| 1 | // © 2016 and later: Unicode, Inc. and others. |
| 2 | // License & terms of use: http://www.unicode.org/copyright.html |
| 3 | /* |
| 4 | ****************************************************************************** |
| 5 | * |
| 6 | * Copyright (C) 2008-2015, International Business Machines |
| 7 | * Corporation and others. All Rights Reserved. |
| 8 | * |
| 9 | ****************************************************************************** |
| 10 | * file name: uspoof_conf.cpp |
| 11 | * encoding: UTF-8 |
| 12 | * tab size: 8 (not used) |
| 13 | * indentation:4 |
| 14 | * |
| 15 | * created on: 2009Jan05 (refactoring earlier files) |
| 16 | * created by: Andy Heninger |
| 17 | * |
| 18 | * Internal classes for compililing confusable data into its binary (runtime) form. |
| 19 | */ |
| 20 | |
| 21 | #include "unicode/utypes.h" |
| 22 | #include "unicode/uspoof.h" |
| 23 | #if !UCONFIG_NO_REGULAR_EXPRESSIONS |
| 24 | #if !UCONFIG_NO_NORMALIZATION |
| 25 | |
| 26 | #include "unicode/unorm.h" |
| 27 | #include "unicode/uregex.h" |
| 28 | #include "unicode/ustring.h" |
| 29 | #include "cmemory.h" |
| 30 | #include "uspoof_impl.h" |
| 31 | #include "uhash.h" |
| 32 | #include "uvector.h" |
| 33 | #include "uassert.h" |
| 34 | #include "uarrsort.h" |
| 35 | #include "uspoof_conf.h" |
| 36 | |
| 37 | U_NAMESPACE_USE |
| 38 | |
| 39 | |
| 40 | //--------------------------------------------------------------------- |
| 41 | // |
| 42 | // buildConfusableData Compile the source confusable data, as defined by |
| 43 | // the Unicode data file confusables.txt, into the binary |
| 44 | // structures used by the confusable detector. |
| 45 | // |
| 46 | // The binary structures are described in uspoof_impl.h |
| 47 | // |
| 48 | // 1. Parse the data, making a hash table mapping from a UChar32 to a String. |
| 49 | // |
| 50 | // 2. Sort all of the strings encountered by length, since they will need to |
| 51 | // be stored in that order in the final string table. |
| 52 | // TODO: Sorting these strings by length is no longer needed since the removal of |
| 53 | // the string lengths table. This logic can be removed to save processing time |
| 54 | // when building confusables data. |
| 55 | // |
| 56 | // 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the |
| 57 | // list because that will be the ordering of our runtime table. |
| 58 | // |
| 59 | // 4. Generate the run time string table. This is generated before the key & value |
| 60 | // tables because we need the string indexes when building those tables. |
| 61 | // |
| 62 | // 5. Build the run-time key and value tables. These are parallel tables, and are built |
| 63 | // at the same time |
| 64 | // |
| 65 | |
| 66 | SPUString::SPUString(UnicodeString *s) { |
| 67 | fStr = s; |
| 68 | fCharOrStrTableIndex = 0; |
| 69 | } |
| 70 | |
| 71 | |
| 72 | SPUString::~SPUString() { |
| 73 | delete fStr; |
| 74 | } |
| 75 | |
| 76 | |
| 77 | SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { |
| 78 | fVec = new UVector(status); |
| 79 | if (fVec == NULL) { |
| 80 | status = U_MEMORY_ALLOCATION_ERROR; |
| 81 | return; |
| 82 | } |
| 83 | fHash = uhash_open(uhash_hashUnicodeString, // key hash function |
| 84 | uhash_compareUnicodeString, // Key Comparator |
| 85 | NULL, // Value Comparator |
| 86 | &status); |
| 87 | } |
| 88 | |
| 89 | |
| 90 | SPUStringPool::~SPUStringPool() { |
| 91 | int i; |
| 92 | for (i=fVec->size()-1; i>=0; i--) { |
| 93 | SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); |
| 94 | delete s; |
| 95 | } |
| 96 | delete fVec; |
| 97 | uhash_close(fHash); |
| 98 | } |
| 99 | |
| 100 | |
| 101 | int32_t SPUStringPool::size() { |
| 102 | return fVec->size(); |
| 103 | } |
| 104 | |
| 105 | SPUString *SPUStringPool::getByIndex(int32_t index) { |
| 106 | SPUString *retString = (SPUString *)fVec->elementAt(index); |
| 107 | return retString; |
| 108 | } |
| 109 | |
| 110 | |
| 111 | // Comparison function for ordering strings in the string pool. |
| 112 | // Compare by length first, then, within a group of the same length, |
| 113 | // by code point order. |
| 114 | // Conforms to the type signature for a USortComparator in uvector.h |
| 115 | |
| 116 | static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { |
| 117 | const SPUString *sL = const_cast<const SPUString *>( |
| 118 | static_cast<SPUString *>(left.pointer)); |
| 119 | const SPUString *sR = const_cast<const SPUString *>( |
| 120 | static_cast<SPUString *>(right.pointer)); |
| 121 | int32_t lenL = sL->fStr->length(); |
| 122 | int32_t lenR = sR->fStr->length(); |
| 123 | if (lenL < lenR) { |
| 124 | return -1; |
| 125 | } else if (lenL > lenR) { |
| 126 | return 1; |
| 127 | } else { |
| 128 | return sL->fStr->compare(*(sR->fStr)); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | void SPUStringPool::sort(UErrorCode &status) { |
| 133 | fVec->sort(SPUStringCompare, status); |
| 134 | } |
| 135 | |
| 136 | |
| 137 | SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { |
| 138 | SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); |
| 139 | if (hashedString != NULL) { |
| 140 | delete src; |
| 141 | } else { |
| 142 | hashedString = new SPUString(src); |
| 143 | if (hashedString == NULL) { |
| 144 | status = U_MEMORY_ALLOCATION_ERROR; |
| 145 | return NULL; |
| 146 | } |
| 147 | uhash_put(fHash, src, hashedString, &status); |
| 148 | fVec->addElement(hashedString, status); |
| 149 | } |
| 150 | return hashedString; |
| 151 | } |
| 152 | |
| 153 | |
| 154 | |
| 155 | ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : |
| 156 | fSpoofImpl(spImpl), |
| 157 | fInput(NULL), |
| 158 | fTable(NULL), |
| 159 | fKeySet(NULL), |
| 160 | fKeyVec(NULL), |
| 161 | fValueVec(NULL), |
| 162 | fStringTable(NULL), |
| 163 | stringPool(NULL), |
| 164 | fParseLine(NULL), |
| 165 | fParseHexNum(NULL), |
| 166 | fLineNum(0) |
| 167 | { |
| 168 | if (U_FAILURE(status)) { |
| 169 | return; |
| 170 | } |
| 171 | |
| 172 | fTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
| 173 | |
| 174 | fKeySet = new UnicodeSet(); |
| 175 | if (fKeySet == NULL) { |
| 176 | status = U_MEMORY_ALLOCATION_ERROR; |
| 177 | return; |
| 178 | } |
| 179 | |
| 180 | fKeyVec = new UVector(status); |
| 181 | if (fKeyVec == NULL) { |
| 182 | status = U_MEMORY_ALLOCATION_ERROR; |
| 183 | return; |
| 184 | } |
| 185 | |
| 186 | fValueVec = new UVector(status); |
| 187 | if (fValueVec == NULL) { |
| 188 | status = U_MEMORY_ALLOCATION_ERROR; |
| 189 | return; |
| 190 | } |
| 191 | |
| 192 | stringPool = new SPUStringPool(status); |
| 193 | if (stringPool == NULL) { |
| 194 | status = U_MEMORY_ALLOCATION_ERROR; |
| 195 | return; |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | |
| 200 | ConfusabledataBuilder::~ConfusabledataBuilder() { |
| 201 | uprv_free(fInput); |
| 202 | uregex_close(fParseLine); |
| 203 | uregex_close(fParseHexNum); |
| 204 | uhash_close(fTable); |
| 205 | delete fKeySet; |
| 206 | delete fKeyVec; |
| 207 | delete fStringTable; |
| 208 | delete fValueVec; |
| 209 | delete stringPool; |
| 210 | } |
| 211 | |
| 212 | |
| 213 | void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, |
| 214 | int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { |
| 215 | |
| 216 | if (U_FAILURE(status)) { |
| 217 | return; |
| 218 | } |
| 219 | ConfusabledataBuilder builder(spImpl, status); |
| 220 | builder.build(confusables, confusablesLen, status); |
| 221 | if (U_FAILURE(status) && errorType != NULL) { |
| 222 | *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; |
| 223 | pe->line = builder.fLineNum; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | |
| 228 | void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, |
| 229 | UErrorCode &status) { |
| 230 | |
| 231 | // Convert the user input data from UTF-8 to UChar (UTF-16) |
| 232 | int32_t inputLen = 0; |
| 233 | if (U_FAILURE(status)) { |
| 234 | return; |
| 235 | } |
| 236 | u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); |
| 237 | if (status != U_BUFFER_OVERFLOW_ERROR) { |
| 238 | return; |
| 239 | } |
| 240 | status = U_ZERO_ERROR; |
| 241 | fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); |
| 242 | if (fInput == NULL) { |
| 243 | status = U_MEMORY_ALLOCATION_ERROR; |
| 244 | return; |
| 245 | } |
| 246 | u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); |
| 247 | |
| 248 | |
| 249 | // Regular Expression to parse a line from Confusables.txt. The expression will match |
| 250 | // any line. What was matched is determined by examining which capture groups have a match. |
| 251 | // Capture Group 1: the source char |
| 252 | // Capture Group 2: the replacement chars |
| 253 | // Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated) |
| 254 | // Capture Group 7: A blank or comment only line. |
| 255 | // Capture Group 8: A syntactically invalid line. Anything that didn't match before. |
| 256 | // Example Line from the confusables.txt source file: |
| 257 | // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " |
| 258 | UnicodeString pattern( |
| 259 | "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char |
| 260 | "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) |
| 261 | "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) |
| 262 | "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type |
| 263 | "[ \\t]*(?:#.*?)?$" // Match any trailing #comment |
| 264 | "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment |
| 265 | "|^(.*?)$" , -1, US_INV); // OR match any line, which catches illegal lines. |
| 266 | // TODO: Why are we using the regex C API here? C++ would just take UnicodeString... |
| 267 | fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); |
| 268 | |
| 269 | // Regular expression for parsing a hex number out of a space-separated list of them. |
| 270 | // Capture group 1 gets the number, with spaces removed. |
| 271 | pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)" ); |
| 272 | fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, NULL, &status); |
| 273 | |
| 274 | // Zap any Byte Order Mark at the start of input. Changing it to a space is benign |
| 275 | // given the syntax of the input. |
| 276 | if (*fInput == 0xfeff) { |
| 277 | *fInput = 0x20; |
| 278 | } |
| 279 | |
| 280 | // Parse the input, one line per iteration of this loop. |
| 281 | uregex_setText(fParseLine, fInput, inputLen, &status); |
| 282 | while (uregex_findNext(fParseLine, &status)) { |
| 283 | fLineNum++; |
| 284 | if (uregex_start(fParseLine, 7, &status) >= 0) { |
| 285 | // this was a blank or comment line. |
| 286 | continue; |
| 287 | } |
| 288 | if (uregex_start(fParseLine, 8, &status) >= 0) { |
| 289 | // input file syntax error. |
| 290 | status = U_PARSE_ERROR; |
| 291 | return; |
| 292 | } |
| 293 | |
| 294 | // We have a good input line. Extract the key character and mapping string, and |
| 295 | // put them into the appropriate mapping table. |
| 296 | UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), |
| 297 | uregex_end(fParseLine, 1, &status), status); |
| 298 | |
| 299 | int32_t mapStringStart = uregex_start(fParseLine, 2, &status); |
| 300 | int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; |
| 301 | uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); |
| 302 | |
| 303 | UnicodeString *mapString = new UnicodeString(); |
| 304 | if (mapString == NULL) { |
| 305 | status = U_MEMORY_ALLOCATION_ERROR; |
| 306 | return; |
| 307 | } |
| 308 | while (uregex_findNext(fParseHexNum, &status)) { |
| 309 | UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), |
| 310 | uregex_end(fParseHexNum, 1, &status), status); |
| 311 | mapString->append(c); |
| 312 | } |
| 313 | U_ASSERT(mapString->length() >= 1); |
| 314 | |
| 315 | // Put the map (value) string into the string pool |
| 316 | // This a little like a Java intern() - any duplicates will be eliminated. |
| 317 | SPUString *smapString = stringPool->addString(mapString, status); |
| 318 | |
| 319 | // Add the UChar32 -> string mapping to the table. |
| 320 | // For Unicode 8, the SL, SA and ML tables have been discontinued. |
| 321 | // All input data from confusables.txt is tagged MA. |
| 322 | uhash_iput(fTable, keyChar, smapString, &status); |
| 323 | if (U_FAILURE(status)) { return; } |
| 324 | fKeySet->add(keyChar); |
| 325 | } |
| 326 | |
| 327 | // Input data is now all parsed and collected. |
| 328 | // Now create the run-time binary form of the data. |
| 329 | // |
| 330 | // This is done in two steps. First the data is assembled into vectors and strings, |
| 331 | // for ease of construction, then the contents of these collections are dumped |
| 332 | // into the actual raw-bytes data storage. |
| 333 | |
| 334 | // Build up the string array, and record the index of each string therein |
| 335 | // in the (build time only) string pool. |
| 336 | // Strings of length one are not entered into the strings array. |
| 337 | // (Strings in the table are sorted by length) |
| 338 | stringPool->sort(status); |
| 339 | fStringTable = new UnicodeString(); |
| 340 | int32_t poolSize = stringPool->size(); |
| 341 | int32_t i; |
| 342 | for (i=0; i<poolSize; i++) { |
| 343 | SPUString *s = stringPool->getByIndex(i); |
| 344 | int32_t strLen = s->fStr->length(); |
| 345 | int32_t strIndex = fStringTable->length(); |
| 346 | if (strLen == 1) { |
| 347 | // strings of length one do not get an entry in the string table. |
| 348 | // Keep the single string character itself here, which is the same |
| 349 | // convention that is used in the final run-time string table index. |
| 350 | s->fCharOrStrTableIndex = s->fStr->charAt(0); |
| 351 | } else { |
| 352 | s->fCharOrStrTableIndex = strIndex; |
| 353 | fStringTable->append(*(s->fStr)); |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | // Construct the compile-time Key and Value tables |
| 358 | // |
| 359 | // For each key code point, check which mapping tables it applies to, |
| 360 | // and create the final data for the key & value structures. |
| 361 | // |
| 362 | // The four logical mapping tables are conflated into one combined table. |
| 363 | // If multiple logical tables have the same mapping for some key, they |
| 364 | // share a single entry in the combined table. |
| 365 | // If more than one mapping exists for the same key code point, multiple |
| 366 | // entries will be created in the table |
| 367 | |
| 368 | for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { |
| 369 | // It is an oddity of the UnicodeSet API that simply enumerating the contained |
| 370 | // code points requires a nested loop. |
| 371 | for (UChar32 keyChar=fKeySet->getRangeStart(range); |
| 372 | keyChar <= fKeySet->getRangeEnd(range); keyChar++) { |
| 373 | SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar)); |
| 374 | U_ASSERT(targetMapping != NULL); |
| 375 | |
| 376 | // Set an error code if trying to consume a long string. Otherwise, |
| 377 | // codePointAndLengthToKey will abort on a U_ASSERT. |
| 378 | if (targetMapping->fStr->length() > 256) { |
| 379 | status = U_ILLEGAL_ARGUMENT_ERROR; |
| 380 | return; |
| 381 | } |
| 382 | |
| 383 | int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar, |
| 384 | targetMapping->fStr->length()); |
| 385 | int32_t value = targetMapping->fCharOrStrTableIndex; |
| 386 | |
| 387 | fKeyVec->addElement(key, status); |
| 388 | fValueVec->addElement(value, status); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Put the assembled data into the flat runtime array |
| 393 | outputData(status); |
| 394 | |
| 395 | // All of the intermediate allocated data belongs to the ConfusabledataBuilder |
| 396 | // object (this), and is deleted in the destructor. |
| 397 | return; |
| 398 | } |
| 399 | |
| 400 | // |
| 401 | // outputData The confusable data has been compiled and stored in intermediate |
| 402 | // collections and strings. Copy it from there to the final flat |
| 403 | // binary array. |
| 404 | // |
| 405 | // Note that as each section is added to the output data, the |
| 406 | // expand (reserveSpace() function will likely relocate it in memory. |
| 407 | // Be careful with pointers. |
| 408 | // |
| 409 | void ConfusabledataBuilder::outputData(UErrorCode &status) { |
| 410 | |
| 411 | U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); |
| 412 | |
| 413 | // The Key Table |
| 414 | // While copying the keys to the runtime array, |
| 415 | // also sanity check that they are sorted. |
| 416 | |
| 417 | int32_t numKeys = fKeyVec->size(); |
| 418 | int32_t *keys = |
| 419 | static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); |
| 420 | if (U_FAILURE(status)) { |
| 421 | return; |
| 422 | } |
| 423 | int i; |
| 424 | UChar32 previousCodePoint = 0; |
| 425 | for (i=0; i<numKeys; i++) { |
| 426 | int32_t key = fKeyVec->elementAti(i); |
| 427 | UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key); |
| 428 | (void)previousCodePoint; // Suppress unused variable warning. |
| 429 | // strictly greater because there can be only one entry per code point |
| 430 | U_ASSERT(codePoint > previousCodePoint); |
| 431 | keys[i] = key; |
| 432 | previousCodePoint = codePoint; |
| 433 | } |
| 434 | SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; |
| 435 | rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); |
| 436 | rawData->fCFUKeysSize = numKeys; |
| 437 | fSpoofImpl->fSpoofData->fCFUKeys = keys; |
| 438 | |
| 439 | |
| 440 | // The Value Table, parallels the key table |
| 441 | int32_t numValues = fValueVec->size(); |
| 442 | U_ASSERT(numKeys == numValues); |
| 443 | uint16_t *values = |
| 444 | static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); |
| 445 | if (U_FAILURE(status)) { |
| 446 | return; |
| 447 | } |
| 448 | for (i=0; i<numValues; i++) { |
| 449 | uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); |
| 450 | U_ASSERT(value < 0xffff); |
| 451 | values[i] = static_cast<uint16_t>(value); |
| 452 | } |
| 453 | rawData = fSpoofImpl->fSpoofData->fRawData; |
| 454 | rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); |
| 455 | rawData->fCFUStringIndexSize = numValues; |
| 456 | fSpoofImpl->fSpoofData->fCFUValues = values; |
| 457 | |
| 458 | // The Strings Table. |
| 459 | |
| 460 | uint32_t stringsLength = fStringTable->length(); |
| 461 | // Reserve an extra space so the string will be nul-terminated. This is |
| 462 | // only a convenience, for when debugging; it is not needed otherwise. |
| 463 | UChar *strings = |
| 464 | static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); |
| 465 | if (U_FAILURE(status)) { |
| 466 | return; |
| 467 | } |
| 468 | fStringTable->extract(strings, stringsLength+1, status); |
| 469 | rawData = fSpoofImpl->fSpoofData->fRawData; |
| 470 | U_ASSERT(rawData->fCFUStringTable == 0); |
| 471 | rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); |
| 472 | rawData->fCFUStringTableLen = stringsLength; |
| 473 | fSpoofImpl->fSpoofData->fCFUStrings = strings; |
| 474 | } |
| 475 | |
| 476 | #endif |
| 477 | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
| 478 | |
| 479 | |