) ? 1 : cpd->getCount();
1179 if (index < 0 || index >= n) {
1180 ec = U_INDEX_OUTOFBOUNDS_ERROR;
1181 return *this;
1182 } else {
1183 return (n == 1) ? *this : cpd->getTransliterator(index);
1184 }
1185}
1186
1187UnicodeSet& Transliterator::getSourceSet(UnicodeSet& result) const {
1188 handleGetSourceSet(result);
1189 if (filter != NULL) {
1190 UnicodeSet* filterSet = dynamic_cast<UnicodeSet*>(filter);
1191 UBool deleteFilterSet = FALSE;
1192 // Most, but not all filters will be UnicodeSets. Optimize for
1193 // the high-runner case.
1194 if (filterSet == NULL) {
1195 filterSet = new UnicodeSet();
1196 // Check null pointer
1197 if (filterSet == NULL) {
1198 return result;
1199 }
1200 deleteFilterSet = TRUE;
1201 filter->addMatchSetTo(*filterSet);
1202 }
1203 result.retainAll(*filterSet);
1204 if (deleteFilterSet) {
1205 delete filterSet;
1206 }
1207 }
1208 return result;
1209}
1210
1211void Transliterator::handleGetSourceSet(UnicodeSet& result) const {
1212 result.clear();
1213}
1214
1215UnicodeSet& Transliterator::getTargetSet(UnicodeSet& result) const {
1216 return result.clear();
1217}
1218
1219// For public consumption
1220void U_EXPORT2 Transliterator::registerFactory(const UnicodeString& id,
1221 Transliterator::Factory factory,
1222 Transliterator::Token context) {
1223 Mutex lock(&registryMutex);
1224 UErrorCode ec = U_ZERO_ERROR;
1225 if (HAVE_REGISTRY(ec)) {
1226 _registerFactory(id, factory, context);
1227 }
1228}
1229
1230// To be called only by Transliterator subclasses that are called
1231// to register themselves by initializeRegistry().
1232void Transliterator::_registerFactory(const UnicodeString& id,
1233 Transliterator::Factory factory,
1234 Transliterator::Token context) {
1235 UErrorCode ec = U_ZERO_ERROR;
1236 registry->put(id, factory, context, TRUE, ec);
1237}
1238
1239// To be called only by Transliterator subclasses that are called
1240// to register themselves by initializeRegistry().
1241void Transliterator::_registerSpecialInverse(const UnicodeString& target,
1242 const UnicodeString& inverseTarget,
1243 UBool bidirectional) {
1244 UErrorCode status = U_ZERO_ERROR;
1245 TransliteratorIDParser::registerSpecialInverse(target, inverseTarget, bidirectional, status);
1246}
1247
1248/**
1249 * Registers a instance <tt>obj</tt> of a subclass of
1250 * <code>Transliterator</code> with the system. This object must
1251 * implement the <tt>clone()</tt> method. When
1252 * <tt>getInstance()</tt> is called with an ID string that is
1253 * equal to <tt>obj.getID()</tt>, then <tt>obj.clone()</tt> is
1254 * returned.
1255 *
1256 * @param obj an instance of subclass of
1257 * <code>Transliterator</code> that defines <tt>clone()</tt>
1258 * @see #getInstance
1259 * @see #unregister
1260 */
1261void U_EXPORT2 Transliterator::registerInstance(Transliterator* adoptedPrototype) {
1262 Mutex lock(&registryMutex);
1263 UErrorCode ec = U_ZERO_ERROR;
1264 if (HAVE_REGISTRY(ec)) {
1265 _registerInstance(adoptedPrototype);
1266 }
1267}
1268
1269void Transliterator::_registerInstance(Transliterator* adoptedPrototype) {
1270 UErrorCode ec = U_ZERO_ERROR;
1271 registry->put(adoptedPrototype, TRUE, ec);
1272}
1273
1274void U_EXPORT2 Transliterator::registerAlias(const UnicodeString& aliasID,
1275 const UnicodeString& realID) {
1276 Mutex lock(&registryMutex);
1277 UErrorCode ec = U_ZERO_ERROR;
1278 if (HAVE_REGISTRY(ec)) {
1279 _registerAlias(aliasID, realID);
1280 }
1281}
1282
1283void Transliterator::_registerAlias(const UnicodeString& aliasID,
1284 const UnicodeString& realID) {
1285 UErrorCode ec = U_ZERO_ERROR;
1286 registry->put(aliasID, realID, FALSE, TRUE, ec);
1287}
1288
1289/**
1290 * Unregisters a transliterator or class. This may be either
1291 * a system transliterator or a user transliterator or class.
1292 *
1293 * @param ID the ID of the transliterator or class
1294 * @see #registerInstance
1295
1296 */
1297void U_EXPORT2 Transliterator::unregister(const UnicodeString& ID) {
1298 Mutex lock(&registryMutex);
1299 UErrorCode ec = U_ZERO_ERROR;
1300 if (HAVE_REGISTRY(ec)) {
1301 registry->remove(ID);
1302 }
1303}
1304
1305/**
1306 * == OBSOLETE - remove in ICU 3.4 ==
1307 * Return the number of IDs currently registered with the system.
1308 * To retrieve the actual IDs, call getAvailableID(i) with
1309 * i from 0 to countAvailableIDs() - 1.
1310 */
1311int32_t U_EXPORT2 Transliterator::countAvailableIDs(void) {
1312 int32_t retVal = 0;
1313 Mutex lock(&registryMutex);
1314 UErrorCode ec = U_ZERO_ERROR;
1315 if (HAVE_REGISTRY(ec)) {
1316 retVal = registry->countAvailableIDs();
1317 }
1318 return retVal;
1319}
1320
1321/**
1322 * == OBSOLETE - remove in ICU 3.4 ==
1323 * Return the index-th available ID. index must be between 0
1324 * and countAvailableIDs() - 1, inclusive. If index is out of
1325 * range, the result of getAvailableID(0) is returned.
1326 */
1327const UnicodeString& U_EXPORT2 Transliterator::getAvailableID(int32_t index) {
1328 const UnicodeString* result = NULL;
1329 umtx_lock(&registryMutex);
1330 UErrorCode ec = U_ZERO_ERROR;
1331 if (HAVE_REGISTRY(ec)) {
1332 result = &registry->getAvailableID(index);
1333 }
1334 umtx_unlock(&registryMutex);
1335 U_ASSERT(result != NULL); // fail if no registry
1336 return *result;
1337}
1338
1339StringEnumeration* U_EXPORT2 Transliterator::getAvailableIDs(UErrorCode& ec) {
1340 if (U_FAILURE(ec)) return NULL;
1341 StringEnumeration* result = NULL;
1342 umtx_lock(&registryMutex);
1343 if (HAVE_REGISTRY(ec)) {
1344 result = registry->getAvailableIDs();
1345 }
1346 umtx_unlock(&registryMutex);
1347 if (result == NULL) {
1348 ec = U_INTERNAL_TRANSLITERATOR_ERROR;
1349 }
1350 return result;
1351}
1352
1353int32_t U_EXPORT2 Transliterator::countAvailableSources(void) {
1354 Mutex lock(&registryMutex);
1355 UErrorCode ec = U_ZERO_ERROR;
1356 return HAVE_REGISTRY(ec) ? _countAvailableSources() : 0;
1357}
1358
1359UnicodeString& U_EXPORT2 Transliterator::getAvailableSource(int32_t index,
1360 UnicodeString& result) {
1361 Mutex lock(&registryMutex);
1362 UErrorCode ec = U_ZERO_ERROR;
1363 if (HAVE_REGISTRY(ec)) {
1364 _getAvailableSource(index, result);
1365 }
1366 return result;
1367}
1368
1369int32_t U_EXPORT2 Transliterator::countAvailableTargets(const UnicodeString& source) {
1370 Mutex lock(&registryMutex);
1371 UErrorCode ec = U_ZERO_ERROR;
1372 return HAVE_REGISTRY(ec) ? _countAvailableTargets(source) : 0;
1373}
1374
1375UnicodeString& U_EXPORT2 Transliterator::getAvailableTarget(int32_t index,
1376 const UnicodeString& source,
1377 UnicodeString& result) {
1378 Mutex lock(&registryMutex);
1379 UErrorCode ec = U_ZERO_ERROR;
1380 if (HAVE_REGISTRY(ec)) {
1381 _getAvailableTarget(index, source, result);
1382 }
1383 return result;
1384}
1385
1386int32_t U_EXPORT2 Transliterator::countAvailableVariants(const UnicodeString& source,
1387 const UnicodeString& target) {
1388 Mutex lock(&registryMutex);
1389 UErrorCode ec = U_ZERO_ERROR;
1390 return HAVE_REGISTRY(ec) ? _countAvailableVariants(source, target) : 0;
1391}
1392
1393UnicodeString& U_EXPORT2 Transliterator::getAvailableVariant(int32_t index,
1394 const UnicodeString& source,
1395 const UnicodeString& target,
1396 UnicodeString& result) {
1397 Mutex lock(&registryMutex);
1398 UErrorCode ec = U_ZERO_ERROR;
1399 if (HAVE_REGISTRY(ec)) {
1400 _getAvailableVariant(index, source, target, result);
1401 }
1402 return result;
1403}
1404
1405int32_t Transliterator::_countAvailableSources(void) {
1406 return registry->countAvailableSources();
1407}
1408
1409UnicodeString& Transliterator::_getAvailableSource(int32_t index,
1410 UnicodeString& result) {
1411 return registry->getAvailableSource(index, result);
1412}
1413
1414int32_t Transliterator::_countAvailableTargets(const UnicodeString& source) {
1415 return registry->countAvailableTargets(source);
1416}
1417
1418UnicodeString& Transliterator::_getAvailableTarget(int32_t index,
1419 const UnicodeString& source,
1420 UnicodeString& result) {
1421 return registry->getAvailableTarget(index, source, result);
1422}
1423
1424int32_t Transliterator::_countAvailableVariants(const UnicodeString& source,
1425 const UnicodeString& target) {
1426 return registry->countAvailableVariants(source, target);
1427}
1428
1429UnicodeString& Transliterator::_getAvailableVariant(int32_t index,
1430 const UnicodeString& source,
1431 const UnicodeString& target,
1432 UnicodeString& result) {
1433 return registry->getAvailableVariant(index, source, target, result);
1434}
1435
1436#ifdef U_USE_DEPRECATED_TRANSLITERATOR_API
1437
1438/**
1439 * Method for subclasses to use to obtain a character in the given
1440 * string, with filtering.
1441 * @deprecated the new architecture provides filtering at the top
1442 * level. This method will be removed Dec 31 2001.
1443 */
1444UChar Transliterator::filteredCharAt(const Replaceable& text, int32_t i) const {
1445 UChar c;
1446 const UnicodeFilter* localFilter = getFilter();
1447 return (localFilter == 0) ? text.charAt(i) :
1448 (localFilter->contains(c = text.charAt(i)) ? c : (UChar)0xFFFE);
1449}
1450
1451#endif
1452
1453/**
1454 * If the registry is initialized, return TRUE. If not, initialize it
1455 * and return TRUE. If the registry cannot be initialized, return
1456 * FALSE (rare).
1457 *
1458 * IMPORTANT: Upon entry, registryMutex must be LOCKED. The entire
1459 * initialization is done with the lock held. There is NO REASON to
1460 * unlock, since no other thread that is waiting on the registryMutex
1461 * cannot itself proceed until the registry is initialized.
1462 */
1463UBool Transliterator::initializeRegistry(UErrorCode &status) {
1464 if (registry != 0) {
1465 return TRUE;
1466 }
1467
1468 registry = new TransliteratorRegistry(status);
1469 if (registry == 0 || U_FAILURE(status)) {
1470 delete registry;
1471 registry = 0;
1472 return FALSE; // can't create registry, no recovery
1473 }
1474
1475 /* The following code parses the index table located in
1476 * icu/data/translit/root.txt. The index is an n x 4 table
1477 * that follows this format:
1478 * <id>{
1479 * file{
1480 * resource{"<resource>"}
1481 * direction{"<direction>"}
1482 * }
1483 * }
1484 * <id>{
1485 * internal{
1486 * resource{"<resource>"}
1487 * direction{"<direction"}
1488 * }
1489 * }
1490 * <id>{
1491 * alias{"<getInstanceArg"}
1492 * }
1493 * <id> is the ID of the system transliterator being defined. These
1494 * are public IDs enumerated by Transliterator.getAvailableIDs(),
1495 * unless the second field is "internal".
1496 *
1497 * <resource> is a ResourceReader resource name. Currently these refer
1498 * to file names under com/ibm/text/resources. This string is passed
1499 * directly to ResourceReader, together with <encoding>.
1500 *
1501 * <direction> is either "FORWARD" or "REVERSE".
1502 *
1503 * <getInstanceArg> is a string to be passed directly to
1504 * Transliterator.getInstance(). The returned Transliterator object
1505 * then has its ID changed to <id> and is returned.
1506 *
1507 * The extra blank field on "alias" lines is to make the array square.
1508 */
1509 //static const char translit_index[] = "translit_index";
1510
1511 UErrorCode lstatus = U_ZERO_ERROR;
1512 UResourceBundle *bundle, *transIDs, *colBund;
1513 bundle = ures_open(U_ICUDATA_TRANSLIT, NULL/*open default locale*/, &lstatus);
1514 transIDs = ures_getByKey(bundle, RB_RULE_BASED_IDS, 0, &lstatus);
1515 const UnicodeString T_PART = UNICODE_STRING_SIMPLE("-t-");
1516
1517 int32_t row, maxRows;
1518 if (lstatus == U_MEMORY_ALLOCATION_ERROR) {
1519 delete registry;
1520 registry = nullptr;
1521 status = U_MEMORY_ALLOCATION_ERROR;
1522 return FALSE;
1523 }
1524 if (U_SUCCESS(lstatus)) {
1525 maxRows = ures_getSize(transIDs);
1526 for (row = 0; row < maxRows; row++) {
1527 colBund = ures_getByIndex(transIDs, row, 0, &lstatus);
1528 if (U_SUCCESS(lstatus)) {
1529 UnicodeString id(ures_getKey(colBund), -1, US_INV);
1530 if(id.indexOf(T_PART) != -1) {
1531 ures_close(colBund);
1532 continue;
1533 }
1534 UResourceBundle* res = ures_getNextResource(colBund, NULL, &lstatus);
1535 const char* typeStr = ures_getKey(res);
1536 UChar type;
1537 u_charsToUChars(typeStr, &type, 1);
1538
1539 if (U_SUCCESS(lstatus)) {
1540 int32_t len = 0;
1541 const UChar *resString;
1542 switch (type) {
1543 case 0x66: // 'f'
1544 case 0x69: // 'i'
1545 // 'file' or 'internal';
1546 // row[2]=resource, row[3]=direction
1547 {
1548
1549 resString = ures_getStringByKey(res, "resource", &len, &lstatus);
1550 UBool visible = (type == 0x0066 /*f*/);
1551 UTransDirection dir =
1552 (ures_getUnicodeStringByKey(res, "direction", &lstatus).charAt(0) ==
1553 0x0046 /*F*/) ?
1554 UTRANS_FORWARD : UTRANS_REVERSE;
1555 registry->put(id, UnicodeString(TRUE, resString, len), dir, TRUE, visible, lstatus);
1556 }
1557 break;
1558 case 0x61: // 'a'
1559 // 'alias'; row[2]=createInstance argument
1560 resString = ures_getString(res, &len, &lstatus);
1561 registry->put(id, UnicodeString(TRUE, resString, len), TRUE, TRUE, lstatus);
1562 break;
1563 }
1564 }
1565 ures_close(res);
1566 }
1567 ures_close(colBund);
1568 }
1569 }
1570
1571 ures_close(transIDs);
1572 ures_close(bundle);
1573
1574 // Manually add prototypes that the system knows about to the
1575 // cache. This is how new non-rule-based transliterators are
1576 // added to the system.
1577
1578 // This is to allow for null pointer check
1579 NullTransliterator* tempNullTranslit = new NullTransliterator();
1580 LowercaseTransliterator* tempLowercaseTranslit = new LowercaseTransliterator();
1581 UppercaseTransliterator* tempUppercaseTranslit = new UppercaseTransliterator();
1582 TitlecaseTransliterator* tempTitlecaseTranslit = new TitlecaseTransliterator();
1583 UnicodeNameTransliterator* tempUnicodeTranslit = new UnicodeNameTransliterator();
1584 NameUnicodeTransliterator* tempNameUnicodeTranslit = new NameUnicodeTransliterator();
1585#if !UCONFIG_NO_BREAK_ITERATION
1586 // TODO: could or should these transliterators be referenced polymorphically once constructed?
1587 BreakTransliterator* tempBreakTranslit = new BreakTransliterator();
1588#endif
1589 // Check for null pointers
1590 if (tempNullTranslit == NULL || tempLowercaseTranslit == NULL || tempUppercaseTranslit == NULL ||
1591 tempTitlecaseTranslit == NULL || tempUnicodeTranslit == NULL ||
1592#if !UCONFIG_NO_BREAK_ITERATION
1593 tempBreakTranslit == NULL ||
1594#endif
1595 tempNameUnicodeTranslit == NULL )
1596 {
1597 delete tempNullTranslit;
1598 delete tempLowercaseTranslit;
1599 delete tempUppercaseTranslit;
1600 delete tempTitlecaseTranslit;
1601 delete tempUnicodeTranslit;
1602 delete tempNameUnicodeTranslit;
1603#if !UCONFIG_NO_BREAK_ITERATION
1604 delete tempBreakTranslit;
1605#endif
1606 // Since there was an error, remove registry
1607 delete registry;
1608 registry = NULL;
1609
1610 status = U_MEMORY_ALLOCATION_ERROR;
1611 return 0;
1612 }
1613
1614 registry->put(tempNullTranslit, TRUE, status);
1615 registry->put(tempLowercaseTranslit, TRUE, status);
1616 registry->put(tempUppercaseTranslit, TRUE, status);
1617 registry->put(tempTitlecaseTranslit, TRUE, status);
1618 registry->put(tempUnicodeTranslit, TRUE, status);
1619 registry->put(tempNameUnicodeTranslit, TRUE, status);
1620#if !UCONFIG_NO_BREAK_ITERATION
1621 registry->put(tempBreakTranslit, FALSE, status); // FALSE means invisible.
1622#endif
1623
1624 RemoveTransliterator::registerIDs(); // Must be within mutex
1625 EscapeTransliterator::registerIDs();
1626 UnescapeTransliterator::registerIDs();
1627 NormalizationTransliterator::registerIDs();
1628 AnyTransliterator::registerIDs();
1629
1630 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Null"),
1631 UNICODE_STRING_SIMPLE("Null"), FALSE);
1632 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Upper"),
1633 UNICODE_STRING_SIMPLE("Lower"), TRUE);
1634 _registerSpecialInverse(UNICODE_STRING_SIMPLE("Title"),
1635 UNICODE_STRING_SIMPLE("Lower"), FALSE);
1636
1637 ucln_i18n_registerCleanup(UCLN_I18N_TRANSLITERATOR, utrans_transliterator_cleanup);
1638
1639 return TRUE;
1640}
1641
1642U_NAMESPACE_END
1643
1644// Defined in transreg.h:
1645
1646/**
1647 * Release all static memory held by transliterator. This will
1648 * necessarily invalidate any rule-based transliterators held by the
1649 * user, because RBTs hold pointers to common data objects.
1650 */
1651U_CFUNC UBool utrans_transliterator_cleanup(void) {
1652 U_NAMESPACE_USE
1653 TransliteratorIDParser::cleanup();
1654 if (registry) {
1655 delete registry;
1656 registry = NULL;
1657 }
1658 return TRUE;
1659}
1660
1661#endif /* #if !UCONFIG_NO_TRANSLITERATION */
1662
1663//eof
1664