1 | /* |
2 | * jmemmgr.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1991-1997, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2016, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains the JPEG system-independent memory management |
12 | * routines. This code is usable across a wide variety of machines; most |
13 | * of the system dependencies have been isolated in a separate file. |
14 | * The major functions provided here are: |
15 | * * pool-based allocation and freeing of memory; |
16 | * * policy decisions about how to divide available memory among the |
17 | * virtual arrays; |
18 | * * control logic for swapping virtual arrays between main memory and |
19 | * backing storage. |
20 | * The separate system-dependent file provides the actual backing-storage |
21 | * access code, and it contains the policy decision about how much total |
22 | * main memory to use. |
23 | * This file is system-dependent in the sense that some of its functions |
24 | * are unnecessary in some systems. For example, if there is enough virtual |
25 | * memory so that backing storage will never be used, much of the virtual |
26 | * array control logic could be removed. (Of course, if you have that much |
27 | * memory then you shouldn't care about a little bit of unused code...) |
28 | */ |
29 | |
30 | #define JPEG_INTERNALS |
31 | #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ |
32 | #include "jinclude.h" |
33 | #include "jpeglib.h" |
34 | #include "jmemsys.h" /* import the system-dependent declarations */ |
35 | |
36 | #ifndef NO_GETENV |
37 | #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ |
38 | extern char *getenv (const char *name); |
39 | #endif |
40 | #endif |
41 | |
42 | |
43 | LOCAL(size_t) |
44 | round_up_pow2 (size_t a, size_t b) |
45 | /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ |
46 | /* Assumes a >= 0, b > 0, and b is a power of 2 */ |
47 | { |
48 | return ((a + b - 1) & (~(b - 1))); |
49 | } |
50 | |
51 | |
52 | /* |
53 | * Some important notes: |
54 | * The allocation routines provided here must never return NULL. |
55 | * They should exit to error_exit if unsuccessful. |
56 | * |
57 | * It's not a good idea to try to merge the sarray and barray routines, |
58 | * even though they are textually almost the same, because samples are |
59 | * usually stored as bytes while coefficients are shorts or ints. Thus, |
60 | * in machines where byte pointers have a different representation from |
61 | * word pointers, the resulting machine code could not be the same. |
62 | */ |
63 | |
64 | |
65 | /* |
66 | * Many machines require storage alignment: longs must start on 4-byte |
67 | * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() |
68 | * always returns pointers that are multiples of the worst-case alignment |
69 | * requirement, and we had better do so too. |
70 | * There isn't any really portable way to determine the worst-case alignment |
71 | * requirement. This module assumes that the alignment requirement is |
72 | * multiples of ALIGN_SIZE. |
73 | * By default, we define ALIGN_SIZE as sizeof(double). This is necessary on |
74 | * some workstations (where doubles really do need 8-byte alignment) and will |
75 | * work fine on nearly everything. If your machine has lesser alignment needs, |
76 | * you can save a few bytes by making ALIGN_SIZE smaller. |
77 | * The only place I know of where this will NOT work is certain Macintosh |
78 | * 680x0 compilers that define double as a 10-byte IEEE extended float. |
79 | * Doing 10-byte alignment is counterproductive because longwords won't be |
80 | * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have |
81 | * such a compiler. |
82 | */ |
83 | |
84 | #ifndef ALIGN_SIZE /* so can override from jconfig.h */ |
85 | #ifndef WITH_SIMD |
86 | #define ALIGN_SIZE sizeof(double) |
87 | #else |
88 | #define ALIGN_SIZE 16 /* Most SIMD implementations require this */ |
89 | #endif |
90 | #endif |
91 | |
92 | /* |
93 | * We allocate objects from "pools", where each pool is gotten with a single |
94 | * request to jpeg_get_small() or jpeg_get_large(). There is no per-object |
95 | * overhead within a pool, except for alignment padding. Each pool has a |
96 | * header with a link to the next pool of the same class. |
97 | * Small and large pool headers are identical. |
98 | */ |
99 | |
100 | typedef struct small_pool_struct *small_pool_ptr; |
101 | |
102 | typedef struct small_pool_struct { |
103 | small_pool_ptr next; /* next in list of pools */ |
104 | size_t bytes_used; /* how many bytes already used within pool */ |
105 | size_t bytes_left; /* bytes still available in this pool */ |
106 | } small_pool_hdr; |
107 | |
108 | typedef struct large_pool_struct *large_pool_ptr; |
109 | |
110 | typedef struct large_pool_struct { |
111 | large_pool_ptr next; /* next in list of pools */ |
112 | size_t bytes_used; /* how many bytes already used within pool */ |
113 | size_t bytes_left; /* bytes still available in this pool */ |
114 | } large_pool_hdr; |
115 | |
116 | /* |
117 | * Here is the full definition of a memory manager object. |
118 | */ |
119 | |
120 | typedef struct { |
121 | struct jpeg_memory_mgr pub; /* public fields */ |
122 | |
123 | /* Each pool identifier (lifetime class) names a linked list of pools. */ |
124 | small_pool_ptr small_list[JPOOL_NUMPOOLS]; |
125 | large_pool_ptr large_list[JPOOL_NUMPOOLS]; |
126 | |
127 | /* Since we only have one lifetime class of virtual arrays, only one |
128 | * linked list is necessary (for each datatype). Note that the virtual |
129 | * array control blocks being linked together are actually stored somewhere |
130 | * in the small-pool list. |
131 | */ |
132 | jvirt_sarray_ptr virt_sarray_list; |
133 | jvirt_barray_ptr virt_barray_list; |
134 | |
135 | /* This counts total space obtained from jpeg_get_small/large */ |
136 | size_t total_space_allocated; |
137 | |
138 | /* alloc_sarray and alloc_barray set this value for use by virtual |
139 | * array routines. |
140 | */ |
141 | JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ |
142 | } my_memory_mgr; |
143 | |
144 | typedef my_memory_mgr *my_mem_ptr; |
145 | |
146 | |
147 | /* |
148 | * The control blocks for virtual arrays. |
149 | * Note that these blocks are allocated in the "small" pool area. |
150 | * System-dependent info for the associated backing store (if any) is hidden |
151 | * inside the backing_store_info struct. |
152 | */ |
153 | |
154 | struct jvirt_sarray_control { |
155 | JSAMPARRAY mem_buffer; /* => the in-memory buffer */ |
156 | JDIMENSION rows_in_array; /* total virtual array height */ |
157 | JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ |
158 | JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ |
159 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
160 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
161 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
162 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
163 | boolean pre_zero; /* pre-zero mode requested? */ |
164 | boolean dirty; /* do current buffer contents need written? */ |
165 | boolean b_s_open; /* is backing-store data valid? */ |
166 | jvirt_sarray_ptr next; /* link to next virtual sarray control block */ |
167 | backing_store_info b_s_info; /* System-dependent control info */ |
168 | }; |
169 | |
170 | struct jvirt_barray_control { |
171 | JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ |
172 | JDIMENSION rows_in_array; /* total virtual array height */ |
173 | JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ |
174 | JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ |
175 | JDIMENSION rows_in_mem; /* height of memory buffer */ |
176 | JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ |
177 | JDIMENSION cur_start_row; /* first logical row # in the buffer */ |
178 | JDIMENSION first_undef_row; /* row # of first uninitialized row */ |
179 | boolean pre_zero; /* pre-zero mode requested? */ |
180 | boolean dirty; /* do current buffer contents need written? */ |
181 | boolean b_s_open; /* is backing-store data valid? */ |
182 | jvirt_barray_ptr next; /* link to next virtual barray control block */ |
183 | backing_store_info b_s_info; /* System-dependent control info */ |
184 | }; |
185 | |
186 | |
187 | #ifdef MEM_STATS /* optional extra stuff for statistics */ |
188 | |
189 | LOCAL(void) |
190 | print_mem_stats (j_common_ptr cinfo, int pool_id) |
191 | { |
192 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
193 | small_pool_ptr shdr_ptr; |
194 | large_pool_ptr lhdr_ptr; |
195 | |
196 | /* Since this is only a debugging stub, we can cheat a little by using |
197 | * fprintf directly rather than going through the trace message code. |
198 | * This is helpful because message parm array can't handle longs. |
199 | */ |
200 | fprintf(stderr, "Freeing pool %d, total space = %ld\n" , |
201 | pool_id, mem->total_space_allocated); |
202 | |
203 | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; |
204 | lhdr_ptr = lhdr_ptr->next) { |
205 | fprintf(stderr, " Large chunk used %ld\n" , |
206 | (long) lhdr_ptr->bytes_used); |
207 | } |
208 | |
209 | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; |
210 | shdr_ptr = shdr_ptr->next) { |
211 | fprintf(stderr, " Small chunk used %ld free %ld\n" , |
212 | (long) shdr_ptr->bytes_used, |
213 | (long) shdr_ptr->bytes_left); |
214 | } |
215 | } |
216 | |
217 | #endif /* MEM_STATS */ |
218 | |
219 | |
220 | LOCAL(void) |
221 | out_of_memory (j_common_ptr cinfo, int which) |
222 | /* Report an out-of-memory error and stop execution */ |
223 | /* If we compiled MEM_STATS support, report alloc requests before dying */ |
224 | { |
225 | #ifdef MEM_STATS |
226 | cinfo->err->trace_level = 2; /* force self_destruct to report stats */ |
227 | #endif |
228 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); |
229 | } |
230 | |
231 | |
232 | /* |
233 | * Allocation of "small" objects. |
234 | * |
235 | * For these, we use pooled storage. When a new pool must be created, |
236 | * we try to get enough space for the current request plus a "slop" factor, |
237 | * where the slop will be the amount of leftover space in the new pool. |
238 | * The speed vs. space tradeoff is largely determined by the slop values. |
239 | * A different slop value is provided for each pool class (lifetime), |
240 | * and we also distinguish the first pool of a class from later ones. |
241 | * NOTE: the values given work fairly well on both 16- and 32-bit-int |
242 | * machines, but may be too small if longs are 64 bits or more. |
243 | * |
244 | * Since we do not know what alignment malloc() gives us, we have to |
245 | * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment |
246 | * adjustment. |
247 | */ |
248 | |
249 | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = |
250 | { |
251 | 1600, /* first PERMANENT pool */ |
252 | 16000 /* first IMAGE pool */ |
253 | }; |
254 | |
255 | static const size_t [JPOOL_NUMPOOLS] = |
256 | { |
257 | 0, /* additional PERMANENT pools */ |
258 | 5000 /* additional IMAGE pools */ |
259 | }; |
260 | |
261 | #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ |
262 | |
263 | |
264 | METHODDEF(void *) |
265 | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
266 | /* Allocate a "small" object */ |
267 | { |
268 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
269 | small_pool_ptr hdr_ptr, prev_hdr_ptr; |
270 | char *data_ptr; |
271 | size_t min_request, slop; |
272 | |
273 | /* |
274 | * Round up the requested size to a multiple of ALIGN_SIZE in order |
275 | * to assure alignment for the next object allocated in the same pool |
276 | * and so that algorithms can straddle outside the proper area up |
277 | * to the next alignment. |
278 | */ |
279 | if (sizeofobject > MAX_ALLOC_CHUNK) { |
280 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
281 | is close to SIZE_MAX. */ |
282 | out_of_memory(cinfo, 7); |
283 | } |
284 | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
285 | |
286 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
287 | if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
288 | MAX_ALLOC_CHUNK) |
289 | out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ |
290 | |
291 | /* See if space is available in any existing pool */ |
292 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
293 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
294 | prev_hdr_ptr = NULL; |
295 | hdr_ptr = mem->small_list[pool_id]; |
296 | while (hdr_ptr != NULL) { |
297 | if (hdr_ptr->bytes_left >= sizeofobject) |
298 | break; /* found pool with enough space */ |
299 | prev_hdr_ptr = hdr_ptr; |
300 | hdr_ptr = hdr_ptr->next; |
301 | } |
302 | |
303 | /* Time to make a new pool? */ |
304 | if (hdr_ptr == NULL) { |
305 | /* min_request is what we need now, slop is what will be leftover */ |
306 | min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; |
307 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
308 | slop = first_pool_slop[pool_id]; |
309 | else |
310 | slop = extra_pool_slop[pool_id]; |
311 | /* Don't ask for more than MAX_ALLOC_CHUNK */ |
312 | if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) |
313 | slop = (size_t) (MAX_ALLOC_CHUNK-min_request); |
314 | /* Try to get space, if fail reduce slop and try again */ |
315 | for (;;) { |
316 | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); |
317 | if (hdr_ptr != NULL) |
318 | break; |
319 | slop /= 2; |
320 | if (slop < MIN_SLOP) /* give up when it gets real small */ |
321 | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ |
322 | } |
323 | mem->total_space_allocated += min_request + slop; |
324 | /* Success, initialize the new pool header and add to end of list */ |
325 | hdr_ptr->next = NULL; |
326 | hdr_ptr->bytes_used = 0; |
327 | hdr_ptr->bytes_left = sizeofobject + slop; |
328 | if (prev_hdr_ptr == NULL) /* first pool in class? */ |
329 | mem->small_list[pool_id] = hdr_ptr; |
330 | else |
331 | prev_hdr_ptr->next = hdr_ptr; |
332 | } |
333 | |
334 | /* OK, allocate the object from the current pool */ |
335 | data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
336 | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
337 | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
338 | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
339 | data_ptr += hdr_ptr->bytes_used; /* point to place for object */ |
340 | hdr_ptr->bytes_used += sizeofobject; |
341 | hdr_ptr->bytes_left -= sizeofobject; |
342 | |
343 | return (void *) data_ptr; |
344 | } |
345 | |
346 | |
347 | /* |
348 | * Allocation of "large" objects. |
349 | * |
350 | * The external semantics of these are the same as "small" objects. However, |
351 | * the pool management heuristics are quite different. We assume that each |
352 | * request is large enough that it may as well be passed directly to |
353 | * jpeg_get_large; the pool management just links everything together |
354 | * so that we can free it all on demand. |
355 | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY |
356 | * structures. The routines that create these structures (see below) |
357 | * deliberately bunch rows together to ensure a large request size. |
358 | */ |
359 | |
360 | METHODDEF(void *) |
361 | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) |
362 | /* Allocate a "large" object */ |
363 | { |
364 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
365 | large_pool_ptr hdr_ptr; |
366 | char *data_ptr; |
367 | |
368 | /* |
369 | * Round up the requested size to a multiple of ALIGN_SIZE so that |
370 | * algorithms can straddle outside the proper area up to the next |
371 | * alignment. |
372 | */ |
373 | if (sizeofobject > MAX_ALLOC_CHUNK) { |
374 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
375 | is close to SIZE_MAX. */ |
376 | out_of_memory(cinfo, 8); |
377 | } |
378 | sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); |
379 | |
380 | /* Check for unsatisfiable request (do now to ensure no overflow below) */ |
381 | if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > |
382 | MAX_ALLOC_CHUNK) |
383 | out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ |
384 | |
385 | /* Always make a new pool */ |
386 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
387 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
388 | |
389 | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + |
390 | sizeof(large_pool_hdr) + |
391 | ALIGN_SIZE - 1); |
392 | if (hdr_ptr == NULL) |
393 | out_of_memory(cinfo, 4); /* jpeg_get_large failed */ |
394 | mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + |
395 | ALIGN_SIZE - 1; |
396 | |
397 | /* Success, initialize the new pool header and add to list */ |
398 | hdr_ptr->next = mem->large_list[pool_id]; |
399 | /* We maintain space counts in each pool header for statistical purposes, |
400 | * even though they are not needed for allocation. |
401 | */ |
402 | hdr_ptr->bytes_used = sizeofobject; |
403 | hdr_ptr->bytes_left = 0; |
404 | mem->large_list[pool_id] = hdr_ptr; |
405 | |
406 | data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */ |
407 | data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ |
408 | if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ |
409 | data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; |
410 | |
411 | return (void *) data_ptr; |
412 | } |
413 | |
414 | |
415 | /* |
416 | * Creation of 2-D sample arrays. |
417 | * |
418 | * To minimize allocation overhead and to allow I/O of large contiguous |
419 | * blocks, we allocate the sample rows in groups of as many rows as possible |
420 | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. |
421 | * NB: the virtual array control routines, later in this file, know about |
422 | * this chunking of rows. The rowsperchunk value is left in the mem manager |
423 | * object so that it can be saved away if this sarray is the workspace for |
424 | * a virtual array. |
425 | * |
426 | * Since we are often upsampling with a factor 2, we align the size (not |
427 | * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have |
428 | * to be as careful about size. |
429 | */ |
430 | |
431 | METHODDEF(JSAMPARRAY) |
432 | alloc_sarray (j_common_ptr cinfo, int pool_id, |
433 | JDIMENSION samplesperrow, JDIMENSION numrows) |
434 | /* Allocate a 2-D sample array */ |
435 | { |
436 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
437 | JSAMPARRAY result; |
438 | JSAMPROW workspace; |
439 | JDIMENSION rowsperchunk, currow, i; |
440 | long ltemp; |
441 | |
442 | /* Make sure each row is properly aligned */ |
443 | if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) |
444 | out_of_memory(cinfo, 5); /* safety check */ |
445 | |
446 | if (samplesperrow > MAX_ALLOC_CHUNK) { |
447 | /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject |
448 | is close to SIZE_MAX. */ |
449 | out_of_memory(cinfo, 9); |
450 | } |
451 | samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / |
452 | sizeof(JSAMPLE)); |
453 | |
454 | /* Calculate max # of rows allowed in one allocation chunk */ |
455 | ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / |
456 | ((long) samplesperrow * sizeof(JSAMPLE)); |
457 | if (ltemp <= 0) |
458 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
459 | if (ltemp < (long) numrows) |
460 | rowsperchunk = (JDIMENSION) ltemp; |
461 | else |
462 | rowsperchunk = numrows; |
463 | mem->last_rowsperchunk = rowsperchunk; |
464 | |
465 | /* Get space for row pointers (small object) */ |
466 | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, |
467 | (size_t) (numrows * sizeof(JSAMPROW))); |
468 | |
469 | /* Get the rows themselves (large objects) */ |
470 | currow = 0; |
471 | while (currow < numrows) { |
472 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
473 | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, |
474 | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow |
475 | * sizeof(JSAMPLE))); |
476 | for (i = rowsperchunk; i > 0; i--) { |
477 | result[currow++] = workspace; |
478 | workspace += samplesperrow; |
479 | } |
480 | } |
481 | |
482 | return result; |
483 | } |
484 | |
485 | |
486 | /* |
487 | * Creation of 2-D coefficient-block arrays. |
488 | * This is essentially the same as the code for sample arrays, above. |
489 | */ |
490 | |
491 | METHODDEF(JBLOCKARRAY) |
492 | alloc_barray (j_common_ptr cinfo, int pool_id, |
493 | JDIMENSION blocksperrow, JDIMENSION numrows) |
494 | /* Allocate a 2-D coefficient-block array */ |
495 | { |
496 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
497 | JBLOCKARRAY result; |
498 | JBLOCKROW workspace; |
499 | JDIMENSION rowsperchunk, currow, i; |
500 | long ltemp; |
501 | |
502 | /* Make sure each row is properly aligned */ |
503 | if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) |
504 | out_of_memory(cinfo, 6); /* safety check */ |
505 | |
506 | /* Calculate max # of rows allowed in one allocation chunk */ |
507 | ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) / |
508 | ((long) blocksperrow * sizeof(JBLOCK)); |
509 | if (ltemp <= 0) |
510 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
511 | if (ltemp < (long) numrows) |
512 | rowsperchunk = (JDIMENSION) ltemp; |
513 | else |
514 | rowsperchunk = numrows; |
515 | mem->last_rowsperchunk = rowsperchunk; |
516 | |
517 | /* Get space for row pointers (small object) */ |
518 | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, |
519 | (size_t) (numrows * sizeof(JBLOCKROW))); |
520 | |
521 | /* Get the rows themselves (large objects) */ |
522 | currow = 0; |
523 | while (currow < numrows) { |
524 | rowsperchunk = MIN(rowsperchunk, numrows - currow); |
525 | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, |
526 | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow |
527 | * sizeof(JBLOCK))); |
528 | for (i = rowsperchunk; i > 0; i--) { |
529 | result[currow++] = workspace; |
530 | workspace += blocksperrow; |
531 | } |
532 | } |
533 | |
534 | return result; |
535 | } |
536 | |
537 | |
538 | /* |
539 | * About virtual array management: |
540 | * |
541 | * The above "normal" array routines are only used to allocate strip buffers |
542 | * (as wide as the image, but just a few rows high). Full-image-sized buffers |
543 | * are handled as "virtual" arrays. The array is still accessed a strip at a |
544 | * time, but the memory manager must save the whole array for repeated |
545 | * accesses. The intended implementation is that there is a strip buffer in |
546 | * memory (as high as is possible given the desired memory limit), plus a |
547 | * backing file that holds the rest of the array. |
548 | * |
549 | * The request_virt_array routines are told the total size of the image and |
550 | * the maximum number of rows that will be accessed at once. The in-memory |
551 | * buffer must be at least as large as the maxaccess value. |
552 | * |
553 | * The request routines create control blocks but not the in-memory buffers. |
554 | * That is postponed until realize_virt_arrays is called. At that time the |
555 | * total amount of space needed is known (approximately, anyway), so free |
556 | * memory can be divided up fairly. |
557 | * |
558 | * The access_virt_array routines are responsible for making a specific strip |
559 | * area accessible (after reading or writing the backing file, if necessary). |
560 | * Note that the access routines are told whether the caller intends to modify |
561 | * the accessed strip; during a read-only pass this saves having to rewrite |
562 | * data to disk. The access routines are also responsible for pre-zeroing |
563 | * any newly accessed rows, if pre-zeroing was requested. |
564 | * |
565 | * In current usage, the access requests are usually for nonoverlapping |
566 | * strips; that is, successive access start_row numbers differ by exactly |
567 | * num_rows = maxaccess. This means we can get good performance with simple |
568 | * buffer dump/reload logic, by making the in-memory buffer be a multiple |
569 | * of the access height; then there will never be accesses across bufferload |
570 | * boundaries. The code will still work with overlapping access requests, |
571 | * but it doesn't handle bufferload overlaps very efficiently. |
572 | */ |
573 | |
574 | |
575 | METHODDEF(jvirt_sarray_ptr) |
576 | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
577 | JDIMENSION samplesperrow, JDIMENSION numrows, |
578 | JDIMENSION maxaccess) |
579 | /* Request a virtual 2-D sample array */ |
580 | { |
581 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
582 | jvirt_sarray_ptr result; |
583 | |
584 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
585 | if (pool_id != JPOOL_IMAGE) |
586 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
587 | |
588 | /* get control block */ |
589 | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, |
590 | sizeof(struct jvirt_sarray_control)); |
591 | |
592 | result->mem_buffer = NULL; /* marks array not yet realized */ |
593 | result->rows_in_array = numrows; |
594 | result->samplesperrow = samplesperrow; |
595 | result->maxaccess = maxaccess; |
596 | result->pre_zero = pre_zero; |
597 | result->b_s_open = FALSE; /* no associated backing-store object */ |
598 | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ |
599 | mem->virt_sarray_list = result; |
600 | |
601 | return result; |
602 | } |
603 | |
604 | |
605 | METHODDEF(jvirt_barray_ptr) |
606 | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, |
607 | JDIMENSION blocksperrow, JDIMENSION numrows, |
608 | JDIMENSION maxaccess) |
609 | /* Request a virtual 2-D coefficient-block array */ |
610 | { |
611 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
612 | jvirt_barray_ptr result; |
613 | |
614 | /* Only IMAGE-lifetime virtual arrays are currently supported */ |
615 | if (pool_id != JPOOL_IMAGE) |
616 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
617 | |
618 | /* get control block */ |
619 | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, |
620 | sizeof(struct jvirt_barray_control)); |
621 | |
622 | result->mem_buffer = NULL; /* marks array not yet realized */ |
623 | result->rows_in_array = numrows; |
624 | result->blocksperrow = blocksperrow; |
625 | result->maxaccess = maxaccess; |
626 | result->pre_zero = pre_zero; |
627 | result->b_s_open = FALSE; /* no associated backing-store object */ |
628 | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ |
629 | mem->virt_barray_list = result; |
630 | |
631 | return result; |
632 | } |
633 | |
634 | |
635 | METHODDEF(void) |
636 | realize_virt_arrays (j_common_ptr cinfo) |
637 | /* Allocate the in-memory buffers for any unrealized virtual arrays */ |
638 | { |
639 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
640 | size_t space_per_minheight, maximum_space, avail_mem; |
641 | size_t minheights, max_minheights; |
642 | jvirt_sarray_ptr sptr; |
643 | jvirt_barray_ptr bptr; |
644 | |
645 | /* Compute the minimum space needed (maxaccess rows in each buffer) |
646 | * and the maximum space needed (full image height in each buffer). |
647 | * These may be of use to the system-dependent jpeg_mem_available routine. |
648 | */ |
649 | space_per_minheight = 0; |
650 | maximum_space = 0; |
651 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
652 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
653 | space_per_minheight += (long) sptr->maxaccess * |
654 | (long) sptr->samplesperrow * sizeof(JSAMPLE); |
655 | maximum_space += (long) sptr->rows_in_array * |
656 | (long) sptr->samplesperrow * sizeof(JSAMPLE); |
657 | } |
658 | } |
659 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
660 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
661 | space_per_minheight += (long) bptr->maxaccess * |
662 | (long) bptr->blocksperrow * sizeof(JBLOCK); |
663 | maximum_space += (long) bptr->rows_in_array * |
664 | (long) bptr->blocksperrow * sizeof(JBLOCK); |
665 | } |
666 | } |
667 | |
668 | if (space_per_minheight <= 0) |
669 | return; /* no unrealized arrays, no work */ |
670 | |
671 | /* Determine amount of memory to actually use; this is system-dependent. */ |
672 | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, |
673 | mem->total_space_allocated); |
674 | |
675 | /* If the maximum space needed is available, make all the buffers full |
676 | * height; otherwise parcel it out with the same number of minheights |
677 | * in each buffer. |
678 | */ |
679 | if (avail_mem >= maximum_space) |
680 | max_minheights = 1000000000L; |
681 | else { |
682 | max_minheights = avail_mem / space_per_minheight; |
683 | /* If there doesn't seem to be enough space, try to get the minimum |
684 | * anyway. This allows a "stub" implementation of jpeg_mem_available(). |
685 | */ |
686 | if (max_minheights <= 0) |
687 | max_minheights = 1; |
688 | } |
689 | |
690 | /* Allocate the in-memory buffers and initialize backing store as needed. */ |
691 | |
692 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
693 | if (sptr->mem_buffer == NULL) { /* if not realized yet */ |
694 | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; |
695 | if (minheights <= max_minheights) { |
696 | /* This buffer fits in memory */ |
697 | sptr->rows_in_mem = sptr->rows_in_array; |
698 | } else { |
699 | /* It doesn't fit in memory, create backing store. */ |
700 | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); |
701 | jpeg_open_backing_store(cinfo, & sptr->b_s_info, |
702 | (long) sptr->rows_in_array * |
703 | (long) sptr->samplesperrow * |
704 | (long) sizeof(JSAMPLE)); |
705 | sptr->b_s_open = TRUE; |
706 | } |
707 | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, |
708 | sptr->samplesperrow, sptr->rows_in_mem); |
709 | sptr->rowsperchunk = mem->last_rowsperchunk; |
710 | sptr->cur_start_row = 0; |
711 | sptr->first_undef_row = 0; |
712 | sptr->dirty = FALSE; |
713 | } |
714 | } |
715 | |
716 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
717 | if (bptr->mem_buffer == NULL) { /* if not realized yet */ |
718 | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; |
719 | if (minheights <= max_minheights) { |
720 | /* This buffer fits in memory */ |
721 | bptr->rows_in_mem = bptr->rows_in_array; |
722 | } else { |
723 | /* It doesn't fit in memory, create backing store. */ |
724 | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); |
725 | jpeg_open_backing_store(cinfo, & bptr->b_s_info, |
726 | (long) bptr->rows_in_array * |
727 | (long) bptr->blocksperrow * |
728 | (long) sizeof(JBLOCK)); |
729 | bptr->b_s_open = TRUE; |
730 | } |
731 | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, |
732 | bptr->blocksperrow, bptr->rows_in_mem); |
733 | bptr->rowsperchunk = mem->last_rowsperchunk; |
734 | bptr->cur_start_row = 0; |
735 | bptr->first_undef_row = 0; |
736 | bptr->dirty = FALSE; |
737 | } |
738 | } |
739 | } |
740 | |
741 | |
742 | LOCAL(void) |
743 | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) |
744 | /* Do backing store read or write of a virtual sample array */ |
745 | { |
746 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
747 | |
748 | bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE); |
749 | file_offset = ptr->cur_start_row * bytesperrow; |
750 | /* Loop to read or write each allocation chunk in mem_buffer */ |
751 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
752 | /* One chunk, but check for short chunk at end of buffer */ |
753 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
754 | /* Transfer no more than is currently defined */ |
755 | thisrow = (long) ptr->cur_start_row + i; |
756 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
757 | /* Transfer no more than fits in file */ |
758 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
759 | if (rows <= 0) /* this chunk might be past end of file! */ |
760 | break; |
761 | byte_count = rows * bytesperrow; |
762 | if (writing) |
763 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
764 | (void *) ptr->mem_buffer[i], |
765 | file_offset, byte_count); |
766 | else |
767 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
768 | (void *) ptr->mem_buffer[i], |
769 | file_offset, byte_count); |
770 | file_offset += byte_count; |
771 | } |
772 | } |
773 | |
774 | |
775 | LOCAL(void) |
776 | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) |
777 | /* Do backing store read or write of a virtual coefficient-block array */ |
778 | { |
779 | long bytesperrow, file_offset, byte_count, rows, thisrow, i; |
780 | |
781 | bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK); |
782 | file_offset = ptr->cur_start_row * bytesperrow; |
783 | /* Loop to read or write each allocation chunk in mem_buffer */ |
784 | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { |
785 | /* One chunk, but check for short chunk at end of buffer */ |
786 | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); |
787 | /* Transfer no more than is currently defined */ |
788 | thisrow = (long) ptr->cur_start_row + i; |
789 | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); |
790 | /* Transfer no more than fits in file */ |
791 | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); |
792 | if (rows <= 0) /* this chunk might be past end of file! */ |
793 | break; |
794 | byte_count = rows * bytesperrow; |
795 | if (writing) |
796 | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, |
797 | (void *) ptr->mem_buffer[i], |
798 | file_offset, byte_count); |
799 | else |
800 | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, |
801 | (void *) ptr->mem_buffer[i], |
802 | file_offset, byte_count); |
803 | file_offset += byte_count; |
804 | } |
805 | } |
806 | |
807 | |
808 | METHODDEF(JSAMPARRAY) |
809 | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, |
810 | JDIMENSION start_row, JDIMENSION num_rows, |
811 | boolean writable) |
812 | /* Access the part of a virtual sample array starting at start_row */ |
813 | /* and extending for num_rows rows. writable is true if */ |
814 | /* caller intends to modify the accessed area. */ |
815 | { |
816 | JDIMENSION end_row = start_row + num_rows; |
817 | JDIMENSION undef_row; |
818 | |
819 | /* debugging check */ |
820 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
821 | ptr->mem_buffer == NULL) |
822 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
823 | |
824 | /* Make the desired part of the virtual array accessible */ |
825 | if (start_row < ptr->cur_start_row || |
826 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
827 | if (! ptr->b_s_open) |
828 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
829 | /* Flush old buffer contents if necessary */ |
830 | if (ptr->dirty) { |
831 | do_sarray_io(cinfo, ptr, TRUE); |
832 | ptr->dirty = FALSE; |
833 | } |
834 | /* Decide what part of virtual array to access. |
835 | * Algorithm: if target address > current window, assume forward scan, |
836 | * load starting at target address. If target address < current window, |
837 | * assume backward scan, load so that target area is top of window. |
838 | * Note that when switching from forward write to forward read, will have |
839 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
840 | */ |
841 | if (start_row > ptr->cur_start_row) { |
842 | ptr->cur_start_row = start_row; |
843 | } else { |
844 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
845 | long ltemp; |
846 | |
847 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
848 | if (ltemp < 0) |
849 | ltemp = 0; /* don't fall off front end of file */ |
850 | ptr->cur_start_row = (JDIMENSION) ltemp; |
851 | } |
852 | /* Read in the selected part of the array. |
853 | * During the initial write pass, we will do no actual read |
854 | * because the selected part is all undefined. |
855 | */ |
856 | do_sarray_io(cinfo, ptr, FALSE); |
857 | } |
858 | /* Ensure the accessed part of the array is defined; prezero if needed. |
859 | * To improve locality of access, we only prezero the part of the array |
860 | * that the caller is about to access, not the entire in-memory array. |
861 | */ |
862 | if (ptr->first_undef_row < end_row) { |
863 | if (ptr->first_undef_row < start_row) { |
864 | if (writable) /* writer skipped over a section of array */ |
865 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
866 | undef_row = start_row; /* but reader is allowed to read ahead */ |
867 | } else { |
868 | undef_row = ptr->first_undef_row; |
869 | } |
870 | if (writable) |
871 | ptr->first_undef_row = end_row; |
872 | if (ptr->pre_zero) { |
873 | size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE); |
874 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
875 | end_row -= ptr->cur_start_row; |
876 | while (undef_row < end_row) { |
877 | jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); |
878 | undef_row++; |
879 | } |
880 | } else { |
881 | if (! writable) /* reader looking at undefined data */ |
882 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
883 | } |
884 | } |
885 | /* Flag the buffer dirty if caller will write in it */ |
886 | if (writable) |
887 | ptr->dirty = TRUE; |
888 | /* Return address of proper part of the buffer */ |
889 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
890 | } |
891 | |
892 | |
893 | METHODDEF(JBLOCKARRAY) |
894 | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, |
895 | JDIMENSION start_row, JDIMENSION num_rows, |
896 | boolean writable) |
897 | /* Access the part of a virtual block array starting at start_row */ |
898 | /* and extending for num_rows rows. writable is true if */ |
899 | /* caller intends to modify the accessed area. */ |
900 | { |
901 | JDIMENSION end_row = start_row + num_rows; |
902 | JDIMENSION undef_row; |
903 | |
904 | /* debugging check */ |
905 | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || |
906 | ptr->mem_buffer == NULL) |
907 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
908 | |
909 | /* Make the desired part of the virtual array accessible */ |
910 | if (start_row < ptr->cur_start_row || |
911 | end_row > ptr->cur_start_row+ptr->rows_in_mem) { |
912 | if (! ptr->b_s_open) |
913 | ERREXIT(cinfo, JERR_VIRTUAL_BUG); |
914 | /* Flush old buffer contents if necessary */ |
915 | if (ptr->dirty) { |
916 | do_barray_io(cinfo, ptr, TRUE); |
917 | ptr->dirty = FALSE; |
918 | } |
919 | /* Decide what part of virtual array to access. |
920 | * Algorithm: if target address > current window, assume forward scan, |
921 | * load starting at target address. If target address < current window, |
922 | * assume backward scan, load so that target area is top of window. |
923 | * Note that when switching from forward write to forward read, will have |
924 | * start_row = 0, so the limiting case applies and we load from 0 anyway. |
925 | */ |
926 | if (start_row > ptr->cur_start_row) { |
927 | ptr->cur_start_row = start_row; |
928 | } else { |
929 | /* use long arithmetic here to avoid overflow & unsigned problems */ |
930 | long ltemp; |
931 | |
932 | ltemp = (long) end_row - (long) ptr->rows_in_mem; |
933 | if (ltemp < 0) |
934 | ltemp = 0; /* don't fall off front end of file */ |
935 | ptr->cur_start_row = (JDIMENSION) ltemp; |
936 | } |
937 | /* Read in the selected part of the array. |
938 | * During the initial write pass, we will do no actual read |
939 | * because the selected part is all undefined. |
940 | */ |
941 | do_barray_io(cinfo, ptr, FALSE); |
942 | } |
943 | /* Ensure the accessed part of the array is defined; prezero if needed. |
944 | * To improve locality of access, we only prezero the part of the array |
945 | * that the caller is about to access, not the entire in-memory array. |
946 | */ |
947 | if (ptr->first_undef_row < end_row) { |
948 | if (ptr->first_undef_row < start_row) { |
949 | if (writable) /* writer skipped over a section of array */ |
950 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
951 | undef_row = start_row; /* but reader is allowed to read ahead */ |
952 | } else { |
953 | undef_row = ptr->first_undef_row; |
954 | } |
955 | if (writable) |
956 | ptr->first_undef_row = end_row; |
957 | if (ptr->pre_zero) { |
958 | size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK); |
959 | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ |
960 | end_row -= ptr->cur_start_row; |
961 | while (undef_row < end_row) { |
962 | jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow); |
963 | undef_row++; |
964 | } |
965 | } else { |
966 | if (! writable) /* reader looking at undefined data */ |
967 | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); |
968 | } |
969 | } |
970 | /* Flag the buffer dirty if caller will write in it */ |
971 | if (writable) |
972 | ptr->dirty = TRUE; |
973 | /* Return address of proper part of the buffer */ |
974 | return ptr->mem_buffer + (start_row - ptr->cur_start_row); |
975 | } |
976 | |
977 | |
978 | /* |
979 | * Release all objects belonging to a specified pool. |
980 | */ |
981 | |
982 | METHODDEF(void) |
983 | free_pool (j_common_ptr cinfo, int pool_id) |
984 | { |
985 | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; |
986 | small_pool_ptr shdr_ptr; |
987 | large_pool_ptr lhdr_ptr; |
988 | size_t space_freed; |
989 | |
990 | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) |
991 | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ |
992 | |
993 | #ifdef MEM_STATS |
994 | if (cinfo->err->trace_level > 1) |
995 | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ |
996 | #endif |
997 | |
998 | /* If freeing IMAGE pool, close any virtual arrays first */ |
999 | if (pool_id == JPOOL_IMAGE) { |
1000 | jvirt_sarray_ptr sptr; |
1001 | jvirt_barray_ptr bptr; |
1002 | |
1003 | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { |
1004 | if (sptr->b_s_open) { /* there may be no backing store */ |
1005 | sptr->b_s_open = FALSE; /* prevent recursive close if error */ |
1006 | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); |
1007 | } |
1008 | } |
1009 | mem->virt_sarray_list = NULL; |
1010 | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { |
1011 | if (bptr->b_s_open) { /* there may be no backing store */ |
1012 | bptr->b_s_open = FALSE; /* prevent recursive close if error */ |
1013 | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); |
1014 | } |
1015 | } |
1016 | mem->virt_barray_list = NULL; |
1017 | } |
1018 | |
1019 | /* Release large objects */ |
1020 | lhdr_ptr = mem->large_list[pool_id]; |
1021 | mem->large_list[pool_id] = NULL; |
1022 | |
1023 | while (lhdr_ptr != NULL) { |
1024 | large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; |
1025 | space_freed = lhdr_ptr->bytes_used + |
1026 | lhdr_ptr->bytes_left + |
1027 | sizeof(large_pool_hdr); |
1028 | jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed); |
1029 | mem->total_space_allocated -= space_freed; |
1030 | lhdr_ptr = next_lhdr_ptr; |
1031 | } |
1032 | |
1033 | /* Release small objects */ |
1034 | shdr_ptr = mem->small_list[pool_id]; |
1035 | mem->small_list[pool_id] = NULL; |
1036 | |
1037 | while (shdr_ptr != NULL) { |
1038 | small_pool_ptr next_shdr_ptr = shdr_ptr->next; |
1039 | space_freed = shdr_ptr->bytes_used + |
1040 | shdr_ptr->bytes_left + |
1041 | sizeof(small_pool_hdr); |
1042 | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); |
1043 | mem->total_space_allocated -= space_freed; |
1044 | shdr_ptr = next_shdr_ptr; |
1045 | } |
1046 | } |
1047 | |
1048 | |
1049 | /* |
1050 | * Close up shop entirely. |
1051 | * Note that this cannot be called unless cinfo->mem is non-NULL. |
1052 | */ |
1053 | |
1054 | METHODDEF(void) |
1055 | self_destruct (j_common_ptr cinfo) |
1056 | { |
1057 | int pool; |
1058 | |
1059 | /* Close all backing store, release all memory. |
1060 | * Releasing pools in reverse order might help avoid fragmentation |
1061 | * with some (brain-damaged) malloc libraries. |
1062 | */ |
1063 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1064 | free_pool(cinfo, pool); |
1065 | } |
1066 | |
1067 | /* Release the memory manager control block too. */ |
1068 | jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr)); |
1069 | cinfo->mem = NULL; /* ensures I will be called only once */ |
1070 | |
1071 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1072 | } |
1073 | |
1074 | |
1075 | /* |
1076 | * Memory manager initialization. |
1077 | * When this is called, only the error manager pointer is valid in cinfo! |
1078 | */ |
1079 | |
1080 | GLOBAL(void) |
1081 | jinit_memory_mgr (j_common_ptr cinfo) |
1082 | { |
1083 | my_mem_ptr mem; |
1084 | long max_to_use; |
1085 | int pool; |
1086 | size_t test_mac; |
1087 | |
1088 | cinfo->mem = NULL; /* for safety if init fails */ |
1089 | |
1090 | /* Check for configuration errors. |
1091 | * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably |
1092 | * doesn't reflect any real hardware alignment requirement. |
1093 | * The test is a little tricky: for X>0, X and X-1 have no one-bits |
1094 | * in common if and only if X is a power of 2, ie has only one one-bit. |
1095 | * Some compilers may give an "unreachable code" warning here; ignore it. |
1096 | */ |
1097 | if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0) |
1098 | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); |
1099 | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be |
1100 | * a multiple of ALIGN_SIZE. |
1101 | * Again, an "unreachable code" warning may be ignored here. |
1102 | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. |
1103 | */ |
1104 | test_mac = (size_t) MAX_ALLOC_CHUNK; |
1105 | if ((long) test_mac != MAX_ALLOC_CHUNK || |
1106 | (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) |
1107 | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); |
1108 | |
1109 | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ |
1110 | |
1111 | /* Attempt to allocate memory manager's control block */ |
1112 | mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr)); |
1113 | |
1114 | if (mem == NULL) { |
1115 | jpeg_mem_term(cinfo); /* system-dependent cleanup */ |
1116 | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); |
1117 | } |
1118 | |
1119 | /* OK, fill in the method pointers */ |
1120 | mem->pub.alloc_small = alloc_small; |
1121 | mem->pub.alloc_large = alloc_large; |
1122 | mem->pub.alloc_sarray = alloc_sarray; |
1123 | mem->pub.alloc_barray = alloc_barray; |
1124 | mem->pub.request_virt_sarray = request_virt_sarray; |
1125 | mem->pub.request_virt_barray = request_virt_barray; |
1126 | mem->pub.realize_virt_arrays = realize_virt_arrays; |
1127 | mem->pub.access_virt_sarray = access_virt_sarray; |
1128 | mem->pub.access_virt_barray = access_virt_barray; |
1129 | mem->pub.free_pool = free_pool; |
1130 | mem->pub.self_destruct = self_destruct; |
1131 | |
1132 | /* Make MAX_ALLOC_CHUNK accessible to other modules */ |
1133 | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; |
1134 | |
1135 | /* Initialize working state */ |
1136 | mem->pub.max_memory_to_use = max_to_use; |
1137 | |
1138 | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { |
1139 | mem->small_list[pool] = NULL; |
1140 | mem->large_list[pool] = NULL; |
1141 | } |
1142 | mem->virt_sarray_list = NULL; |
1143 | mem->virt_barray_list = NULL; |
1144 | |
1145 | mem->total_space_allocated = sizeof(my_memory_mgr); |
1146 | |
1147 | /* Declare ourselves open for business */ |
1148 | cinfo->mem = & mem->pub; |
1149 | |
1150 | /* Check for an environment variable JPEGMEM; if found, override the |
1151 | * default max_memory setting from jpeg_mem_init. Note that the |
1152 | * surrounding application may again override this value. |
1153 | * If your system doesn't support getenv(), define NO_GETENV to disable |
1154 | * this feature. |
1155 | */ |
1156 | #ifndef NO_GETENV |
1157 | { char *memenv; |
1158 | |
1159 | if ((memenv = getenv("JPEGMEM" )) != NULL) { |
1160 | char ch = 'x'; |
1161 | |
1162 | if (sscanf(memenv, "%ld%c" , &max_to_use, &ch) > 0) { |
1163 | if (ch == 'm' || ch == 'M') |
1164 | max_to_use *= 1000L; |
1165 | mem->pub.max_memory_to_use = max_to_use * 1000L; |
1166 | } |
1167 | } |
1168 | } |
1169 | #endif |
1170 | |
1171 | } |
1172 | |