1 | /* |
2 | * jcphuff.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1995-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2015, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains Huffman entropy encoding routines for progressive JPEG. |
12 | * |
13 | * We do not support output suspension in this module, since the library |
14 | * currently does not allow multiple-scan files to be written with output |
15 | * suspension. |
16 | */ |
17 | |
18 | #define JPEG_INTERNALS |
19 | #include "jinclude.h" |
20 | #include "jpeglib.h" |
21 | #include "jchuff.h" /* Declarations shared with jchuff.c */ |
22 | |
23 | #ifdef C_PROGRESSIVE_SUPPORTED |
24 | |
25 | /* Expanded entropy encoder object for progressive Huffman encoding. */ |
26 | |
27 | typedef struct { |
28 | struct jpeg_entropy_encoder pub; /* public fields */ |
29 | |
30 | /* Mode flag: TRUE for optimization, FALSE for actual data output */ |
31 | boolean gather_statistics; |
32 | |
33 | /* Bit-level coding status. |
34 | * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. |
35 | */ |
36 | JOCTET *next_output_byte; /* => next byte to write in buffer */ |
37 | size_t free_in_buffer; /* # of byte spaces remaining in buffer */ |
38 | size_t put_buffer; /* current bit-accumulation buffer */ |
39 | int put_bits; /* # of bits now in it */ |
40 | j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ |
41 | |
42 | /* Coding status for DC components */ |
43 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
44 | |
45 | /* Coding status for AC components */ |
46 | int ac_tbl_no; /* the table number of the single component */ |
47 | unsigned int EOBRUN; /* run length of EOBs */ |
48 | unsigned int BE; /* # of buffered correction bits before MCU */ |
49 | char *bit_buffer; /* buffer for correction bits (1 per char) */ |
50 | /* packing correction bits tightly would save some space but cost time... */ |
51 | |
52 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
53 | int next_restart_num; /* next restart number to write (0-7) */ |
54 | |
55 | /* Pointers to derived tables (these workspaces have image lifespan). |
56 | * Since any one scan codes only DC or only AC, we only need one set |
57 | * of tables, not one for DC and one for AC. |
58 | */ |
59 | c_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; |
60 | |
61 | /* Statistics tables for optimization; again, one set is enough */ |
62 | long *count_ptrs[NUM_HUFF_TBLS]; |
63 | } phuff_entropy_encoder; |
64 | |
65 | typedef phuff_entropy_encoder *phuff_entropy_ptr; |
66 | |
67 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit |
68 | * buffer can hold. Larger sizes may slightly improve compression, but |
69 | * 1000 is already well into the realm of overkill. |
70 | * The minimum safe size is 64 bits. |
71 | */ |
72 | |
73 | #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ |
74 | |
75 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG. |
76 | * We assume that int right shift is unsigned if JLONG right shift is, |
77 | * which should be safe. |
78 | */ |
79 | |
80 | #ifdef RIGHT_SHIFT_IS_UNSIGNED |
81 | #define ISHIFT_TEMPS int ishift_temp; |
82 | #define IRIGHT_SHIFT(x,shft) \ |
83 | ((ishift_temp = (x)) < 0 ? \ |
84 | (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ |
85 | (ishift_temp >> (shft))) |
86 | #else |
87 | #define ISHIFT_TEMPS |
88 | #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) |
89 | #endif |
90 | |
91 | /* Forward declarations */ |
92 | METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, |
93 | JBLOCKROW *MCU_data); |
94 | METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, |
95 | JBLOCKROW *MCU_data); |
96 | METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, |
97 | JBLOCKROW *MCU_data); |
98 | METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, |
99 | JBLOCKROW *MCU_data); |
100 | METHODDEF(void) finish_pass_phuff (j_compress_ptr cinfo); |
101 | METHODDEF(void) finish_pass_gather_phuff (j_compress_ptr cinfo); |
102 | |
103 | |
104 | /* |
105 | * Initialize for a Huffman-compressed scan using progressive JPEG. |
106 | */ |
107 | |
108 | METHODDEF(void) |
109 | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) |
110 | { |
111 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
112 | boolean is_DC_band; |
113 | int ci, tbl; |
114 | jpeg_component_info *compptr; |
115 | |
116 | entropy->cinfo = cinfo; |
117 | entropy->gather_statistics = gather_statistics; |
118 | |
119 | is_DC_band = (cinfo->Ss == 0); |
120 | |
121 | /* We assume jcmaster.c already validated the scan parameters. */ |
122 | |
123 | /* Select execution routines */ |
124 | if (cinfo->Ah == 0) { |
125 | if (is_DC_band) |
126 | entropy->pub.encode_mcu = encode_mcu_DC_first; |
127 | else |
128 | entropy->pub.encode_mcu = encode_mcu_AC_first; |
129 | } else { |
130 | if (is_DC_band) |
131 | entropy->pub.encode_mcu = encode_mcu_DC_refine; |
132 | else { |
133 | entropy->pub.encode_mcu = encode_mcu_AC_refine; |
134 | /* AC refinement needs a correction bit buffer */ |
135 | if (entropy->bit_buffer == NULL) |
136 | entropy->bit_buffer = (char *) |
137 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
138 | MAX_CORR_BITS * sizeof(char)); |
139 | } |
140 | } |
141 | if (gather_statistics) |
142 | entropy->pub.finish_pass = finish_pass_gather_phuff; |
143 | else |
144 | entropy->pub.finish_pass = finish_pass_phuff; |
145 | |
146 | /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 |
147 | * for AC coefficients. |
148 | */ |
149 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
150 | compptr = cinfo->cur_comp_info[ci]; |
151 | /* Initialize DC predictions to 0 */ |
152 | entropy->last_dc_val[ci] = 0; |
153 | /* Get table index */ |
154 | if (is_DC_band) { |
155 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
156 | continue; |
157 | tbl = compptr->dc_tbl_no; |
158 | } else { |
159 | entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; |
160 | } |
161 | if (gather_statistics) { |
162 | /* Check for invalid table index */ |
163 | /* (make_c_derived_tbl does this in the other path) */ |
164 | if (tbl < 0 || tbl >= NUM_HUFF_TBLS) |
165 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); |
166 | /* Allocate and zero the statistics tables */ |
167 | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ |
168 | if (entropy->count_ptrs[tbl] == NULL) |
169 | entropy->count_ptrs[tbl] = (long *) |
170 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
171 | 257 * sizeof(long)); |
172 | MEMZERO(entropy->count_ptrs[tbl], 257 * sizeof(long)); |
173 | } else { |
174 | /* Compute derived values for Huffman table */ |
175 | /* We may do this more than once for a table, but it's not expensive */ |
176 | jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, |
177 | & entropy->derived_tbls[tbl]); |
178 | } |
179 | } |
180 | |
181 | /* Initialize AC stuff */ |
182 | entropy->EOBRUN = 0; |
183 | entropy->BE = 0; |
184 | |
185 | /* Initialize bit buffer to empty */ |
186 | entropy->put_buffer = 0; |
187 | entropy->put_bits = 0; |
188 | |
189 | /* Initialize restart stuff */ |
190 | entropy->restarts_to_go = cinfo->restart_interval; |
191 | entropy->next_restart_num = 0; |
192 | } |
193 | |
194 | |
195 | /* Outputting bytes to the file. |
196 | * NB: these must be called only when actually outputting, |
197 | * that is, entropy->gather_statistics == FALSE. |
198 | */ |
199 | |
200 | /* Emit a byte */ |
201 | #define emit_byte(entropy,val) \ |
202 | { *(entropy)->next_output_byte++ = (JOCTET) (val); \ |
203 | if (--(entropy)->free_in_buffer == 0) \ |
204 | dump_buffer(entropy); } |
205 | |
206 | |
207 | LOCAL(void) |
208 | dump_buffer (phuff_entropy_ptr entropy) |
209 | /* Empty the output buffer; we do not support suspension in this module. */ |
210 | { |
211 | struct jpeg_destination_mgr *dest = entropy->cinfo->dest; |
212 | |
213 | if (! (*dest->empty_output_buffer) (entropy->cinfo)) |
214 | ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); |
215 | /* After a successful buffer dump, must reset buffer pointers */ |
216 | entropy->next_output_byte = dest->next_output_byte; |
217 | entropy->free_in_buffer = dest->free_in_buffer; |
218 | } |
219 | |
220 | |
221 | /* Outputting bits to the file */ |
222 | |
223 | /* Only the right 24 bits of put_buffer are used; the valid bits are |
224 | * left-justified in this part. At most 16 bits can be passed to emit_bits |
225 | * in one call, and we never retain more than 7 bits in put_buffer |
226 | * between calls, so 24 bits are sufficient. |
227 | */ |
228 | |
229 | LOCAL(void) |
230 | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) |
231 | /* Emit some bits, unless we are in gather mode */ |
232 | { |
233 | /* This routine is heavily used, so it's worth coding tightly. */ |
234 | register size_t put_buffer = (size_t) code; |
235 | register int put_bits = entropy->put_bits; |
236 | |
237 | /* if size is 0, caller used an invalid Huffman table entry */ |
238 | if (size == 0) |
239 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
240 | |
241 | if (entropy->gather_statistics) |
242 | return; /* do nothing if we're only getting stats */ |
243 | |
244 | put_buffer &= (((size_t) 1)<<size) - 1; /* mask off any extra bits in code */ |
245 | |
246 | put_bits += size; /* new number of bits in buffer */ |
247 | |
248 | put_buffer <<= 24 - put_bits; /* align incoming bits */ |
249 | |
250 | put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ |
251 | |
252 | while (put_bits >= 8) { |
253 | int c = (int) ((put_buffer >> 16) & 0xFF); |
254 | |
255 | emit_byte(entropy, c); |
256 | if (c == 0xFF) { /* need to stuff a zero byte? */ |
257 | emit_byte(entropy, 0); |
258 | } |
259 | put_buffer <<= 8; |
260 | put_bits -= 8; |
261 | } |
262 | |
263 | entropy->put_buffer = put_buffer; /* update variables */ |
264 | entropy->put_bits = put_bits; |
265 | } |
266 | |
267 | |
268 | LOCAL(void) |
269 | flush_bits (phuff_entropy_ptr entropy) |
270 | { |
271 | emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ |
272 | entropy->put_buffer = 0; /* and reset bit-buffer to empty */ |
273 | entropy->put_bits = 0; |
274 | } |
275 | |
276 | |
277 | /* |
278 | * Emit (or just count) a Huffman symbol. |
279 | */ |
280 | |
281 | LOCAL(void) |
282 | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) |
283 | { |
284 | if (entropy->gather_statistics) |
285 | entropy->count_ptrs[tbl_no][symbol]++; |
286 | else { |
287 | c_derived_tbl *tbl = entropy->derived_tbls[tbl_no]; |
288 | emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); |
289 | } |
290 | } |
291 | |
292 | |
293 | /* |
294 | * Emit bits from a correction bit buffer. |
295 | */ |
296 | |
297 | LOCAL(void) |
298 | emit_buffered_bits (phuff_entropy_ptr entropy, char *bufstart, |
299 | unsigned int nbits) |
300 | { |
301 | if (entropy->gather_statistics) |
302 | return; /* no real work */ |
303 | |
304 | while (nbits > 0) { |
305 | emit_bits(entropy, (unsigned int) (*bufstart), 1); |
306 | bufstart++; |
307 | nbits--; |
308 | } |
309 | } |
310 | |
311 | |
312 | /* |
313 | * Emit any pending EOBRUN symbol. |
314 | */ |
315 | |
316 | LOCAL(void) |
317 | emit_eobrun (phuff_entropy_ptr entropy) |
318 | { |
319 | register int temp, nbits; |
320 | |
321 | if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ |
322 | temp = entropy->EOBRUN; |
323 | nbits = 0; |
324 | while ((temp >>= 1)) |
325 | nbits++; |
326 | /* safety check: shouldn't happen given limited correction-bit buffer */ |
327 | if (nbits > 14) |
328 | ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); |
329 | |
330 | emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); |
331 | if (nbits) |
332 | emit_bits(entropy, entropy->EOBRUN, nbits); |
333 | |
334 | entropy->EOBRUN = 0; |
335 | |
336 | /* Emit any buffered correction bits */ |
337 | emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); |
338 | entropy->BE = 0; |
339 | } |
340 | } |
341 | |
342 | |
343 | /* |
344 | * Emit a restart marker & resynchronize predictions. |
345 | */ |
346 | |
347 | LOCAL(void) |
348 | emit_restart (phuff_entropy_ptr entropy, int restart_num) |
349 | { |
350 | int ci; |
351 | |
352 | emit_eobrun(entropy); |
353 | |
354 | if (! entropy->gather_statistics) { |
355 | flush_bits(entropy); |
356 | emit_byte(entropy, 0xFF); |
357 | emit_byte(entropy, JPEG_RST0 + restart_num); |
358 | } |
359 | |
360 | if (entropy->cinfo->Ss == 0) { |
361 | /* Re-initialize DC predictions to 0 */ |
362 | for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) |
363 | entropy->last_dc_val[ci] = 0; |
364 | } else { |
365 | /* Re-initialize all AC-related fields to 0 */ |
366 | entropy->EOBRUN = 0; |
367 | entropy->BE = 0; |
368 | } |
369 | } |
370 | |
371 | |
372 | /* |
373 | * MCU encoding for DC initial scan (either spectral selection, |
374 | * or first pass of successive approximation). |
375 | */ |
376 | |
377 | METHODDEF(boolean) |
378 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
379 | { |
380 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
381 | register int temp, temp2; |
382 | register int nbits; |
383 | int blkn, ci; |
384 | int Al = cinfo->Al; |
385 | JBLOCKROW block; |
386 | jpeg_component_info *compptr; |
387 | ISHIFT_TEMPS |
388 | |
389 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
390 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
391 | |
392 | /* Emit restart marker if needed */ |
393 | if (cinfo->restart_interval) |
394 | if (entropy->restarts_to_go == 0) |
395 | emit_restart(entropy, entropy->next_restart_num); |
396 | |
397 | /* Encode the MCU data blocks */ |
398 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
399 | block = MCU_data[blkn]; |
400 | ci = cinfo->MCU_membership[blkn]; |
401 | compptr = cinfo->cur_comp_info[ci]; |
402 | |
403 | /* Compute the DC value after the required point transform by Al. |
404 | * This is simply an arithmetic right shift. |
405 | */ |
406 | temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); |
407 | |
408 | /* DC differences are figured on the point-transformed values. */ |
409 | temp = temp2 - entropy->last_dc_val[ci]; |
410 | entropy->last_dc_val[ci] = temp2; |
411 | |
412 | /* Encode the DC coefficient difference per section G.1.2.1 */ |
413 | temp2 = temp; |
414 | if (temp < 0) { |
415 | temp = -temp; /* temp is abs value of input */ |
416 | /* For a negative input, want temp2 = bitwise complement of abs(input) */ |
417 | /* This code assumes we are on a two's complement machine */ |
418 | temp2--; |
419 | } |
420 | |
421 | /* Find the number of bits needed for the magnitude of the coefficient */ |
422 | nbits = 0; |
423 | while (temp) { |
424 | nbits++; |
425 | temp >>= 1; |
426 | } |
427 | /* Check for out-of-range coefficient values. |
428 | * Since we're encoding a difference, the range limit is twice as much. |
429 | */ |
430 | if (nbits > MAX_COEF_BITS+1) |
431 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
432 | |
433 | /* Count/emit the Huffman-coded symbol for the number of bits */ |
434 | emit_symbol(entropy, compptr->dc_tbl_no, nbits); |
435 | |
436 | /* Emit that number of bits of the value, if positive, */ |
437 | /* or the complement of its magnitude, if negative. */ |
438 | if (nbits) /* emit_bits rejects calls with size 0 */ |
439 | emit_bits(entropy, (unsigned int) temp2, nbits); |
440 | } |
441 | |
442 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
443 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
444 | |
445 | /* Update restart-interval state too */ |
446 | if (cinfo->restart_interval) { |
447 | if (entropy->restarts_to_go == 0) { |
448 | entropy->restarts_to_go = cinfo->restart_interval; |
449 | entropy->next_restart_num++; |
450 | entropy->next_restart_num &= 7; |
451 | } |
452 | entropy->restarts_to_go--; |
453 | } |
454 | |
455 | return TRUE; |
456 | } |
457 | |
458 | |
459 | /* |
460 | * MCU encoding for AC initial scan (either spectral selection, |
461 | * or first pass of successive approximation). |
462 | */ |
463 | |
464 | METHODDEF(boolean) |
465 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
466 | { |
467 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
468 | register int temp, temp2; |
469 | register int nbits; |
470 | register int r, k; |
471 | int Se = cinfo->Se; |
472 | int Al = cinfo->Al; |
473 | JBLOCKROW block; |
474 | |
475 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
476 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
477 | |
478 | /* Emit restart marker if needed */ |
479 | if (cinfo->restart_interval) |
480 | if (entropy->restarts_to_go == 0) |
481 | emit_restart(entropy, entropy->next_restart_num); |
482 | |
483 | /* Encode the MCU data block */ |
484 | block = MCU_data[0]; |
485 | |
486 | /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ |
487 | |
488 | r = 0; /* r = run length of zeros */ |
489 | |
490 | for (k = cinfo->Ss; k <= Se; k++) { |
491 | if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { |
492 | r++; |
493 | continue; |
494 | } |
495 | /* We must apply the point transform by Al. For AC coefficients this |
496 | * is an integer division with rounding towards 0. To do this portably |
497 | * in C, we shift after obtaining the absolute value; so the code is |
498 | * interwoven with finding the abs value (temp) and output bits (temp2). |
499 | */ |
500 | if (temp < 0) { |
501 | temp = -temp; /* temp is abs value of input */ |
502 | temp >>= Al; /* apply the point transform */ |
503 | /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ |
504 | temp2 = ~temp; |
505 | } else { |
506 | temp >>= Al; /* apply the point transform */ |
507 | temp2 = temp; |
508 | } |
509 | /* Watch out for case that nonzero coef is zero after point transform */ |
510 | if (temp == 0) { |
511 | r++; |
512 | continue; |
513 | } |
514 | |
515 | /* Emit any pending EOBRUN */ |
516 | if (entropy->EOBRUN > 0) |
517 | emit_eobrun(entropy); |
518 | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ |
519 | while (r > 15) { |
520 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
521 | r -= 16; |
522 | } |
523 | |
524 | /* Find the number of bits needed for the magnitude of the coefficient */ |
525 | nbits = 1; /* there must be at least one 1 bit */ |
526 | while ((temp >>= 1)) |
527 | nbits++; |
528 | /* Check for out-of-range coefficient values */ |
529 | if (nbits > MAX_COEF_BITS) |
530 | ERREXIT(cinfo, JERR_BAD_DCT_COEF); |
531 | |
532 | /* Count/emit Huffman symbol for run length / number of bits */ |
533 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); |
534 | |
535 | /* Emit that number of bits of the value, if positive, */ |
536 | /* or the complement of its magnitude, if negative. */ |
537 | emit_bits(entropy, (unsigned int) temp2, nbits); |
538 | |
539 | r = 0; /* reset zero run length */ |
540 | } |
541 | |
542 | if (r > 0) { /* If there are trailing zeroes, */ |
543 | entropy->EOBRUN++; /* count an EOB */ |
544 | if (entropy->EOBRUN == 0x7FFF) |
545 | emit_eobrun(entropy); /* force it out to avoid overflow */ |
546 | } |
547 | |
548 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
549 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
550 | |
551 | /* Update restart-interval state too */ |
552 | if (cinfo->restart_interval) { |
553 | if (entropy->restarts_to_go == 0) { |
554 | entropy->restarts_to_go = cinfo->restart_interval; |
555 | entropy->next_restart_num++; |
556 | entropy->next_restart_num &= 7; |
557 | } |
558 | entropy->restarts_to_go--; |
559 | } |
560 | |
561 | return TRUE; |
562 | } |
563 | |
564 | |
565 | /* |
566 | * MCU encoding for DC successive approximation refinement scan. |
567 | * Note: we assume such scans can be multi-component, although the spec |
568 | * is not very clear on the point. |
569 | */ |
570 | |
571 | METHODDEF(boolean) |
572 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
573 | { |
574 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
575 | register int temp; |
576 | int blkn; |
577 | int Al = cinfo->Al; |
578 | JBLOCKROW block; |
579 | |
580 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
581 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
582 | |
583 | /* Emit restart marker if needed */ |
584 | if (cinfo->restart_interval) |
585 | if (entropy->restarts_to_go == 0) |
586 | emit_restart(entropy, entropy->next_restart_num); |
587 | |
588 | /* Encode the MCU data blocks */ |
589 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
590 | block = MCU_data[blkn]; |
591 | |
592 | /* We simply emit the Al'th bit of the DC coefficient value. */ |
593 | temp = (*block)[0]; |
594 | emit_bits(entropy, (unsigned int) (temp >> Al), 1); |
595 | } |
596 | |
597 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
598 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
599 | |
600 | /* Update restart-interval state too */ |
601 | if (cinfo->restart_interval) { |
602 | if (entropy->restarts_to_go == 0) { |
603 | entropy->restarts_to_go = cinfo->restart_interval; |
604 | entropy->next_restart_num++; |
605 | entropy->next_restart_num &= 7; |
606 | } |
607 | entropy->restarts_to_go--; |
608 | } |
609 | |
610 | return TRUE; |
611 | } |
612 | |
613 | |
614 | /* |
615 | * MCU encoding for AC successive approximation refinement scan. |
616 | */ |
617 | |
618 | METHODDEF(boolean) |
619 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) |
620 | { |
621 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
622 | register int temp; |
623 | register int r, k; |
624 | int EOB; |
625 | char *BR_buffer; |
626 | unsigned int BR; |
627 | int Se = cinfo->Se; |
628 | int Al = cinfo->Al; |
629 | JBLOCKROW block; |
630 | int absvalues[DCTSIZE2]; |
631 | |
632 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
633 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
634 | |
635 | /* Emit restart marker if needed */ |
636 | if (cinfo->restart_interval) |
637 | if (entropy->restarts_to_go == 0) |
638 | emit_restart(entropy, entropy->next_restart_num); |
639 | |
640 | /* Encode the MCU data block */ |
641 | block = MCU_data[0]; |
642 | |
643 | /* It is convenient to make a pre-pass to determine the transformed |
644 | * coefficients' absolute values and the EOB position. |
645 | */ |
646 | EOB = 0; |
647 | for (k = cinfo->Ss; k <= Se; k++) { |
648 | temp = (*block)[jpeg_natural_order[k]]; |
649 | /* We must apply the point transform by Al. For AC coefficients this |
650 | * is an integer division with rounding towards 0. To do this portably |
651 | * in C, we shift after obtaining the absolute value. |
652 | */ |
653 | if (temp < 0) |
654 | temp = -temp; /* temp is abs value of input */ |
655 | temp >>= Al; /* apply the point transform */ |
656 | absvalues[k] = temp; /* save abs value for main pass */ |
657 | if (temp == 1) |
658 | EOB = k; /* EOB = index of last newly-nonzero coef */ |
659 | } |
660 | |
661 | /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ |
662 | |
663 | r = 0; /* r = run length of zeros */ |
664 | BR = 0; /* BR = count of buffered bits added now */ |
665 | BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ |
666 | |
667 | for (k = cinfo->Ss; k <= Se; k++) { |
668 | if ((temp = absvalues[k]) == 0) { |
669 | r++; |
670 | continue; |
671 | } |
672 | |
673 | /* Emit any required ZRLs, but not if they can be folded into EOB */ |
674 | while (r > 15 && k <= EOB) { |
675 | /* emit any pending EOBRUN and the BE correction bits */ |
676 | emit_eobrun(entropy); |
677 | /* Emit ZRL */ |
678 | emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); |
679 | r -= 16; |
680 | /* Emit buffered correction bits that must be associated with ZRL */ |
681 | emit_buffered_bits(entropy, BR_buffer, BR); |
682 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
683 | BR = 0; |
684 | } |
685 | |
686 | /* If the coef was previously nonzero, it only needs a correction bit. |
687 | * NOTE: a straight translation of the spec's figure G.7 would suggest |
688 | * that we also need to test r > 15. But if r > 15, we can only get here |
689 | * if k > EOB, which implies that this coefficient is not 1. |
690 | */ |
691 | if (temp > 1) { |
692 | /* The correction bit is the next bit of the absolute value. */ |
693 | BR_buffer[BR++] = (char) (temp & 1); |
694 | continue; |
695 | } |
696 | |
697 | /* Emit any pending EOBRUN and the BE correction bits */ |
698 | emit_eobrun(entropy); |
699 | |
700 | /* Count/emit Huffman symbol for run length / number of bits */ |
701 | emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); |
702 | |
703 | /* Emit output bit for newly-nonzero coef */ |
704 | temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; |
705 | emit_bits(entropy, (unsigned int) temp, 1); |
706 | |
707 | /* Emit buffered correction bits that must be associated with this code */ |
708 | emit_buffered_bits(entropy, BR_buffer, BR); |
709 | BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ |
710 | BR = 0; |
711 | r = 0; /* reset zero run length */ |
712 | } |
713 | |
714 | if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ |
715 | entropy->EOBRUN++; /* count an EOB */ |
716 | entropy->BE += BR; /* concat my correction bits to older ones */ |
717 | /* We force out the EOB if we risk either: |
718 | * 1. overflow of the EOB counter; |
719 | * 2. overflow of the correction bit buffer during the next MCU. |
720 | */ |
721 | if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) |
722 | emit_eobrun(entropy); |
723 | } |
724 | |
725 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
726 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
727 | |
728 | /* Update restart-interval state too */ |
729 | if (cinfo->restart_interval) { |
730 | if (entropy->restarts_to_go == 0) { |
731 | entropy->restarts_to_go = cinfo->restart_interval; |
732 | entropy->next_restart_num++; |
733 | entropy->next_restart_num &= 7; |
734 | } |
735 | entropy->restarts_to_go--; |
736 | } |
737 | |
738 | return TRUE; |
739 | } |
740 | |
741 | |
742 | /* |
743 | * Finish up at the end of a Huffman-compressed progressive scan. |
744 | */ |
745 | |
746 | METHODDEF(void) |
747 | finish_pass_phuff (j_compress_ptr cinfo) |
748 | { |
749 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
750 | |
751 | entropy->next_output_byte = cinfo->dest->next_output_byte; |
752 | entropy->free_in_buffer = cinfo->dest->free_in_buffer; |
753 | |
754 | /* Flush out any buffered data */ |
755 | emit_eobrun(entropy); |
756 | flush_bits(entropy); |
757 | |
758 | cinfo->dest->next_output_byte = entropy->next_output_byte; |
759 | cinfo->dest->free_in_buffer = entropy->free_in_buffer; |
760 | } |
761 | |
762 | |
763 | /* |
764 | * Finish up a statistics-gathering pass and create the new Huffman tables. |
765 | */ |
766 | |
767 | METHODDEF(void) |
768 | finish_pass_gather_phuff (j_compress_ptr cinfo) |
769 | { |
770 | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; |
771 | boolean is_DC_band; |
772 | int ci, tbl; |
773 | jpeg_component_info *compptr; |
774 | JHUFF_TBL **htblptr; |
775 | boolean did[NUM_HUFF_TBLS]; |
776 | |
777 | /* Flush out buffered data (all we care about is counting the EOB symbol) */ |
778 | emit_eobrun(entropy); |
779 | |
780 | is_DC_band = (cinfo->Ss == 0); |
781 | |
782 | /* It's important not to apply jpeg_gen_optimal_table more than once |
783 | * per table, because it clobbers the input frequency counts! |
784 | */ |
785 | MEMZERO(did, sizeof(did)); |
786 | |
787 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
788 | compptr = cinfo->cur_comp_info[ci]; |
789 | if (is_DC_band) { |
790 | if (cinfo->Ah != 0) /* DC refinement needs no table */ |
791 | continue; |
792 | tbl = compptr->dc_tbl_no; |
793 | } else { |
794 | tbl = compptr->ac_tbl_no; |
795 | } |
796 | if (! did[tbl]) { |
797 | if (is_DC_band) |
798 | htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; |
799 | else |
800 | htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; |
801 | if (*htblptr == NULL) |
802 | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); |
803 | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); |
804 | did[tbl] = TRUE; |
805 | } |
806 | } |
807 | } |
808 | |
809 | |
810 | /* |
811 | * Module initialization routine for progressive Huffman entropy encoding. |
812 | */ |
813 | |
814 | GLOBAL(void) |
815 | jinit_phuff_encoder (j_compress_ptr cinfo) |
816 | { |
817 | phuff_entropy_ptr entropy; |
818 | int i; |
819 | |
820 | entropy = (phuff_entropy_ptr) |
821 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
822 | sizeof(phuff_entropy_encoder)); |
823 | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; |
824 | entropy->pub.start_pass = start_pass_phuff; |
825 | |
826 | /* Mark tables unallocated */ |
827 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
828 | entropy->derived_tbls[i] = NULL; |
829 | entropy->count_ptrs[i] = NULL; |
830 | } |
831 | entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ |
832 | } |
833 | |
834 | #endif /* C_PROGRESSIVE_SUPPORTED */ |
835 | |