1 | /* |
2 | * jquant2.c |
3 | * |
4 | * This file was part of the Independent JPEG Group's software: |
5 | * Copyright (C) 1991-1996, Thomas G. Lane. |
6 | * libjpeg-turbo Modifications: |
7 | * Copyright (C) 2009, 2014-2015, D. R. Commander. |
8 | * For conditions of distribution and use, see the accompanying README.ijg |
9 | * file. |
10 | * |
11 | * This file contains 2-pass color quantization (color mapping) routines. |
12 | * These routines provide selection of a custom color map for an image, |
13 | * followed by mapping of the image to that color map, with optional |
14 | * Floyd-Steinberg dithering. |
15 | * It is also possible to use just the second pass to map to an arbitrary |
16 | * externally-given color map. |
17 | * |
18 | * Note: ordered dithering is not supported, since there isn't any fast |
19 | * way to compute intercolor distances; it's unclear that ordered dither's |
20 | * fundamental assumptions even hold with an irregularly spaced color map. |
21 | */ |
22 | |
23 | #define JPEG_INTERNALS |
24 | #include "jinclude.h" |
25 | #include "jpeglib.h" |
26 | |
27 | #ifdef QUANT_2PASS_SUPPORTED |
28 | |
29 | |
30 | /* |
31 | * This module implements the well-known Heckbert paradigm for color |
32 | * quantization. Most of the ideas used here can be traced back to |
33 | * Heckbert's seminal paper |
34 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", |
35 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. |
36 | * |
37 | * In the first pass over the image, we accumulate a histogram showing the |
38 | * usage count of each possible color. To keep the histogram to a reasonable |
39 | * size, we reduce the precision of the input; typical practice is to retain |
40 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted |
41 | * in the same histogram cell. |
42 | * |
43 | * Next, the color-selection step begins with a box representing the whole |
44 | * color space, and repeatedly splits the "largest" remaining box until we |
45 | * have as many boxes as desired colors. Then the mean color in each |
46 | * remaining box becomes one of the possible output colors. |
47 | * |
48 | * The second pass over the image maps each input pixel to the closest output |
49 | * color (optionally after applying a Floyd-Steinberg dithering correction). |
50 | * This mapping is logically trivial, but making it go fast enough requires |
51 | * considerable care. |
52 | * |
53 | * Heckbert-style quantizers vary a good deal in their policies for choosing |
54 | * the "largest" box and deciding where to cut it. The particular policies |
55 | * used here have proved out well in experimental comparisons, but better ones |
56 | * may yet be found. |
57 | * |
58 | * In earlier versions of the IJG code, this module quantized in YCbCr color |
59 | * space, processing the raw upsampled data without a color conversion step. |
60 | * This allowed the color conversion math to be done only once per colormap |
61 | * entry, not once per pixel. However, that optimization precluded other |
62 | * useful optimizations (such as merging color conversion with upsampling) |
63 | * and it also interfered with desired capabilities such as quantizing to an |
64 | * externally-supplied colormap. We have therefore abandoned that approach. |
65 | * The present code works in the post-conversion color space, typically RGB. |
66 | * |
67 | * To improve the visual quality of the results, we actually work in scaled |
68 | * RGB space, giving G distances more weight than R, and R in turn more than |
69 | * B. To do everything in integer math, we must use integer scale factors. |
70 | * The 2/3/1 scale factors used here correspond loosely to the relative |
71 | * weights of the colors in the NTSC grayscale equation. |
72 | * If you want to use this code to quantize a non-RGB color space, you'll |
73 | * probably need to change these scale factors. |
74 | */ |
75 | |
76 | #define R_SCALE 2 /* scale R distances by this much */ |
77 | #define G_SCALE 3 /* scale G distances by this much */ |
78 | #define B_SCALE 1 /* and B by this much */ |
79 | |
80 | static const int c_scales[3]={R_SCALE, G_SCALE, B_SCALE}; |
81 | #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] |
82 | #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]] |
83 | #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]] |
84 | |
85 | /* |
86 | * First we have the histogram data structure and routines for creating it. |
87 | * |
88 | * The number of bits of precision can be adjusted by changing these symbols. |
89 | * We recommend keeping 6 bits for G and 5 each for R and B. |
90 | * If you have plenty of memory and cycles, 6 bits all around gives marginally |
91 | * better results; if you are short of memory, 5 bits all around will save |
92 | * some space but degrade the results. |
93 | * To maintain a fully accurate histogram, we'd need to allocate a "long" |
94 | * (preferably unsigned long) for each cell. In practice this is overkill; |
95 | * we can get by with 16 bits per cell. Few of the cell counts will overflow, |
96 | * and clamping those that do overflow to the maximum value will give close- |
97 | * enough results. This reduces the recommended histogram size from 256Kb |
98 | * to 128Kb, which is a useful savings on PC-class machines. |
99 | * (In the second pass the histogram space is re-used for pixel mapping data; |
100 | * in that capacity, each cell must be able to store zero to the number of |
101 | * desired colors. 16 bits/cell is plenty for that too.) |
102 | * Since the JPEG code is intended to run in small memory model on 80x86 |
103 | * machines, we can't just allocate the histogram in one chunk. Instead |
104 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each |
105 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and |
106 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. |
107 | */ |
108 | |
109 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ |
110 | |
111 | /* These will do the right thing for either R,G,B or B,G,R color order, |
112 | * but you may not like the results for other color orders. |
113 | */ |
114 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ |
115 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */ |
116 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ |
117 | |
118 | /* Number of elements along histogram axes. */ |
119 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS) |
120 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS) |
121 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS) |
122 | |
123 | /* These are the amounts to shift an input value to get a histogram index. */ |
124 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) |
125 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) |
126 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) |
127 | |
128 | |
129 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ |
130 | |
131 | typedef histcell *histptr; /* for pointers to histogram cells */ |
132 | |
133 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ |
134 | typedef hist1d *hist2d; /* type for the 2nd-level pointers */ |
135 | typedef hist2d *hist3d; /* type for top-level pointer */ |
136 | |
137 | |
138 | /* Declarations for Floyd-Steinberg dithering. |
139 | * |
140 | * Errors are accumulated into the array fserrors[], at a resolution of |
141 | * 1/16th of a pixel count. The error at a given pixel is propagated |
142 | * to its not-yet-processed neighbors using the standard F-S fractions, |
143 | * ... (here) 7/16 |
144 | * 3/16 5/16 1/16 |
145 | * We work left-to-right on even rows, right-to-left on odd rows. |
146 | * |
147 | * We can get away with a single array (holding one row's worth of errors) |
148 | * by using it to store the current row's errors at pixel columns not yet |
149 | * processed, but the next row's errors at columns already processed. We |
150 | * need only a few extra variables to hold the errors immediately around the |
151 | * current column. (If we are lucky, those variables are in registers, but |
152 | * even if not, they're probably cheaper to access than array elements are.) |
153 | * |
154 | * The fserrors[] array has (#columns + 2) entries; the extra entry at |
155 | * each end saves us from special-casing the first and last pixels. |
156 | * Each entry is three values long, one value for each color component. |
157 | */ |
158 | |
159 | #if BITS_IN_JSAMPLE == 8 |
160 | typedef INT16 FSERROR; /* 16 bits should be enough */ |
161 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
162 | #else |
163 | typedef JLONG FSERROR; /* may need more than 16 bits */ |
164 | typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ |
165 | #endif |
166 | |
167 | typedef FSERROR *FSERRPTR; /* pointer to error array */ |
168 | |
169 | |
170 | /* Private subobject */ |
171 | |
172 | typedef struct { |
173 | struct jpeg_color_quantizer pub; /* public fields */ |
174 | |
175 | /* Space for the eventually created colormap is stashed here */ |
176 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ |
177 | int desired; /* desired # of colors = size of colormap */ |
178 | |
179 | /* Variables for accumulating image statistics */ |
180 | hist3d histogram; /* pointer to the histogram */ |
181 | |
182 | boolean needs_zeroed; /* TRUE if next pass must zero histogram */ |
183 | |
184 | /* Variables for Floyd-Steinberg dithering */ |
185 | FSERRPTR fserrors; /* accumulated errors */ |
186 | boolean on_odd_row; /* flag to remember which row we are on */ |
187 | int *error_limiter; /* table for clamping the applied error */ |
188 | } my_cquantizer; |
189 | |
190 | typedef my_cquantizer *my_cquantize_ptr; |
191 | |
192 | |
193 | /* |
194 | * Prescan some rows of pixels. |
195 | * In this module the prescan simply updates the histogram, which has been |
196 | * initialized to zeroes by start_pass. |
197 | * An output_buf parameter is required by the method signature, but no data |
198 | * is actually output (in fact the buffer controller is probably passing a |
199 | * NULL pointer). |
200 | */ |
201 | |
202 | METHODDEF(void) |
203 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
204 | JSAMPARRAY output_buf, int num_rows) |
205 | { |
206 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
207 | register JSAMPROW ptr; |
208 | register histptr histp; |
209 | register hist3d histogram = cquantize->histogram; |
210 | int row; |
211 | JDIMENSION col; |
212 | JDIMENSION width = cinfo->output_width; |
213 | |
214 | for (row = 0; row < num_rows; row++) { |
215 | ptr = input_buf[row]; |
216 | for (col = width; col > 0; col--) { |
217 | /* get pixel value and index into the histogram */ |
218 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] |
219 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT] |
220 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; |
221 | /* increment, check for overflow and undo increment if so. */ |
222 | if (++(*histp) <= 0) |
223 | (*histp)--; |
224 | ptr += 3; |
225 | } |
226 | } |
227 | } |
228 | |
229 | |
230 | /* |
231 | * Next we have the really interesting routines: selection of a colormap |
232 | * given the completed histogram. |
233 | * These routines work with a list of "boxes", each representing a rectangular |
234 | * subset of the input color space (to histogram precision). |
235 | */ |
236 | |
237 | typedef struct { |
238 | /* The bounds of the box (inclusive); expressed as histogram indexes */ |
239 | int c0min, c0max; |
240 | int c1min, c1max; |
241 | int c2min, c2max; |
242 | /* The volume (actually 2-norm) of the box */ |
243 | JLONG volume; |
244 | /* The number of nonzero histogram cells within this box */ |
245 | long colorcount; |
246 | } box; |
247 | |
248 | typedef box *boxptr; |
249 | |
250 | |
251 | LOCAL(boxptr) |
252 | find_biggest_color_pop (boxptr boxlist, int numboxes) |
253 | /* Find the splittable box with the largest color population */ |
254 | /* Returns NULL if no splittable boxes remain */ |
255 | { |
256 | register boxptr boxp; |
257 | register int i; |
258 | register long maxc = 0; |
259 | boxptr which = NULL; |
260 | |
261 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
262 | if (boxp->colorcount > maxc && boxp->volume > 0) { |
263 | which = boxp; |
264 | maxc = boxp->colorcount; |
265 | } |
266 | } |
267 | return which; |
268 | } |
269 | |
270 | |
271 | LOCAL(boxptr) |
272 | find_biggest_volume (boxptr boxlist, int numboxes) |
273 | /* Find the splittable box with the largest (scaled) volume */ |
274 | /* Returns NULL if no splittable boxes remain */ |
275 | { |
276 | register boxptr boxp; |
277 | register int i; |
278 | register JLONG maxv = 0; |
279 | boxptr which = NULL; |
280 | |
281 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { |
282 | if (boxp->volume > maxv) { |
283 | which = boxp; |
284 | maxv = boxp->volume; |
285 | } |
286 | } |
287 | return which; |
288 | } |
289 | |
290 | |
291 | LOCAL(void) |
292 | update_box (j_decompress_ptr cinfo, boxptr boxp) |
293 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ |
294 | /* and recompute its volume and population */ |
295 | { |
296 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
297 | hist3d histogram = cquantize->histogram; |
298 | histptr histp; |
299 | int c0,c1,c2; |
300 | int c0min,c0max,c1min,c1max,c2min,c2max; |
301 | JLONG dist0,dist1,dist2; |
302 | long ccount; |
303 | |
304 | c0min = boxp->c0min; c0max = boxp->c0max; |
305 | c1min = boxp->c1min; c1max = boxp->c1max; |
306 | c2min = boxp->c2min; c2max = boxp->c2max; |
307 | |
308 | if (c0max > c0min) |
309 | for (c0 = c0min; c0 <= c0max; c0++) |
310 | for (c1 = c1min; c1 <= c1max; c1++) { |
311 | histp = & histogram[c0][c1][c2min]; |
312 | for (c2 = c2min; c2 <= c2max; c2++) |
313 | if (*histp++ != 0) { |
314 | boxp->c0min = c0min = c0; |
315 | goto have_c0min; |
316 | } |
317 | } |
318 | have_c0min: |
319 | if (c0max > c0min) |
320 | for (c0 = c0max; c0 >= c0min; c0--) |
321 | for (c1 = c1min; c1 <= c1max; c1++) { |
322 | histp = & histogram[c0][c1][c2min]; |
323 | for (c2 = c2min; c2 <= c2max; c2++) |
324 | if (*histp++ != 0) { |
325 | boxp->c0max = c0max = c0; |
326 | goto have_c0max; |
327 | } |
328 | } |
329 | have_c0max: |
330 | if (c1max > c1min) |
331 | for (c1 = c1min; c1 <= c1max; c1++) |
332 | for (c0 = c0min; c0 <= c0max; c0++) { |
333 | histp = & histogram[c0][c1][c2min]; |
334 | for (c2 = c2min; c2 <= c2max; c2++) |
335 | if (*histp++ != 0) { |
336 | boxp->c1min = c1min = c1; |
337 | goto have_c1min; |
338 | } |
339 | } |
340 | have_c1min: |
341 | if (c1max > c1min) |
342 | for (c1 = c1max; c1 >= c1min; c1--) |
343 | for (c0 = c0min; c0 <= c0max; c0++) { |
344 | histp = & histogram[c0][c1][c2min]; |
345 | for (c2 = c2min; c2 <= c2max; c2++) |
346 | if (*histp++ != 0) { |
347 | boxp->c1max = c1max = c1; |
348 | goto have_c1max; |
349 | } |
350 | } |
351 | have_c1max: |
352 | if (c2max > c2min) |
353 | for (c2 = c2min; c2 <= c2max; c2++) |
354 | for (c0 = c0min; c0 <= c0max; c0++) { |
355 | histp = & histogram[c0][c1min][c2]; |
356 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
357 | if (*histp != 0) { |
358 | boxp->c2min = c2min = c2; |
359 | goto have_c2min; |
360 | } |
361 | } |
362 | have_c2min: |
363 | if (c2max > c2min) |
364 | for (c2 = c2max; c2 >= c2min; c2--) |
365 | for (c0 = c0min; c0 <= c0max; c0++) { |
366 | histp = & histogram[c0][c1min][c2]; |
367 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) |
368 | if (*histp != 0) { |
369 | boxp->c2max = c2max = c2; |
370 | goto have_c2max; |
371 | } |
372 | } |
373 | have_c2max: |
374 | |
375 | /* Update box volume. |
376 | * We use 2-norm rather than real volume here; this biases the method |
377 | * against making long narrow boxes, and it has the side benefit that |
378 | * a box is splittable iff norm > 0. |
379 | * Since the differences are expressed in histogram-cell units, |
380 | * we have to shift back to JSAMPLE units to get consistent distances; |
381 | * after which, we scale according to the selected distance scale factors. |
382 | */ |
383 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; |
384 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; |
385 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; |
386 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; |
387 | |
388 | /* Now scan remaining volume of box and compute population */ |
389 | ccount = 0; |
390 | for (c0 = c0min; c0 <= c0max; c0++) |
391 | for (c1 = c1min; c1 <= c1max; c1++) { |
392 | histp = & histogram[c0][c1][c2min]; |
393 | for (c2 = c2min; c2 <= c2max; c2++, histp++) |
394 | if (*histp != 0) { |
395 | ccount++; |
396 | } |
397 | } |
398 | boxp->colorcount = ccount; |
399 | } |
400 | |
401 | |
402 | LOCAL(int) |
403 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, |
404 | int desired_colors) |
405 | /* Repeatedly select and split the largest box until we have enough boxes */ |
406 | { |
407 | int n,lb; |
408 | int c0,c1,c2,cmax; |
409 | register boxptr b1,b2; |
410 | |
411 | while (numboxes < desired_colors) { |
412 | /* Select box to split. |
413 | * Current algorithm: by population for first half, then by volume. |
414 | */ |
415 | if (numboxes*2 <= desired_colors) { |
416 | b1 = find_biggest_color_pop(boxlist, numboxes); |
417 | } else { |
418 | b1 = find_biggest_volume(boxlist, numboxes); |
419 | } |
420 | if (b1 == NULL) /* no splittable boxes left! */ |
421 | break; |
422 | b2 = &boxlist[numboxes]; /* where new box will go */ |
423 | /* Copy the color bounds to the new box. */ |
424 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; |
425 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; |
426 | /* Choose which axis to split the box on. |
427 | * Current algorithm: longest scaled axis. |
428 | * See notes in update_box about scaling distances. |
429 | */ |
430 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; |
431 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; |
432 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; |
433 | /* We want to break any ties in favor of green, then red, blue last. |
434 | * This code does the right thing for R,G,B or B,G,R color orders only. |
435 | */ |
436 | if (rgb_red[cinfo->out_color_space] == 0) { |
437 | cmax = c1; n = 1; |
438 | if (c0 > cmax) { cmax = c0; n = 0; } |
439 | if (c2 > cmax) { n = 2; } |
440 | } |
441 | else { |
442 | cmax = c1; n = 1; |
443 | if (c2 > cmax) { cmax = c2; n = 2; } |
444 | if (c0 > cmax) { n = 0; } |
445 | } |
446 | /* Choose split point along selected axis, and update box bounds. |
447 | * Current algorithm: split at halfway point. |
448 | * (Since the box has been shrunk to minimum volume, |
449 | * any split will produce two nonempty subboxes.) |
450 | * Note that lb value is max for lower box, so must be < old max. |
451 | */ |
452 | switch (n) { |
453 | case 0: |
454 | lb = (b1->c0max + b1->c0min) / 2; |
455 | b1->c0max = lb; |
456 | b2->c0min = lb+1; |
457 | break; |
458 | case 1: |
459 | lb = (b1->c1max + b1->c1min) / 2; |
460 | b1->c1max = lb; |
461 | b2->c1min = lb+1; |
462 | break; |
463 | case 2: |
464 | lb = (b1->c2max + b1->c2min) / 2; |
465 | b1->c2max = lb; |
466 | b2->c2min = lb+1; |
467 | break; |
468 | } |
469 | /* Update stats for boxes */ |
470 | update_box(cinfo, b1); |
471 | update_box(cinfo, b2); |
472 | numboxes++; |
473 | } |
474 | return numboxes; |
475 | } |
476 | |
477 | |
478 | LOCAL(void) |
479 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) |
480 | /* Compute representative color for a box, put it in colormap[icolor] */ |
481 | { |
482 | /* Current algorithm: mean weighted by pixels (not colors) */ |
483 | /* Note it is important to get the rounding correct! */ |
484 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
485 | hist3d histogram = cquantize->histogram; |
486 | histptr histp; |
487 | int c0,c1,c2; |
488 | int c0min,c0max,c1min,c1max,c2min,c2max; |
489 | long count; |
490 | long total = 0; |
491 | long c0total = 0; |
492 | long c1total = 0; |
493 | long c2total = 0; |
494 | |
495 | c0min = boxp->c0min; c0max = boxp->c0max; |
496 | c1min = boxp->c1min; c1max = boxp->c1max; |
497 | c2min = boxp->c2min; c2max = boxp->c2max; |
498 | |
499 | for (c0 = c0min; c0 <= c0max; c0++) |
500 | for (c1 = c1min; c1 <= c1max; c1++) { |
501 | histp = & histogram[c0][c1][c2min]; |
502 | for (c2 = c2min; c2 <= c2max; c2++) { |
503 | if ((count = *histp++) != 0) { |
504 | total += count; |
505 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; |
506 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; |
507 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; |
508 | } |
509 | } |
510 | } |
511 | |
512 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); |
513 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); |
514 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); |
515 | } |
516 | |
517 | |
518 | LOCAL(void) |
519 | select_colors (j_decompress_ptr cinfo, int desired_colors) |
520 | /* Master routine for color selection */ |
521 | { |
522 | boxptr boxlist; |
523 | int numboxes; |
524 | int i; |
525 | |
526 | /* Allocate workspace for box list */ |
527 | boxlist = (boxptr) (*cinfo->mem->alloc_small) |
528 | ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * sizeof(box)); |
529 | /* Initialize one box containing whole space */ |
530 | numboxes = 1; |
531 | boxlist[0].c0min = 0; |
532 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; |
533 | boxlist[0].c1min = 0; |
534 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; |
535 | boxlist[0].c2min = 0; |
536 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; |
537 | /* Shrink it to actually-used volume and set its statistics */ |
538 | update_box(cinfo, & boxlist[0]); |
539 | /* Perform median-cut to produce final box list */ |
540 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); |
541 | /* Compute the representative color for each box, fill colormap */ |
542 | for (i = 0; i < numboxes; i++) |
543 | compute_color(cinfo, & boxlist[i], i); |
544 | cinfo->actual_number_of_colors = numboxes; |
545 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); |
546 | } |
547 | |
548 | |
549 | /* |
550 | * These routines are concerned with the time-critical task of mapping input |
551 | * colors to the nearest color in the selected colormap. |
552 | * |
553 | * We re-use the histogram space as an "inverse color map", essentially a |
554 | * cache for the results of nearest-color searches. All colors within a |
555 | * histogram cell will be mapped to the same colormap entry, namely the one |
556 | * closest to the cell's center. This may not be quite the closest entry to |
557 | * the actual input color, but it's almost as good. A zero in the cache |
558 | * indicates we haven't found the nearest color for that cell yet; the array |
559 | * is cleared to zeroes before starting the mapping pass. When we find the |
560 | * nearest color for a cell, its colormap index plus one is recorded in the |
561 | * cache for future use. The pass2 scanning routines call fill_inverse_cmap |
562 | * when they need to use an unfilled entry in the cache. |
563 | * |
564 | * Our method of efficiently finding nearest colors is based on the "locally |
565 | * sorted search" idea described by Heckbert and on the incremental distance |
566 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics |
567 | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that |
568 | * the distances from a given colormap entry to each cell of the histogram can |
569 | * be computed quickly using an incremental method: the differences between |
570 | * distances to adjacent cells themselves differ by a constant. This allows a |
571 | * fairly fast implementation of the "brute force" approach of computing the |
572 | * distance from every colormap entry to every histogram cell. Unfortunately, |
573 | * it needs a work array to hold the best-distance-so-far for each histogram |
574 | * cell (because the inner loop has to be over cells, not colormap entries). |
575 | * The work array elements have to be JLONGs, so the work array would need |
576 | * 256Kb at our recommended precision. This is not feasible in DOS machines. |
577 | * |
578 | * To get around these problems, we apply Thomas' method to compute the |
579 | * nearest colors for only the cells within a small subbox of the histogram. |
580 | * The work array need be only as big as the subbox, so the memory usage |
581 | * problem is solved. Furthermore, we need not fill subboxes that are never |
582 | * referenced in pass2; many images use only part of the color gamut, so a |
583 | * fair amount of work is saved. An additional advantage of this |
584 | * approach is that we can apply Heckbert's locality criterion to quickly |
585 | * eliminate colormap entries that are far away from the subbox; typically |
586 | * three-fourths of the colormap entries are rejected by Heckbert's criterion, |
587 | * and we need not compute their distances to individual cells in the subbox. |
588 | * The speed of this approach is heavily influenced by the subbox size: too |
589 | * small means too much overhead, too big loses because Heckbert's criterion |
590 | * can't eliminate as many colormap entries. Empirically the best subbox |
591 | * size seems to be about 1/512th of the histogram (1/8th in each direction). |
592 | * |
593 | * Thomas' article also describes a refined method which is asymptotically |
594 | * faster than the brute-force method, but it is also far more complex and |
595 | * cannot efficiently be applied to small subboxes. It is therefore not |
596 | * useful for programs intended to be portable to DOS machines. On machines |
597 | * with plenty of memory, filling the whole histogram in one shot with Thomas' |
598 | * refined method might be faster than the present code --- but then again, |
599 | * it might not be any faster, and it's certainly more complicated. |
600 | */ |
601 | |
602 | |
603 | /* log2(histogram cells in update box) for each axis; this can be adjusted */ |
604 | #define BOX_C0_LOG (HIST_C0_BITS-3) |
605 | #define BOX_C1_LOG (HIST_C1_BITS-3) |
606 | #define BOX_C2_LOG (HIST_C2_BITS-3) |
607 | |
608 | #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ |
609 | #define BOX_C1_ELEMS (1<<BOX_C1_LOG) |
610 | #define BOX_C2_ELEMS (1<<BOX_C2_LOG) |
611 | |
612 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) |
613 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) |
614 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) |
615 | |
616 | |
617 | /* |
618 | * The next three routines implement inverse colormap filling. They could |
619 | * all be folded into one big routine, but splitting them up this way saves |
620 | * some stack space (the mindist[] and bestdist[] arrays need not coexist) |
621 | * and may allow some compilers to produce better code by registerizing more |
622 | * inner-loop variables. |
623 | */ |
624 | |
625 | LOCAL(int) |
626 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
627 | JSAMPLE colorlist[]) |
628 | /* Locate the colormap entries close enough to an update box to be candidates |
629 | * for the nearest entry to some cell(s) in the update box. The update box |
630 | * is specified by the center coordinates of its first cell. The number of |
631 | * candidate colormap entries is returned, and their colormap indexes are |
632 | * placed in colorlist[]. |
633 | * This routine uses Heckbert's "locally sorted search" criterion to select |
634 | * the colors that need further consideration. |
635 | */ |
636 | { |
637 | int numcolors = cinfo->actual_number_of_colors; |
638 | int maxc0, maxc1, maxc2; |
639 | int centerc0, centerc1, centerc2; |
640 | int i, x, ncolors; |
641 | JLONG minmaxdist, min_dist, max_dist, tdist; |
642 | JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ |
643 | |
644 | /* Compute true coordinates of update box's upper corner and center. |
645 | * Actually we compute the coordinates of the center of the upper-corner |
646 | * histogram cell, which are the upper bounds of the volume we care about. |
647 | * Note that since ">>" rounds down, the "center" values may be closer to |
648 | * min than to max; hence comparisons to them must be "<=", not "<". |
649 | */ |
650 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); |
651 | centerc0 = (minc0 + maxc0) >> 1; |
652 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); |
653 | centerc1 = (minc1 + maxc1) >> 1; |
654 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); |
655 | centerc2 = (minc2 + maxc2) >> 1; |
656 | |
657 | /* For each color in colormap, find: |
658 | * 1. its minimum squared-distance to any point in the update box |
659 | * (zero if color is within update box); |
660 | * 2. its maximum squared-distance to any point in the update box. |
661 | * Both of these can be found by considering only the corners of the box. |
662 | * We save the minimum distance for each color in mindist[]; |
663 | * only the smallest maximum distance is of interest. |
664 | */ |
665 | minmaxdist = 0x7FFFFFFFL; |
666 | |
667 | for (i = 0; i < numcolors; i++) { |
668 | /* We compute the squared-c0-distance term, then add in the other two. */ |
669 | x = GETJSAMPLE(cinfo->colormap[0][i]); |
670 | if (x < minc0) { |
671 | tdist = (x - minc0) * C0_SCALE; |
672 | min_dist = tdist*tdist; |
673 | tdist = (x - maxc0) * C0_SCALE; |
674 | max_dist = tdist*tdist; |
675 | } else if (x > maxc0) { |
676 | tdist = (x - maxc0) * C0_SCALE; |
677 | min_dist = tdist*tdist; |
678 | tdist = (x - minc0) * C0_SCALE; |
679 | max_dist = tdist*tdist; |
680 | } else { |
681 | /* within cell range so no contribution to min_dist */ |
682 | min_dist = 0; |
683 | if (x <= centerc0) { |
684 | tdist = (x - maxc0) * C0_SCALE; |
685 | max_dist = tdist*tdist; |
686 | } else { |
687 | tdist = (x - minc0) * C0_SCALE; |
688 | max_dist = tdist*tdist; |
689 | } |
690 | } |
691 | |
692 | x = GETJSAMPLE(cinfo->colormap[1][i]); |
693 | if (x < minc1) { |
694 | tdist = (x - minc1) * C1_SCALE; |
695 | min_dist += tdist*tdist; |
696 | tdist = (x - maxc1) * C1_SCALE; |
697 | max_dist += tdist*tdist; |
698 | } else if (x > maxc1) { |
699 | tdist = (x - maxc1) * C1_SCALE; |
700 | min_dist += tdist*tdist; |
701 | tdist = (x - minc1) * C1_SCALE; |
702 | max_dist += tdist*tdist; |
703 | } else { |
704 | /* within cell range so no contribution to min_dist */ |
705 | if (x <= centerc1) { |
706 | tdist = (x - maxc1) * C1_SCALE; |
707 | max_dist += tdist*tdist; |
708 | } else { |
709 | tdist = (x - minc1) * C1_SCALE; |
710 | max_dist += tdist*tdist; |
711 | } |
712 | } |
713 | |
714 | x = GETJSAMPLE(cinfo->colormap[2][i]); |
715 | if (x < minc2) { |
716 | tdist = (x - minc2) * C2_SCALE; |
717 | min_dist += tdist*tdist; |
718 | tdist = (x - maxc2) * C2_SCALE; |
719 | max_dist += tdist*tdist; |
720 | } else if (x > maxc2) { |
721 | tdist = (x - maxc2) * C2_SCALE; |
722 | min_dist += tdist*tdist; |
723 | tdist = (x - minc2) * C2_SCALE; |
724 | max_dist += tdist*tdist; |
725 | } else { |
726 | /* within cell range so no contribution to min_dist */ |
727 | if (x <= centerc2) { |
728 | tdist = (x - maxc2) * C2_SCALE; |
729 | max_dist += tdist*tdist; |
730 | } else { |
731 | tdist = (x - minc2) * C2_SCALE; |
732 | max_dist += tdist*tdist; |
733 | } |
734 | } |
735 | |
736 | mindist[i] = min_dist; /* save away the results */ |
737 | if (max_dist < minmaxdist) |
738 | minmaxdist = max_dist; |
739 | } |
740 | |
741 | /* Now we know that no cell in the update box is more than minmaxdist |
742 | * away from some colormap entry. Therefore, only colors that are |
743 | * within minmaxdist of some part of the box need be considered. |
744 | */ |
745 | ncolors = 0; |
746 | for (i = 0; i < numcolors; i++) { |
747 | if (mindist[i] <= minmaxdist) |
748 | colorlist[ncolors++] = (JSAMPLE) i; |
749 | } |
750 | return ncolors; |
751 | } |
752 | |
753 | |
754 | LOCAL(void) |
755 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, |
756 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) |
757 | /* Find the closest colormap entry for each cell in the update box, |
758 | * given the list of candidate colors prepared by find_nearby_colors. |
759 | * Return the indexes of the closest entries in the bestcolor[] array. |
760 | * This routine uses Thomas' incremental distance calculation method to |
761 | * find the distance from a colormap entry to successive cells in the box. |
762 | */ |
763 | { |
764 | int ic0, ic1, ic2; |
765 | int i, icolor; |
766 | register JLONG *bptr; /* pointer into bestdist[] array */ |
767 | JSAMPLE *cptr; /* pointer into bestcolor[] array */ |
768 | JLONG dist0, dist1; /* initial distance values */ |
769 | register JLONG dist2; /* current distance in inner loop */ |
770 | JLONG xx0, xx1; /* distance increments */ |
771 | register JLONG xx2; |
772 | JLONG inc0, inc1, inc2; /* initial values for increments */ |
773 | /* This array holds the distance to the nearest-so-far color for each cell */ |
774 | JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
775 | |
776 | /* Initialize best-distance for each cell of the update box */ |
777 | bptr = bestdist; |
778 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) |
779 | *bptr++ = 0x7FFFFFFFL; |
780 | |
781 | /* For each color selected by find_nearby_colors, |
782 | * compute its distance to the center of each cell in the box. |
783 | * If that's less than best-so-far, update best distance and color number. |
784 | */ |
785 | |
786 | /* Nominal steps between cell centers ("x" in Thomas article) */ |
787 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) |
788 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) |
789 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) |
790 | |
791 | for (i = 0; i < numcolors; i++) { |
792 | icolor = GETJSAMPLE(colorlist[i]); |
793 | /* Compute (square of) distance from minc0/c1/c2 to this color */ |
794 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; |
795 | dist0 = inc0*inc0; |
796 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; |
797 | dist0 += inc1*inc1; |
798 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; |
799 | dist0 += inc2*inc2; |
800 | /* Form the initial difference increments */ |
801 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; |
802 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; |
803 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; |
804 | /* Now loop over all cells in box, updating distance per Thomas method */ |
805 | bptr = bestdist; |
806 | cptr = bestcolor; |
807 | xx0 = inc0; |
808 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { |
809 | dist1 = dist0; |
810 | xx1 = inc1; |
811 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { |
812 | dist2 = dist1; |
813 | xx2 = inc2; |
814 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { |
815 | if (dist2 < *bptr) { |
816 | *bptr = dist2; |
817 | *cptr = (JSAMPLE) icolor; |
818 | } |
819 | dist2 += xx2; |
820 | xx2 += 2 * STEP_C2 * STEP_C2; |
821 | bptr++; |
822 | cptr++; |
823 | } |
824 | dist1 += xx1; |
825 | xx1 += 2 * STEP_C1 * STEP_C1; |
826 | } |
827 | dist0 += xx0; |
828 | xx0 += 2 * STEP_C0 * STEP_C0; |
829 | } |
830 | } |
831 | } |
832 | |
833 | |
834 | LOCAL(void) |
835 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) |
836 | /* Fill the inverse-colormap entries in the update box that contains */ |
837 | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ |
838 | /* we can fill as many others as we wish.) */ |
839 | { |
840 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
841 | hist3d histogram = cquantize->histogram; |
842 | int minc0, minc1, minc2; /* lower left corner of update box */ |
843 | int ic0, ic1, ic2; |
844 | register JSAMPLE *cptr; /* pointer into bestcolor[] array */ |
845 | register histptr cachep; /* pointer into main cache array */ |
846 | /* This array lists the candidate colormap indexes. */ |
847 | JSAMPLE colorlist[MAXNUMCOLORS]; |
848 | int numcolors; /* number of candidate colors */ |
849 | /* This array holds the actually closest colormap index for each cell. */ |
850 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; |
851 | |
852 | /* Convert cell coordinates to update box ID */ |
853 | c0 >>= BOX_C0_LOG; |
854 | c1 >>= BOX_C1_LOG; |
855 | c2 >>= BOX_C2_LOG; |
856 | |
857 | /* Compute true coordinates of update box's origin corner. |
858 | * Actually we compute the coordinates of the center of the corner |
859 | * histogram cell, which are the lower bounds of the volume we care about. |
860 | */ |
861 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); |
862 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); |
863 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); |
864 | |
865 | /* Determine which colormap entries are close enough to be candidates |
866 | * for the nearest entry to some cell in the update box. |
867 | */ |
868 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); |
869 | |
870 | /* Determine the actually nearest colors. */ |
871 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, |
872 | bestcolor); |
873 | |
874 | /* Save the best color numbers (plus 1) in the main cache array */ |
875 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ |
876 | c1 <<= BOX_C1_LOG; |
877 | c2 <<= BOX_C2_LOG; |
878 | cptr = bestcolor; |
879 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { |
880 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { |
881 | cachep = & histogram[c0+ic0][c1+ic1][c2]; |
882 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { |
883 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); |
884 | } |
885 | } |
886 | } |
887 | } |
888 | |
889 | |
890 | /* |
891 | * Map some rows of pixels to the output colormapped representation. |
892 | */ |
893 | |
894 | METHODDEF(void) |
895 | pass2_no_dither (j_decompress_ptr cinfo, |
896 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
897 | /* This version performs no dithering */ |
898 | { |
899 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
900 | hist3d histogram = cquantize->histogram; |
901 | register JSAMPROW inptr, outptr; |
902 | register histptr cachep; |
903 | register int c0, c1, c2; |
904 | int row; |
905 | JDIMENSION col; |
906 | JDIMENSION width = cinfo->output_width; |
907 | |
908 | for (row = 0; row < num_rows; row++) { |
909 | inptr = input_buf[row]; |
910 | outptr = output_buf[row]; |
911 | for (col = width; col > 0; col--) { |
912 | /* get pixel value and index into the cache */ |
913 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; |
914 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; |
915 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; |
916 | cachep = & histogram[c0][c1][c2]; |
917 | /* If we have not seen this color before, find nearest colormap entry */ |
918 | /* and update the cache */ |
919 | if (*cachep == 0) |
920 | fill_inverse_cmap(cinfo, c0,c1,c2); |
921 | /* Now emit the colormap index for this cell */ |
922 | *outptr++ = (JSAMPLE) (*cachep - 1); |
923 | } |
924 | } |
925 | } |
926 | |
927 | |
928 | METHODDEF(void) |
929 | pass2_fs_dither (j_decompress_ptr cinfo, |
930 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) |
931 | /* This version performs Floyd-Steinberg dithering */ |
932 | { |
933 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
934 | hist3d histogram = cquantize->histogram; |
935 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ |
936 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ |
937 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ |
938 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
939 | JSAMPROW inptr; /* => current input pixel */ |
940 | JSAMPROW outptr; /* => current output pixel */ |
941 | histptr cachep; |
942 | int dir; /* +1 or -1 depending on direction */ |
943 | int dir3; /* 3*dir, for advancing inptr & errorptr */ |
944 | int row; |
945 | JDIMENSION col; |
946 | JDIMENSION width = cinfo->output_width; |
947 | JSAMPLE *range_limit = cinfo->sample_range_limit; |
948 | int *error_limit = cquantize->error_limiter; |
949 | JSAMPROW colormap0 = cinfo->colormap[0]; |
950 | JSAMPROW colormap1 = cinfo->colormap[1]; |
951 | JSAMPROW colormap2 = cinfo->colormap[2]; |
952 | SHIFT_TEMPS |
953 | |
954 | for (row = 0; row < num_rows; row++) { |
955 | inptr = input_buf[row]; |
956 | outptr = output_buf[row]; |
957 | if (cquantize->on_odd_row) { |
958 | /* work right to left in this row */ |
959 | inptr += (width-1) * 3; /* so point to rightmost pixel */ |
960 | outptr += width-1; |
961 | dir = -1; |
962 | dir3 = -3; |
963 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ |
964 | cquantize->on_odd_row = FALSE; /* flip for next time */ |
965 | } else { |
966 | /* work left to right in this row */ |
967 | dir = 1; |
968 | dir3 = 3; |
969 | errorptr = cquantize->fserrors; /* => entry before first real column */ |
970 | cquantize->on_odd_row = TRUE; /* flip for next time */ |
971 | } |
972 | /* Preset error values: no error propagated to first pixel from left */ |
973 | cur0 = cur1 = cur2 = 0; |
974 | /* and no error propagated to row below yet */ |
975 | belowerr0 = belowerr1 = belowerr2 = 0; |
976 | bpreverr0 = bpreverr1 = bpreverr2 = 0; |
977 | |
978 | for (col = width; col > 0; col--) { |
979 | /* curN holds the error propagated from the previous pixel on the |
980 | * current line. Add the error propagated from the previous line |
981 | * to form the complete error correction term for this pixel, and |
982 | * round the error term (which is expressed * 16) to an integer. |
983 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
984 | * for either sign of the error value. |
985 | * Note: errorptr points to *previous* column's array entry. |
986 | */ |
987 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); |
988 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); |
989 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); |
990 | /* Limit the error using transfer function set by init_error_limit. |
991 | * See comments with init_error_limit for rationale. |
992 | */ |
993 | cur0 = error_limit[cur0]; |
994 | cur1 = error_limit[cur1]; |
995 | cur2 = error_limit[cur2]; |
996 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
997 | * The maximum error is +- MAXJSAMPLE (or less with error limiting); |
998 | * this sets the required size of the range_limit array. |
999 | */ |
1000 | cur0 += GETJSAMPLE(inptr[0]); |
1001 | cur1 += GETJSAMPLE(inptr[1]); |
1002 | cur2 += GETJSAMPLE(inptr[2]); |
1003 | cur0 = GETJSAMPLE(range_limit[cur0]); |
1004 | cur1 = GETJSAMPLE(range_limit[cur1]); |
1005 | cur2 = GETJSAMPLE(range_limit[cur2]); |
1006 | /* Index into the cache with adjusted pixel value */ |
1007 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; |
1008 | /* If we have not seen this color before, find nearest colormap */ |
1009 | /* entry and update the cache */ |
1010 | if (*cachep == 0) |
1011 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); |
1012 | /* Now emit the colormap index for this cell */ |
1013 | { register int pixcode = *cachep - 1; |
1014 | *outptr = (JSAMPLE) pixcode; |
1015 | /* Compute representation error for this pixel */ |
1016 | cur0 -= GETJSAMPLE(colormap0[pixcode]); |
1017 | cur1 -= GETJSAMPLE(colormap1[pixcode]); |
1018 | cur2 -= GETJSAMPLE(colormap2[pixcode]); |
1019 | } |
1020 | /* Compute error fractions to be propagated to adjacent pixels. |
1021 | * Add these into the running sums, and simultaneously shift the |
1022 | * next-line error sums left by 1 column. |
1023 | */ |
1024 | { register LOCFSERROR bnexterr; |
1025 | |
1026 | bnexterr = cur0; /* Process component 0 */ |
1027 | errorptr[0] = (FSERROR) (bpreverr0 + cur0 * 3); |
1028 | bpreverr0 = belowerr0 + cur0 * 5; |
1029 | belowerr0 = bnexterr; |
1030 | cur0 *= 7; |
1031 | bnexterr = cur1; /* Process component 1 */ |
1032 | errorptr[1] = (FSERROR) (bpreverr1 + cur1 * 3); |
1033 | bpreverr1 = belowerr1 + cur1 * 5; |
1034 | belowerr1 = bnexterr; |
1035 | cur1 *= 7; |
1036 | bnexterr = cur2; /* Process component 2 */ |
1037 | errorptr[2] = (FSERROR) (bpreverr2 + cur2 * 3); |
1038 | bpreverr2 = belowerr2 + cur2 * 5; |
1039 | belowerr2 = bnexterr; |
1040 | cur2 *= 7; |
1041 | } |
1042 | /* At this point curN contains the 7/16 error value to be propagated |
1043 | * to the next pixel on the current line, and all the errors for the |
1044 | * next line have been shifted over. We are therefore ready to move on. |
1045 | */ |
1046 | inptr += dir3; /* Advance pixel pointers to next column */ |
1047 | outptr += dir; |
1048 | errorptr += dir3; /* advance errorptr to current column */ |
1049 | } |
1050 | /* Post-loop cleanup: we must unload the final error values into the |
1051 | * final fserrors[] entry. Note we need not unload belowerrN because |
1052 | * it is for the dummy column before or after the actual array. |
1053 | */ |
1054 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ |
1055 | errorptr[1] = (FSERROR) bpreverr1; |
1056 | errorptr[2] = (FSERROR) bpreverr2; |
1057 | } |
1058 | } |
1059 | |
1060 | |
1061 | /* |
1062 | * Initialize the error-limiting transfer function (lookup table). |
1063 | * The raw F-S error computation can potentially compute error values of up to |
1064 | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be |
1065 | * much less, otherwise obviously wrong pixels will be created. (Typical |
1066 | * effects include weird fringes at color-area boundaries, isolated bright |
1067 | * pixels in a dark area, etc.) The standard advice for avoiding this problem |
1068 | * is to ensure that the "corners" of the color cube are allocated as output |
1069 | * colors; then repeated errors in the same direction cannot cause cascading |
1070 | * error buildup. However, that only prevents the error from getting |
1071 | * completely out of hand; Aaron Giles reports that error limiting improves |
1072 | * the results even with corner colors allocated. |
1073 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty |
1074 | * well, but the smoother transfer function used below is even better. Thanks |
1075 | * to Aaron Giles for this idea. |
1076 | */ |
1077 | |
1078 | LOCAL(void) |
1079 | init_error_limit (j_decompress_ptr cinfo) |
1080 | /* Allocate and fill in the error_limiter table */ |
1081 | { |
1082 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1083 | int *table; |
1084 | int in, out; |
1085 | |
1086 | table = (int *) (*cinfo->mem->alloc_small) |
1087 | ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * sizeof(int)); |
1088 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ |
1089 | cquantize->error_limiter = table; |
1090 | |
1091 | #define STEPSIZE ((MAXJSAMPLE+1)/16) |
1092 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ |
1093 | out = 0; |
1094 | for (in = 0; in < STEPSIZE; in++, out++) { |
1095 | table[in] = out; table[-in] = -out; |
1096 | } |
1097 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ |
1098 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { |
1099 | table[in] = out; table[-in] = -out; |
1100 | } |
1101 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ |
1102 | for (; in <= MAXJSAMPLE; in++) { |
1103 | table[in] = out; table[-in] = -out; |
1104 | } |
1105 | #undef STEPSIZE |
1106 | } |
1107 | |
1108 | |
1109 | /* |
1110 | * Finish up at the end of each pass. |
1111 | */ |
1112 | |
1113 | METHODDEF(void) |
1114 | finish_pass1 (j_decompress_ptr cinfo) |
1115 | { |
1116 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1117 | |
1118 | /* Select the representative colors and fill in cinfo->colormap */ |
1119 | cinfo->colormap = cquantize->sv_colormap; |
1120 | select_colors(cinfo, cquantize->desired); |
1121 | /* Force next pass to zero the color index table */ |
1122 | cquantize->needs_zeroed = TRUE; |
1123 | } |
1124 | |
1125 | |
1126 | METHODDEF(void) |
1127 | finish_pass2 (j_decompress_ptr cinfo) |
1128 | { |
1129 | /* no work */ |
1130 | } |
1131 | |
1132 | |
1133 | /* |
1134 | * Initialize for each processing pass. |
1135 | */ |
1136 | |
1137 | METHODDEF(void) |
1138 | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
1139 | { |
1140 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1141 | hist3d histogram = cquantize->histogram; |
1142 | int i; |
1143 | |
1144 | /* Only F-S dithering or no dithering is supported. */ |
1145 | /* If user asks for ordered dither, give him F-S. */ |
1146 | if (cinfo->dither_mode != JDITHER_NONE) |
1147 | cinfo->dither_mode = JDITHER_FS; |
1148 | |
1149 | if (is_pre_scan) { |
1150 | /* Set up method pointers */ |
1151 | cquantize->pub.color_quantize = prescan_quantize; |
1152 | cquantize->pub.finish_pass = finish_pass1; |
1153 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */ |
1154 | } else { |
1155 | /* Set up method pointers */ |
1156 | if (cinfo->dither_mode == JDITHER_FS) |
1157 | cquantize->pub.color_quantize = pass2_fs_dither; |
1158 | else |
1159 | cquantize->pub.color_quantize = pass2_no_dither; |
1160 | cquantize->pub.finish_pass = finish_pass2; |
1161 | |
1162 | /* Make sure color count is acceptable */ |
1163 | i = cinfo->actual_number_of_colors; |
1164 | if (i < 1) |
1165 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); |
1166 | if (i > MAXNUMCOLORS) |
1167 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1168 | |
1169 | if (cinfo->dither_mode == JDITHER_FS) { |
1170 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * |
1171 | (3 * sizeof(FSERROR))); |
1172 | /* Allocate Floyd-Steinberg workspace if we didn't already. */ |
1173 | if (cquantize->fserrors == NULL) |
1174 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
1175 | ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
1176 | /* Initialize the propagated errors to zero. */ |
1177 | jzero_far((void *) cquantize->fserrors, arraysize); |
1178 | /* Make the error-limit table if we didn't already. */ |
1179 | if (cquantize->error_limiter == NULL) |
1180 | init_error_limit(cinfo); |
1181 | cquantize->on_odd_row = FALSE; |
1182 | } |
1183 | |
1184 | } |
1185 | /* Zero the histogram or inverse color map, if necessary */ |
1186 | if (cquantize->needs_zeroed) { |
1187 | for (i = 0; i < HIST_C0_ELEMS; i++) { |
1188 | jzero_far((void *) histogram[i], |
1189 | HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); |
1190 | } |
1191 | cquantize->needs_zeroed = FALSE; |
1192 | } |
1193 | } |
1194 | |
1195 | |
1196 | /* |
1197 | * Switch to a new external colormap between output passes. |
1198 | */ |
1199 | |
1200 | METHODDEF(void) |
1201 | new_color_map_2_quant (j_decompress_ptr cinfo) |
1202 | { |
1203 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
1204 | |
1205 | /* Reset the inverse color map */ |
1206 | cquantize->needs_zeroed = TRUE; |
1207 | } |
1208 | |
1209 | |
1210 | /* |
1211 | * Module initialization routine for 2-pass color quantization. |
1212 | */ |
1213 | |
1214 | GLOBAL(void) |
1215 | jinit_2pass_quantizer (j_decompress_ptr cinfo) |
1216 | { |
1217 | my_cquantize_ptr cquantize; |
1218 | int i; |
1219 | |
1220 | cquantize = (my_cquantize_ptr) |
1221 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1222 | sizeof(my_cquantizer)); |
1223 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
1224 | cquantize->pub.start_pass = start_pass_2_quant; |
1225 | cquantize->pub.new_color_map = new_color_map_2_quant; |
1226 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */ |
1227 | cquantize->error_limiter = NULL; |
1228 | |
1229 | /* Make sure jdmaster didn't give me a case I can't handle */ |
1230 | if (cinfo->out_color_components != 3) |
1231 | ERREXIT(cinfo, JERR_NOTIMPL); |
1232 | |
1233 | /* Allocate the histogram/inverse colormap storage */ |
1234 | cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) |
1235 | ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d)); |
1236 | for (i = 0; i < HIST_C0_ELEMS; i++) { |
1237 | cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) |
1238 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1239 | HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); |
1240 | } |
1241 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ |
1242 | |
1243 | /* Allocate storage for the completed colormap, if required. |
1244 | * We do this now since it may affect the memory manager's space |
1245 | * calculations. |
1246 | */ |
1247 | if (cinfo->enable_2pass_quant) { |
1248 | /* Make sure color count is acceptable */ |
1249 | int desired = cinfo->desired_number_of_colors; |
1250 | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ |
1251 | if (desired < 8) |
1252 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); |
1253 | /* Make sure colormap indexes can be represented by JSAMPLEs */ |
1254 | if (desired > MAXNUMCOLORS) |
1255 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); |
1256 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) |
1257 | ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); |
1258 | cquantize->desired = desired; |
1259 | } else |
1260 | cquantize->sv_colormap = NULL; |
1261 | |
1262 | /* Only F-S dithering or no dithering is supported. */ |
1263 | /* If user asks for ordered dither, give him F-S. */ |
1264 | if (cinfo->dither_mode != JDITHER_NONE) |
1265 | cinfo->dither_mode = JDITHER_FS; |
1266 | |
1267 | /* Allocate Floyd-Steinberg workspace if necessary. |
1268 | * This isn't really needed until pass 2, but again it may affect the memory |
1269 | * manager's space calculations. Although we will cope with a later change |
1270 | * in dither_mode, we do not promise to honor max_memory_to_use if |
1271 | * dither_mode changes. |
1272 | */ |
1273 | if (cinfo->dither_mode == JDITHER_FS) { |
1274 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) |
1275 | ((j_common_ptr) cinfo, JPOOL_IMAGE, |
1276 | (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); |
1277 | /* Might as well create the error-limiting table too. */ |
1278 | init_error_limit(cinfo); |
1279 | } |
1280 | } |
1281 | |
1282 | #endif /* QUANT_2PASS_SUPPORTED */ |
1283 | |