| 1 | /* | 
|---|
| 2 | * Copyright 2006 The Android Open Source Project | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef SkAnalyticEdge_DEFINED | 
|---|
| 9 | #define SkAnalyticEdge_DEFINED | 
|---|
| 10 |  | 
|---|
| 11 | #include "include/private/SkTo.h" | 
|---|
| 12 | #include "src/core/SkEdge.h" | 
|---|
| 13 |  | 
|---|
| 14 | #include <utility> | 
|---|
| 15 |  | 
|---|
| 16 | struct SkAnalyticEdge { | 
|---|
| 17 | // Similar to SkEdge, the conic edges will be converted to quadratic edges | 
|---|
| 18 | enum Type { | 
|---|
| 19 | kLine_Type, | 
|---|
| 20 | kQuad_Type, | 
|---|
| 21 | kCubic_Type | 
|---|
| 22 | }; | 
|---|
| 23 |  | 
|---|
| 24 | SkAnalyticEdge* fNext; | 
|---|
| 25 | SkAnalyticEdge* fPrev; | 
|---|
| 26 |  | 
|---|
| 27 | // During aaa_walk_edges, if this edge is a left edge, | 
|---|
| 28 | // then fRiteE is its corresponding right edge. Otherwise it's nullptr. | 
|---|
| 29 | SkAnalyticEdge* fRiteE; | 
|---|
| 30 |  | 
|---|
| 31 | SkFixed fX; | 
|---|
| 32 | SkFixed fDX; | 
|---|
| 33 | SkFixed fUpperX;        // The x value when y = fUpperY | 
|---|
| 34 | SkFixed fY;             // The current y | 
|---|
| 35 | SkFixed fUpperY;        // The upper bound of y (our edge is from y = fUpperY to y = fLowerY) | 
|---|
| 36 | SkFixed fLowerY;        // The lower bound of y (our edge is from y = fUpperY to y = fLowerY) | 
|---|
| 37 | SkFixed fDY;            // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0. | 
|---|
| 38 | // fDY is only used for blitting trapezoids. | 
|---|
| 39 |  | 
|---|
| 40 | SkFixed fSavedX;        // For deferred blitting | 
|---|
| 41 | SkFixed fSavedY;        // For deferred blitting | 
|---|
| 42 | SkFixed fSavedDY;       // For deferred blitting | 
|---|
| 43 |  | 
|---|
| 44 | int8_t  fCurveCount;    // only used by kQuad(+) and kCubic(-) | 
|---|
| 45 | uint8_t fCurveShift;    // appled to all Dx/DDx/DDDx except for fCubicDShift exception | 
|---|
| 46 | uint8_t fCubicDShift;   // applied to fCDx and fCDy only in cubic | 
|---|
| 47 | int8_t  fWinding;       // 1 or -1 | 
|---|
| 48 |  | 
|---|
| 49 | static const int kDefaultAccuracy = 2; // default accuracy for snapping | 
|---|
| 50 |  | 
|---|
| 51 | static inline SkFixed SnapY(SkFixed y) { | 
|---|
| 52 | const int accuracy = kDefaultAccuracy; | 
|---|
| 53 | // This approach is safer than left shift, round, then right shift | 
|---|
| 54 | return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy); | 
|---|
| 55 | } | 
|---|
| 56 |  | 
|---|
| 57 | // Update fX, fY of this edge so fY = y | 
|---|
| 58 | inline void goY(SkFixed y) { | 
|---|
| 59 | if (y == fY + SK_Fixed1) { | 
|---|
| 60 | fX = fX + fDX; | 
|---|
| 61 | fY = y; | 
|---|
| 62 | } else if (y != fY) { | 
|---|
| 63 | // Drop lower digits as our alpha only has 8 bits | 
|---|
| 64 | // (fDX and y - fUpperY may be greater than SK_Fixed1) | 
|---|
| 65 | fX = fUpperX + SkFixedMul(fDX, y - fUpperY); | 
|---|
| 66 | fY = y; | 
|---|
| 67 | } | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 | inline void goY(SkFixed y, int yShift) { | 
|---|
| 71 | SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy); | 
|---|
| 72 | SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift); | 
|---|
| 73 | fY = y; | 
|---|
| 74 | fX += fDX >> yShift; | 
|---|
| 75 | } | 
|---|
| 76 |  | 
|---|
| 77 | inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) { | 
|---|
| 78 | fSavedX = x; | 
|---|
| 79 | fSavedY = y; | 
|---|
| 80 | fSavedDY = dY; | 
|---|
| 81 | } | 
|---|
| 82 |  | 
|---|
| 83 | bool setLine(const SkPoint& p0, const SkPoint& p1); | 
|---|
| 84 | bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope); | 
|---|
| 85 |  | 
|---|
| 86 | // return true if we're NOT done with this edge | 
|---|
| 87 | bool update(SkFixed last_y, bool sortY = true); | 
|---|
| 88 |  | 
|---|
| 89 | #ifdef SK_DEBUG | 
|---|
| 90 | void dump() const { | 
|---|
| 91 | SkDebugf( "edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n", | 
|---|
| 92 | fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX), | 
|---|
| 93 | SkFixedToFloat(fDX), fWinding); | 
|---|
| 94 | } | 
|---|
| 95 |  | 
|---|
| 96 | void validate() const { | 
|---|
| 97 | SkASSERT(fPrev && fNext); | 
|---|
| 98 | SkASSERT(fPrev->fNext == this); | 
|---|
| 99 | SkASSERT(fNext->fPrev == this); | 
|---|
| 100 |  | 
|---|
| 101 | SkASSERT(fUpperY < fLowerY); | 
|---|
| 102 | SkASSERT(SkAbs32(fWinding) == 1); | 
|---|
| 103 | } | 
|---|
| 104 | #endif | 
|---|
| 105 | }; | 
|---|
| 106 |  | 
|---|
| 107 | struct SkAnalyticQuadraticEdge : public SkAnalyticEdge { | 
|---|
| 108 | SkQuadraticEdge fQEdge; | 
|---|
| 109 |  | 
|---|
| 110 | // snap y to integer points in the middle of the curve to accelerate AAA path filling | 
|---|
| 111 | SkFixed fSnappedX, fSnappedY; | 
|---|
| 112 |  | 
|---|
| 113 | bool setQuadratic(const SkPoint pts[3]); | 
|---|
| 114 | bool updateQuadratic(); | 
|---|
| 115 | inline void keepContinuous() { | 
|---|
| 116 | // We use fX as the starting x to ensure the continuouty. | 
|---|
| 117 | // Without it, we may break the sorted edge list. | 
|---|
| 118 | SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1); | 
|---|
| 119 | SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump | 
|---|
| 120 | fSnappedX = fX; | 
|---|
| 121 | fSnappedY = fY; | 
|---|
| 122 | } | 
|---|
| 123 | }; | 
|---|
| 124 |  | 
|---|
| 125 | struct SkAnalyticCubicEdge : public SkAnalyticEdge { | 
|---|
| 126 | SkCubicEdge fCEdge; | 
|---|
| 127 |  | 
|---|
| 128 | SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping | 
|---|
| 129 |  | 
|---|
| 130 | bool setCubic(const SkPoint pts[4], bool sortY = true); | 
|---|
| 131 | bool updateCubic(bool sortY = true); | 
|---|
| 132 | inline void keepContinuous() { | 
|---|
| 133 | SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1); | 
|---|
| 134 | fCEdge.fCx = fX; | 
|---|
| 135 | fSnappedY = fY; | 
|---|
| 136 | } | 
|---|
| 137 | }; | 
|---|
| 138 |  | 
|---|
| 139 | struct SkBezier { | 
|---|
| 140 | int fCount; // 2 line, 3 quad, 4 cubic | 
|---|
| 141 | SkPoint fP0; | 
|---|
| 142 | SkPoint fP1; | 
|---|
| 143 |  | 
|---|
| 144 | // See if left shift, covert to SkFDot6, and round has the same top and bottom y. | 
|---|
| 145 | // If so, the edge will be empty. | 
|---|
| 146 | static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) { | 
|---|
| 147 | #ifdef SK_RASTERIZE_EVEN_ROUNDING | 
|---|
| 148 | return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift); | 
|---|
| 149 | #else | 
|---|
| 150 | SkScalar scale = (1 << (shift + 6)); | 
|---|
| 151 | return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale)); | 
|---|
| 152 | #endif | 
|---|
| 153 | } | 
|---|
| 154 | }; | 
|---|
| 155 |  | 
|---|
| 156 | struct SkLine : public SkBezier { | 
|---|
| 157 | bool set(const SkPoint pts[2]){ | 
|---|
| 158 | if (IsEmpty(pts[0].fY, pts[1].fY)) { | 
|---|
| 159 | return false; | 
|---|
| 160 | } | 
|---|
| 161 | fCount = 2; | 
|---|
| 162 | fP0 = pts[0]; | 
|---|
| 163 | fP1 = pts[1]; | 
|---|
| 164 | return true; | 
|---|
| 165 | } | 
|---|
| 166 | }; | 
|---|
| 167 |  | 
|---|
| 168 | struct SkQuad : public SkBezier { | 
|---|
| 169 | SkPoint fP2; | 
|---|
| 170 |  | 
|---|
| 171 | bool set(const SkPoint pts[3]){ | 
|---|
| 172 | if (IsEmpty(pts[0].fY, pts[2].fY)) { | 
|---|
| 173 | return false; | 
|---|
| 174 | } | 
|---|
| 175 | fCount = 3; | 
|---|
| 176 | fP0 = pts[0]; | 
|---|
| 177 | fP1 = pts[1]; | 
|---|
| 178 | fP2 = pts[2]; | 
|---|
| 179 | return true; | 
|---|
| 180 | } | 
|---|
| 181 | }; | 
|---|
| 182 |  | 
|---|
| 183 | struct SkCubic : public SkBezier { | 
|---|
| 184 | SkPoint fP2; | 
|---|
| 185 | SkPoint fP3; | 
|---|
| 186 |  | 
|---|
| 187 | bool set(const SkPoint pts[4]){ | 
|---|
| 188 | // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be | 
|---|
| 189 | // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just | 
|---|
| 190 | // checking IsEmpty(pts[0].fY, pts[3].fY). | 
|---|
| 191 | if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) && | 
|---|
| 192 | IsEmpty(pts[2].fY, pts[3].fY)) { | 
|---|
| 193 | return false; | 
|---|
| 194 | } | 
|---|
| 195 | fCount = 4; | 
|---|
| 196 | fP0 = pts[0]; | 
|---|
| 197 | fP1 = pts[1]; | 
|---|
| 198 | fP2 = pts[2]; | 
|---|
| 199 | fP3 = pts[3]; | 
|---|
| 200 | return true; | 
|---|
| 201 | } | 
|---|
| 202 | }; | 
|---|
| 203 |  | 
|---|
| 204 | #endif | 
|---|
| 205 |  | 
|---|