1 | /* |
2 | * jdhuff.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2009-2011, 2016, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains Huffman entropy decoding routines. |
12 | * |
13 | * Much of the complexity here has to do with supporting input suspension. |
14 | * If the data source module demands suspension, we want to be able to back |
15 | * up to the start of the current MCU. To do this, we copy state variables |
16 | * into local working storage, and update them back to the permanent |
17 | * storage only upon successful completion of an MCU. |
18 | */ |
19 | |
20 | #define JPEG_INTERNALS |
21 | #include "jinclude.h" |
22 | #include "jpeglib.h" |
23 | #include "jdhuff.h" /* Declarations shared with jdphuff.c */ |
24 | #include "jpegcomp.h" |
25 | #include "jstdhuff.c" |
26 | |
27 | |
28 | /* |
29 | * Expanded entropy decoder object for Huffman decoding. |
30 | * |
31 | * The savable_state subrecord contains fields that change within an MCU, |
32 | * but must not be updated permanently until we complete the MCU. |
33 | */ |
34 | |
35 | typedef struct { |
36 | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ |
37 | } savable_state; |
38 | |
39 | /* This macro is to work around compilers with missing or broken |
40 | * structure assignment. You'll need to fix this code if you have |
41 | * such a compiler and you change MAX_COMPS_IN_SCAN. |
42 | */ |
43 | |
44 | #ifndef NO_STRUCT_ASSIGN |
45 | #define ASSIGN_STATE(dest,src) ((dest) = (src)) |
46 | #else |
47 | #if MAX_COMPS_IN_SCAN == 4 |
48 | #define ASSIGN_STATE(dest,src) \ |
49 | ((dest).last_dc_val[0] = (src).last_dc_val[0], \ |
50 | (dest).last_dc_val[1] = (src).last_dc_val[1], \ |
51 | (dest).last_dc_val[2] = (src).last_dc_val[2], \ |
52 | (dest).last_dc_val[3] = (src).last_dc_val[3]) |
53 | #endif |
54 | #endif |
55 | |
56 | |
57 | typedef struct { |
58 | struct jpeg_entropy_decoder pub; /* public fields */ |
59 | |
60 | /* These fields are loaded into local variables at start of each MCU. |
61 | * In case of suspension, we exit WITHOUT updating them. |
62 | */ |
63 | bitread_perm_state bitstate; /* Bit buffer at start of MCU */ |
64 | savable_state saved; /* Other state at start of MCU */ |
65 | |
66 | /* These fields are NOT loaded into local working state. */ |
67 | unsigned int restarts_to_go; /* MCUs left in this restart interval */ |
68 | |
69 | /* Pointers to derived tables (these workspaces have image lifespan) */ |
70 | d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; |
71 | d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; |
72 | |
73 | /* Precalculated info set up by start_pass for use in decode_mcu: */ |
74 | |
75 | /* Pointers to derived tables to be used for each block within an MCU */ |
76 | d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
77 | d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; |
78 | /* Whether we care about the DC and AC coefficient values for each block */ |
79 | boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; |
80 | boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; |
81 | } huff_entropy_decoder; |
82 | |
83 | typedef huff_entropy_decoder *huff_entropy_ptr; |
84 | |
85 | |
86 | /* |
87 | * Initialize for a Huffman-compressed scan. |
88 | */ |
89 | |
90 | METHODDEF(void) |
91 | start_pass_huff_decoder (j_decompress_ptr cinfo) |
92 | { |
93 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
94 | int ci, blkn, dctbl, actbl; |
95 | d_derived_tbl **pdtbl; |
96 | jpeg_component_info *compptr; |
97 | |
98 | /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. |
99 | * This ought to be an error condition, but we make it a warning because |
100 | * there are some baseline files out there with all zeroes in these bytes. |
101 | */ |
102 | if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 || |
103 | cinfo->Ah != 0 || cinfo->Al != 0) |
104 | WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); |
105 | |
106 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
107 | compptr = cinfo->cur_comp_info[ci]; |
108 | dctbl = compptr->dc_tbl_no; |
109 | actbl = compptr->ac_tbl_no; |
110 | /* Compute derived values for Huffman tables */ |
111 | /* We may do this more than once for a table, but it's not expensive */ |
112 | pdtbl = entropy->dc_derived_tbls + dctbl; |
113 | jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); |
114 | pdtbl = entropy->ac_derived_tbls + actbl; |
115 | jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); |
116 | /* Initialize DC predictions to 0 */ |
117 | entropy->saved.last_dc_val[ci] = 0; |
118 | } |
119 | |
120 | /* Precalculate decoding info for each block in an MCU of this scan */ |
121 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
122 | ci = cinfo->MCU_membership[blkn]; |
123 | compptr = cinfo->cur_comp_info[ci]; |
124 | /* Precalculate which table to use for each block */ |
125 | entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; |
126 | entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; |
127 | /* Decide whether we really care about the coefficient values */ |
128 | if (compptr->component_needed) { |
129 | entropy->dc_needed[blkn] = TRUE; |
130 | /* we don't need the ACs if producing a 1/8th-size image */ |
131 | entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); |
132 | } else { |
133 | entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; |
134 | } |
135 | } |
136 | |
137 | /* Initialize bitread state variables */ |
138 | entropy->bitstate.bits_left = 0; |
139 | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ |
140 | entropy->pub.insufficient_data = FALSE; |
141 | |
142 | /* Initialize restart counter */ |
143 | entropy->restarts_to_go = cinfo->restart_interval; |
144 | } |
145 | |
146 | |
147 | /* |
148 | * Compute the derived values for a Huffman table. |
149 | * This routine also performs some validation checks on the table. |
150 | * |
151 | * Note this is also used by jdphuff.c. |
152 | */ |
153 | |
154 | GLOBAL(void) |
155 | jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, |
156 | d_derived_tbl **pdtbl) |
157 | { |
158 | JHUFF_TBL *htbl; |
159 | d_derived_tbl *dtbl; |
160 | int p, i, l, si, numsymbols; |
161 | int lookbits, ctr; |
162 | char huffsize[257]; |
163 | unsigned int huffcode[257]; |
164 | unsigned int code; |
165 | |
166 | /* Note that huffsize[] and huffcode[] are filled in code-length order, |
167 | * paralleling the order of the symbols themselves in htbl->huffval[]. |
168 | */ |
169 | |
170 | /* Find the input Huffman table */ |
171 | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) |
172 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
173 | htbl = |
174 | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; |
175 | if (htbl == NULL) |
176 | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); |
177 | |
178 | /* Allocate a workspace if we haven't already done so. */ |
179 | if (*pdtbl == NULL) |
180 | *pdtbl = (d_derived_tbl *) |
181 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
182 | sizeof(d_derived_tbl)); |
183 | dtbl = *pdtbl; |
184 | dtbl->pub = htbl; /* fill in back link */ |
185 | |
186 | /* Figure C.1: make table of Huffman code length for each symbol */ |
187 | |
188 | p = 0; |
189 | for (l = 1; l <= 16; l++) { |
190 | i = (int) htbl->bits[l]; |
191 | if (i < 0 || p + i > 256) /* protect against table overrun */ |
192 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
193 | while (i--) |
194 | huffsize[p++] = (char) l; |
195 | } |
196 | huffsize[p] = 0; |
197 | numsymbols = p; |
198 | |
199 | /* Figure C.2: generate the codes themselves */ |
200 | /* We also validate that the counts represent a legal Huffman code tree. */ |
201 | |
202 | code = 0; |
203 | si = huffsize[0]; |
204 | p = 0; |
205 | while (huffsize[p]) { |
206 | while (((int) huffsize[p]) == si) { |
207 | huffcode[p++] = code; |
208 | code++; |
209 | } |
210 | /* code is now 1 more than the last code used for codelength si; but |
211 | * it must still fit in si bits, since no code is allowed to be all ones. |
212 | */ |
213 | if (((JLONG) code) >= (((JLONG) 1) << si)) |
214 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
215 | code <<= 1; |
216 | si++; |
217 | } |
218 | |
219 | /* Figure F.15: generate decoding tables for bit-sequential decoding */ |
220 | |
221 | p = 0; |
222 | for (l = 1; l <= 16; l++) { |
223 | if (htbl->bits[l]) { |
224 | /* valoffset[l] = huffval[] index of 1st symbol of code length l, |
225 | * minus the minimum code of length l |
226 | */ |
227 | dtbl->valoffset[l] = (JLONG) p - (JLONG) huffcode[p]; |
228 | p += htbl->bits[l]; |
229 | dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ |
230 | } else { |
231 | dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ |
232 | } |
233 | } |
234 | dtbl->valoffset[17] = 0; |
235 | dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ |
236 | |
237 | /* Compute lookahead tables to speed up decoding. |
238 | * First we set all the table entries to 0, indicating "too long"; |
239 | * then we iterate through the Huffman codes that are short enough and |
240 | * fill in all the entries that correspond to bit sequences starting |
241 | * with that code. |
242 | */ |
243 | |
244 | for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) |
245 | dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; |
246 | |
247 | p = 0; |
248 | for (l = 1; l <= HUFF_LOOKAHEAD; l++) { |
249 | for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { |
250 | /* l = current code's length, p = its index in huffcode[] & huffval[]. */ |
251 | /* Generate left-justified code followed by all possible bit sequences */ |
252 | lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); |
253 | for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { |
254 | dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; |
255 | lookbits++; |
256 | } |
257 | } |
258 | } |
259 | |
260 | /* Validate symbols as being reasonable. |
261 | * For AC tables, we make no check, but accept all byte values 0..255. |
262 | * For DC tables, we require the symbols to be in range 0..15. |
263 | * (Tighter bounds could be applied depending on the data depth and mode, |
264 | * but this is sufficient to ensure safe decoding.) |
265 | */ |
266 | if (isDC) { |
267 | for (i = 0; i < numsymbols; i++) { |
268 | int sym = htbl->huffval[i]; |
269 | if (sym < 0 || sym > 15) |
270 | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); |
271 | } |
272 | } |
273 | } |
274 | |
275 | |
276 | /* |
277 | * Out-of-line code for bit fetching (shared with jdphuff.c). |
278 | * See jdhuff.h for info about usage. |
279 | * Note: current values of get_buffer and bits_left are passed as parameters, |
280 | * but are returned in the corresponding fields of the state struct. |
281 | * |
282 | * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width |
283 | * of get_buffer to be used. (On machines with wider words, an even larger |
284 | * buffer could be used.) However, on some machines 32-bit shifts are |
285 | * quite slow and take time proportional to the number of places shifted. |
286 | * (This is true with most PC compilers, for instance.) In this case it may |
287 | * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the |
288 | * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. |
289 | */ |
290 | |
291 | #ifdef SLOW_SHIFT_32 |
292 | #define MIN_GET_BITS 15 /* minimum allowable value */ |
293 | #else |
294 | #define MIN_GET_BITS (BIT_BUF_SIZE-7) |
295 | #endif |
296 | |
297 | |
298 | GLOBAL(boolean) |
299 | jpeg_fill_bit_buffer (bitread_working_state *state, |
300 | register bit_buf_type get_buffer, register int bits_left, |
301 | int nbits) |
302 | /* Load up the bit buffer to a depth of at least nbits */ |
303 | { |
304 | /* Copy heavily used state fields into locals (hopefully registers) */ |
305 | register const JOCTET *next_input_byte = state->next_input_byte; |
306 | register size_t bytes_in_buffer = state->bytes_in_buffer; |
307 | j_decompress_ptr cinfo = state->cinfo; |
308 | |
309 | /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ |
310 | /* (It is assumed that no request will be for more than that many bits.) */ |
311 | /* We fail to do so only if we hit a marker or are forced to suspend. */ |
312 | |
313 | if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ |
314 | while (bits_left < MIN_GET_BITS) { |
315 | register int c; |
316 | |
317 | /* Attempt to read a byte */ |
318 | if (bytes_in_buffer == 0) { |
319 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
320 | return FALSE; |
321 | next_input_byte = cinfo->src->next_input_byte; |
322 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
323 | } |
324 | bytes_in_buffer--; |
325 | c = GETJOCTET(*next_input_byte++); |
326 | |
327 | /* If it's 0xFF, check and discard stuffed zero byte */ |
328 | if (c == 0xFF) { |
329 | /* Loop here to discard any padding FF's on terminating marker, |
330 | * so that we can save a valid unread_marker value. NOTE: we will |
331 | * accept multiple FF's followed by a 0 as meaning a single FF data |
332 | * byte. This data pattern is not valid according to the standard. |
333 | */ |
334 | do { |
335 | if (bytes_in_buffer == 0) { |
336 | if (! (*cinfo->src->fill_input_buffer) (cinfo)) |
337 | return FALSE; |
338 | next_input_byte = cinfo->src->next_input_byte; |
339 | bytes_in_buffer = cinfo->src->bytes_in_buffer; |
340 | } |
341 | bytes_in_buffer--; |
342 | c = GETJOCTET(*next_input_byte++); |
343 | } while (c == 0xFF); |
344 | |
345 | if (c == 0) { |
346 | /* Found FF/00, which represents an FF data byte */ |
347 | c = 0xFF; |
348 | } else { |
349 | /* Oops, it's actually a marker indicating end of compressed data. |
350 | * Save the marker code for later use. |
351 | * Fine point: it might appear that we should save the marker into |
352 | * bitread working state, not straight into permanent state. But |
353 | * once we have hit a marker, we cannot need to suspend within the |
354 | * current MCU, because we will read no more bytes from the data |
355 | * source. So it is OK to update permanent state right away. |
356 | */ |
357 | cinfo->unread_marker = c; |
358 | /* See if we need to insert some fake zero bits. */ |
359 | goto no_more_bytes; |
360 | } |
361 | } |
362 | |
363 | /* OK, load c into get_buffer */ |
364 | get_buffer = (get_buffer << 8) | c; |
365 | bits_left += 8; |
366 | } /* end while */ |
367 | } else { |
368 | no_more_bytes: |
369 | /* We get here if we've read the marker that terminates the compressed |
370 | * data segment. There should be enough bits in the buffer register |
371 | * to satisfy the request; if so, no problem. |
372 | */ |
373 | if (nbits > bits_left) { |
374 | /* Uh-oh. Report corrupted data to user and stuff zeroes into |
375 | * the data stream, so that we can produce some kind of image. |
376 | * We use a nonvolatile flag to ensure that only one warning message |
377 | * appears per data segment. |
378 | */ |
379 | if (! cinfo->entropy->insufficient_data) { |
380 | WARNMS(cinfo, JWRN_HIT_MARKER); |
381 | cinfo->entropy->insufficient_data = TRUE; |
382 | } |
383 | /* Fill the buffer with zero bits */ |
384 | get_buffer <<= MIN_GET_BITS - bits_left; |
385 | bits_left = MIN_GET_BITS; |
386 | } |
387 | } |
388 | |
389 | /* Unload the local registers */ |
390 | state->next_input_byte = next_input_byte; |
391 | state->bytes_in_buffer = bytes_in_buffer; |
392 | state->get_buffer = get_buffer; |
393 | state->bits_left = bits_left; |
394 | |
395 | return TRUE; |
396 | } |
397 | |
398 | |
399 | /* Macro version of the above, which performs much better but does not |
400 | handle markers. We have to hand off any blocks with markers to the |
401 | slower routines. */ |
402 | |
403 | #define GET_BYTE \ |
404 | { \ |
405 | register int c0, c1; \ |
406 | c0 = GETJOCTET(*buffer++); \ |
407 | c1 = GETJOCTET(*buffer); \ |
408 | /* Pre-execute most common case */ \ |
409 | get_buffer = (get_buffer << 8) | c0; \ |
410 | bits_left += 8; \ |
411 | if (c0 == 0xFF) { \ |
412 | /* Pre-execute case of FF/00, which represents an FF data byte */ \ |
413 | buffer++; \ |
414 | if (c1 != 0) { \ |
415 | /* Oops, it's actually a marker indicating end of compressed data. */ \ |
416 | cinfo->unread_marker = c1; \ |
417 | /* Back out pre-execution and fill the buffer with zero bits */ \ |
418 | buffer -= 2; \ |
419 | get_buffer &= ~0xFF; \ |
420 | } \ |
421 | } \ |
422 | } |
423 | |
424 | #if SIZEOF_SIZE_T==8 || defined(_WIN64) |
425 | |
426 | /* Pre-fetch 48 bytes, because the holding register is 64-bit */ |
427 | #define FILL_BIT_BUFFER_FAST \ |
428 | if (bits_left <= 16) { \ |
429 | GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ |
430 | } |
431 | |
432 | #else |
433 | |
434 | /* Pre-fetch 16 bytes, because the holding register is 32-bit */ |
435 | #define FILL_BIT_BUFFER_FAST \ |
436 | if (bits_left <= 16) { \ |
437 | GET_BYTE GET_BYTE \ |
438 | } |
439 | |
440 | #endif |
441 | |
442 | |
443 | /* |
444 | * Out-of-line code for Huffman code decoding. |
445 | * See jdhuff.h for info about usage. |
446 | */ |
447 | |
448 | GLOBAL(int) |
449 | jpeg_huff_decode (bitread_working_state *state, |
450 | register bit_buf_type get_buffer, register int bits_left, |
451 | d_derived_tbl *htbl, int min_bits) |
452 | { |
453 | register int l = min_bits; |
454 | register JLONG code; |
455 | |
456 | /* HUFF_DECODE has determined that the code is at least min_bits */ |
457 | /* bits long, so fetch that many bits in one swoop. */ |
458 | |
459 | CHECK_BIT_BUFFER(*state, l, return -1); |
460 | code = GET_BITS(l); |
461 | |
462 | /* Collect the rest of the Huffman code one bit at a time. */ |
463 | /* This is per Figure F.16 in the JPEG spec. */ |
464 | |
465 | while (code > htbl->maxcode[l]) { |
466 | code <<= 1; |
467 | CHECK_BIT_BUFFER(*state, 1, return -1); |
468 | code |= GET_BITS(1); |
469 | l++; |
470 | } |
471 | |
472 | /* Unload the local registers */ |
473 | state->get_buffer = get_buffer; |
474 | state->bits_left = bits_left; |
475 | |
476 | /* With garbage input we may reach the sentinel value l = 17. */ |
477 | |
478 | if (l > 16) { |
479 | WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); |
480 | return 0; /* fake a zero as the safest result */ |
481 | } |
482 | |
483 | return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; |
484 | } |
485 | |
486 | |
487 | /* |
488 | * Figure F.12: extend sign bit. |
489 | * On some machines, a shift and add will be faster than a table lookup. |
490 | */ |
491 | |
492 | #define AVOID_TABLES |
493 | #ifdef AVOID_TABLES |
494 | |
495 | #define NEG_1 ((unsigned int)-1) |
496 | #define HUFF_EXTEND(x,s) ((x) + ((((x) - (1<<((s)-1))) >> 31) & (((NEG_1)<<(s)) + 1))) |
497 | |
498 | #else |
499 | |
500 | #define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) |
501 | |
502 | static const int extend_test[16] = /* entry n is 2**(n-1) */ |
503 | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, |
504 | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; |
505 | |
506 | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ |
507 | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, |
508 | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, |
509 | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, |
510 | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; |
511 | |
512 | #endif /* AVOID_TABLES */ |
513 | |
514 | |
515 | /* |
516 | * Check for a restart marker & resynchronize decoder. |
517 | * Returns FALSE if must suspend. |
518 | */ |
519 | |
520 | LOCAL(boolean) |
521 | process_restart (j_decompress_ptr cinfo) |
522 | { |
523 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
524 | int ci; |
525 | |
526 | /* Throw away any unused bits remaining in bit buffer; */ |
527 | /* include any full bytes in next_marker's count of discarded bytes */ |
528 | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; |
529 | entropy->bitstate.bits_left = 0; |
530 | |
531 | /* Advance past the RSTn marker */ |
532 | if (! (*cinfo->marker->read_restart_marker) (cinfo)) |
533 | return FALSE; |
534 | |
535 | /* Re-initialize DC predictions to 0 */ |
536 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) |
537 | entropy->saved.last_dc_val[ci] = 0; |
538 | |
539 | /* Reset restart counter */ |
540 | entropy->restarts_to_go = cinfo->restart_interval; |
541 | |
542 | /* Reset out-of-data flag, unless read_restart_marker left us smack up |
543 | * against a marker. In that case we will end up treating the next data |
544 | * segment as empty, and we can avoid producing bogus output pixels by |
545 | * leaving the flag set. |
546 | */ |
547 | if (cinfo->unread_marker == 0) |
548 | entropy->pub.insufficient_data = FALSE; |
549 | |
550 | return TRUE; |
551 | } |
552 | |
553 | |
554 | LOCAL(boolean) |
555 | decode_mcu_slow (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
556 | { |
557 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
558 | BITREAD_STATE_VARS; |
559 | int blkn; |
560 | savable_state state; |
561 | /* Outer loop handles each block in the MCU */ |
562 | |
563 | /* Load up working state */ |
564 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
565 | ASSIGN_STATE(state, entropy->saved); |
566 | |
567 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
568 | JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
569 | d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
570 | d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
571 | register int s, k, r; |
572 | |
573 | /* Decode a single block's worth of coefficients */ |
574 | |
575 | /* Section F.2.2.1: decode the DC coefficient difference */ |
576 | HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); |
577 | if (s) { |
578 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
579 | r = GET_BITS(s); |
580 | s = HUFF_EXTEND(r, s); |
581 | } |
582 | |
583 | if (entropy->dc_needed[blkn]) { |
584 | /* Convert DC difference to actual value, update last_dc_val */ |
585 | int ci = cinfo->MCU_membership[blkn]; |
586 | s += state.last_dc_val[ci]; |
587 | state.last_dc_val[ci] = s; |
588 | if (block) { |
589 | /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ |
590 | (*block)[0] = (JCOEF) s; |
591 | } |
592 | } |
593 | |
594 | if (entropy->ac_needed[blkn] && block) { |
595 | |
596 | /* Section F.2.2.2: decode the AC coefficients */ |
597 | /* Since zeroes are skipped, output area must be cleared beforehand */ |
598 | for (k = 1; k < DCTSIZE2; k++) { |
599 | HUFF_DECODE(s, br_state, actbl, return FALSE, label2); |
600 | |
601 | r = s >> 4; |
602 | s &= 15; |
603 | |
604 | if (s) { |
605 | k += r; |
606 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
607 | r = GET_BITS(s); |
608 | s = HUFF_EXTEND(r, s); |
609 | /* Output coefficient in natural (dezigzagged) order. |
610 | * Note: the extra entries in jpeg_natural_order[] will save us |
611 | * if k >= DCTSIZE2, which could happen if the data is corrupted. |
612 | */ |
613 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
614 | } else { |
615 | if (r != 15) |
616 | break; |
617 | k += 15; |
618 | } |
619 | } |
620 | |
621 | } else { |
622 | |
623 | /* Section F.2.2.2: decode the AC coefficients */ |
624 | /* In this path we just discard the values */ |
625 | for (k = 1; k < DCTSIZE2; k++) { |
626 | HUFF_DECODE(s, br_state, actbl, return FALSE, label3); |
627 | |
628 | r = s >> 4; |
629 | s &= 15; |
630 | |
631 | if (s) { |
632 | k += r; |
633 | CHECK_BIT_BUFFER(br_state, s, return FALSE); |
634 | DROP_BITS(s); |
635 | } else { |
636 | if (r != 15) |
637 | break; |
638 | k += 15; |
639 | } |
640 | } |
641 | } |
642 | } |
643 | |
644 | /* Completed MCU, so update state */ |
645 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
646 | ASSIGN_STATE(entropy->saved, state); |
647 | return TRUE; |
648 | } |
649 | |
650 | |
651 | LOCAL(boolean) |
652 | decode_mcu_fast (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
653 | { |
654 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
655 | BITREAD_STATE_VARS; |
656 | JOCTET *buffer; |
657 | int blkn; |
658 | savable_state state; |
659 | /* Outer loop handles each block in the MCU */ |
660 | |
661 | /* Load up working state */ |
662 | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); |
663 | buffer = (JOCTET *) br_state.next_input_byte; |
664 | ASSIGN_STATE(state, entropy->saved); |
665 | |
666 | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { |
667 | JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; |
668 | d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; |
669 | d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; |
670 | register int s, k, r, l; |
671 | |
672 | HUFF_DECODE_FAST(s, l, dctbl, slow_decode_mcu); |
673 | if (s) { |
674 | FILL_BIT_BUFFER_FAST |
675 | r = GET_BITS(s); |
676 | s = HUFF_EXTEND(r, s); |
677 | } |
678 | |
679 | if (entropy->dc_needed[blkn]) { |
680 | int ci = cinfo->MCU_membership[blkn]; |
681 | s += state.last_dc_val[ci]; |
682 | state.last_dc_val[ci] = s; |
683 | if (block) |
684 | (*block)[0] = (JCOEF) s; |
685 | } |
686 | |
687 | if (entropy->ac_needed[blkn] && block) { |
688 | |
689 | for (k = 1; k < DCTSIZE2; k++) { |
690 | HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu); |
691 | r = s >> 4; |
692 | s &= 15; |
693 | |
694 | if (s) { |
695 | k += r; |
696 | FILL_BIT_BUFFER_FAST |
697 | r = GET_BITS(s); |
698 | s = HUFF_EXTEND(r, s); |
699 | (*block)[jpeg_natural_order[k]] = (JCOEF) s; |
700 | } else { |
701 | if (r != 15) break; |
702 | k += 15; |
703 | } |
704 | } |
705 | |
706 | } else { |
707 | |
708 | for (k = 1; k < DCTSIZE2; k++) { |
709 | HUFF_DECODE_FAST(s, l, actbl, slow_decode_mcu); |
710 | r = s >> 4; |
711 | s &= 15; |
712 | |
713 | if (s) { |
714 | k += r; |
715 | FILL_BIT_BUFFER_FAST |
716 | DROP_BITS(s); |
717 | } else { |
718 | if (r != 15) break; |
719 | k += 15; |
720 | } |
721 | } |
722 | } |
723 | } |
724 | |
725 | if (cinfo->unread_marker != 0) { |
726 | slow_decode_mcu: |
727 | cinfo->unread_marker = 0; |
728 | return FALSE; |
729 | } |
730 | |
731 | br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); |
732 | br_state.next_input_byte = buffer; |
733 | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); |
734 | ASSIGN_STATE(entropy->saved, state); |
735 | return TRUE; |
736 | } |
737 | |
738 | |
739 | /* |
740 | * Decode and return one MCU's worth of Huffman-compressed coefficients. |
741 | * The coefficients are reordered from zigzag order into natural array order, |
742 | * but are not dequantized. |
743 | * |
744 | * The i'th block of the MCU is stored into the block pointed to by |
745 | * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. |
746 | * (Wholesale zeroing is usually a little faster than retail...) |
747 | * |
748 | * Returns FALSE if data source requested suspension. In that case no |
749 | * changes have been made to permanent state. (Exception: some output |
750 | * coefficients may already have been assigned. This is harmless for |
751 | * this module, since we'll just re-assign them on the next call.) |
752 | */ |
753 | |
754 | #define BUFSIZE (DCTSIZE2 * 8) |
755 | |
756 | METHODDEF(boolean) |
757 | decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) |
758 | { |
759 | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; |
760 | int usefast = 1; |
761 | |
762 | /* Process restart marker if needed; may have to suspend */ |
763 | if (cinfo->restart_interval) { |
764 | if (entropy->restarts_to_go == 0) |
765 | if (! process_restart(cinfo)) |
766 | return FALSE; |
767 | usefast = 0; |
768 | } |
769 | |
770 | if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU |
771 | || cinfo->unread_marker != 0) |
772 | usefast = 0; |
773 | |
774 | /* If we've run out of data, just leave the MCU set to zeroes. |
775 | * This way, we return uniform gray for the remainder of the segment. |
776 | */ |
777 | if (! entropy->pub.insufficient_data) { |
778 | |
779 | if (usefast) { |
780 | if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; |
781 | } |
782 | else { |
783 | use_slow: |
784 | if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; |
785 | } |
786 | |
787 | } |
788 | |
789 | /* Account for restart interval (no-op if not using restarts) */ |
790 | entropy->restarts_to_go--; |
791 | |
792 | return TRUE; |
793 | } |
794 | |
795 | |
796 | /* |
797 | * Module initialization routine for Huffman entropy decoding. |
798 | */ |
799 | |
800 | GLOBAL(void) |
801 | jinit_huff_decoder (j_decompress_ptr cinfo) |
802 | { |
803 | huff_entropy_ptr entropy; |
804 | int i; |
805 | |
806 | /* Motion JPEG frames typically do not include the Huffman tables if they |
807 | are the default tables. Thus, if the tables are not set by the time |
808 | the Huffman decoder is initialized (usually within the body of |
809 | jpeg_start_decompress()), we set them to default values. */ |
810 | std_huff_tables((j_common_ptr) cinfo); |
811 | |
812 | entropy = (huff_entropy_ptr) |
813 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
814 | sizeof(huff_entropy_decoder)); |
815 | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; |
816 | entropy->pub.start_pass = start_pass_huff_decoder; |
817 | entropy->pub.decode_mcu = decode_mcu; |
818 | |
819 | /* Mark tables unallocated */ |
820 | for (i = 0; i < NUM_HUFF_TBLS; i++) { |
821 | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; |
822 | } |
823 | } |
824 | |