| 1 | /* | 
|---|
| 2 | * Copyright 2016 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef SkArenaAlloc_DEFINED | 
|---|
| 9 | #define SkArenaAlloc_DEFINED | 
|---|
| 10 |  | 
|---|
| 11 | #include "include/private/SkTFitsIn.h" | 
|---|
| 12 |  | 
|---|
| 13 | #include <array> | 
|---|
| 14 | #include <cassert> | 
|---|
| 15 | #include <cstddef> | 
|---|
| 16 | #include <cstdint> | 
|---|
| 17 | #include <cstdlib> | 
|---|
| 18 | #include <cstring> | 
|---|
| 19 | #include <limits> | 
|---|
| 20 | #include <new> | 
|---|
| 21 | #include <type_traits> | 
|---|
| 22 | #include <utility> | 
|---|
| 23 | #include <vector> | 
|---|
| 24 |  | 
|---|
| 25 | // SkArenaAlloc allocates object and destroys the allocated objects when destroyed. It's designed | 
|---|
| 26 | // to minimize the number of underlying block allocations. SkArenaAlloc allocates first out of an | 
|---|
| 27 | // (optional) user-provided block of memory, and when that's exhausted it allocates on the heap, | 
|---|
| 28 | // starting with an allocation of firstHeapAllocation bytes.  If your data (plus a small overhead) | 
|---|
| 29 | // fits in the user-provided block, SkArenaAlloc never uses the heap, and if it fits in | 
|---|
| 30 | // firstHeapAllocation bytes, it'll use the heap only once. If 0 is specified for | 
|---|
| 31 | // firstHeapAllocation, then blockSize is used unless that too is 0, then 1024 is used. | 
|---|
| 32 | // | 
|---|
| 33 | // Examples: | 
|---|
| 34 | // | 
|---|
| 35 | //   char block[mostCasesSize]; | 
|---|
| 36 | //   SkArenaAlloc arena(block, mostCasesSize); | 
|---|
| 37 | // | 
|---|
| 38 | // If mostCasesSize is too large for the stack, you can use the following pattern. | 
|---|
| 39 | // | 
|---|
| 40 | //   std::unique_ptr<char[]> block{new char[mostCasesSize]}; | 
|---|
| 41 | //   SkArenaAlloc arena(block.get(), mostCasesSize, almostAllCasesSize); | 
|---|
| 42 | // | 
|---|
| 43 | // If the program only sometimes allocates memory, use the following pattern. | 
|---|
| 44 | // | 
|---|
| 45 | //   SkArenaAlloc arena(nullptr, 0, almostAllCasesSize); | 
|---|
| 46 | // | 
|---|
| 47 | // The storage does not necessarily need to be on the stack. Embedding the storage in a class also | 
|---|
| 48 | // works. | 
|---|
| 49 | // | 
|---|
| 50 | //   class Foo { | 
|---|
| 51 | //       char storage[mostCasesSize]; | 
|---|
| 52 | //       SkArenaAlloc arena (storage, mostCasesSize); | 
|---|
| 53 | //   }; | 
|---|
| 54 | // | 
|---|
| 55 | // In addition, the system is optimized to handle POD data including arrays of PODs (where | 
|---|
| 56 | // POD is really data with no destructors). For POD data it has zero overhead per item, and a | 
|---|
| 57 | // typical per block overhead of 8 bytes. For non-POD objects there is a per item overhead of 4 | 
|---|
| 58 | // bytes. For arrays of non-POD objects there is a per array overhead of typically 8 bytes. There | 
|---|
| 59 | // is an addition overhead when switching from POD data to non-POD data of typically 8 bytes. | 
|---|
| 60 | // | 
|---|
| 61 | // If additional blocks are needed they are increased exponentially. This strategy bounds the | 
|---|
| 62 | // recursion of the RunDtorsOnBlock to be limited to O(log size-of-memory). Block size grow using | 
|---|
| 63 | // the Fibonacci sequence which means that for 2^32 memory there are 48 allocations, and for 2^48 | 
|---|
| 64 | // there are 71 allocations. | 
|---|
| 65 | class SkArenaAlloc { | 
|---|
| 66 | public: | 
|---|
| 67 | SkArenaAlloc(char* block, size_t blockSize, size_t firstHeapAllocation); | 
|---|
| 68 |  | 
|---|
| 69 | explicit SkArenaAlloc(size_t firstHeapAllocation) | 
|---|
| 70 | : SkArenaAlloc(nullptr, 0, firstHeapAllocation) {} | 
|---|
| 71 |  | 
|---|
| 72 | ~SkArenaAlloc(); | 
|---|
| 73 |  | 
|---|
| 74 | template <typename T, typename... Args> | 
|---|
| 75 | T* make(Args&&... args) { | 
|---|
| 76 | uint32_t size      = ToU32(sizeof(T)); | 
|---|
| 77 | uint32_t alignment = ToU32(alignof(T)); | 
|---|
| 78 | char* objStart; | 
|---|
| 79 | if (std::is_trivially_destructible<T>::value) { | 
|---|
| 80 | objStart = this->allocObject(size, alignment); | 
|---|
| 81 | fCursor = objStart + size; | 
|---|
| 82 | } else { | 
|---|
| 83 | objStart = this->allocObjectWithFooter(size + sizeof(Footer), alignment); | 
|---|
| 84 | // Can never be UB because max value is alignof(T). | 
|---|
| 85 | uint32_t padding = ToU32(objStart - fCursor); | 
|---|
| 86 |  | 
|---|
| 87 | // Advance to end of object to install footer. | 
|---|
| 88 | fCursor = objStart + size; | 
|---|
| 89 | FooterAction* releaser = [](char* objEnd) { | 
|---|
| 90 | char* objStart = objEnd - (sizeof(T) + sizeof(Footer)); | 
|---|
| 91 | ((T*)objStart)->~T(); | 
|---|
| 92 | return objStart; | 
|---|
| 93 | }; | 
|---|
| 94 | this->installFooter(releaser, padding); | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | // This must be last to make objects with nested use of this allocator work. | 
|---|
| 98 | return new(objStart) T(std::forward<Args>(args)...); | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | template <typename T> | 
|---|
| 102 | T* makeArrayDefault(size_t count) { | 
|---|
| 103 | T* array = this->allocUninitializedArray<T>(count); | 
|---|
| 104 | for (size_t i = 0; i < count; i++) { | 
|---|
| 105 | // Default initialization: if T is primitive then the value is left uninitialized. | 
|---|
| 106 | new (&array[i]) T; | 
|---|
| 107 | } | 
|---|
| 108 | return array; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | template <typename T> | 
|---|
| 112 | T* makeArray(size_t count) { | 
|---|
| 113 | T* array = this->allocUninitializedArray<T>(count); | 
|---|
| 114 | for (size_t i = 0; i < count; i++) { | 
|---|
| 115 | // Value initialization: if T is primitive then the value is zero-initialized. | 
|---|
| 116 | new (&array[i]) T(); | 
|---|
| 117 | } | 
|---|
| 118 | return array; | 
|---|
| 119 | } | 
|---|
| 120 |  | 
|---|
| 121 | template <typename T, typename Initializer> | 
|---|
| 122 | T* makeInitializedArray(size_t count, Initializer initializer) { | 
|---|
| 123 | T* array = this->allocUninitializedArray<T>(count); | 
|---|
| 124 | for (size_t i = 0; i < count; i++) { | 
|---|
| 125 | new (&array[i]) T(initializer(i)); | 
|---|
| 126 | } | 
|---|
| 127 | return array; | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 | // Only use makeBytesAlignedTo if none of the typed variants are impractical to use. | 
|---|
| 131 | void* makeBytesAlignedTo(size_t size, size_t align) { | 
|---|
| 132 | AssertRelease(SkTFitsIn<uint32_t>(size)); | 
|---|
| 133 | auto objStart = this->allocObject(ToU32(size), ToU32(align)); | 
|---|
| 134 | fCursor = objStart + size; | 
|---|
| 135 | return objStart; | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 | private: | 
|---|
| 139 | static void AssertRelease(bool cond) { if (!cond) { ::abort(); } } | 
|---|
| 140 | static uint32_t ToU32(size_t v) { | 
|---|
| 141 | assert(SkTFitsIn<uint32_t>(v)); | 
|---|
| 142 | return (uint32_t)v; | 
|---|
| 143 | } | 
|---|
| 144 |  | 
|---|
| 145 | using  = int64_t; | 
|---|
| 146 | using  = char* (char*); | 
|---|
| 147 |  | 
|---|
| 148 | static char* SkipPod(char* ); | 
|---|
| 149 | static void RunDtorsOnBlock(char* ); | 
|---|
| 150 | static char* NextBlock(char* ); | 
|---|
| 151 |  | 
|---|
| 152 | void (FooterAction* releaser, uint32_t padding); | 
|---|
| 153 | void (FooterAction* action, uint32_t value, uint32_t padding); | 
|---|
| 154 | void (FooterAction* action, char* ptr, uint32_t padding); | 
|---|
| 155 |  | 
|---|
| 156 | void ensureSpace(uint32_t size, uint32_t alignment); | 
|---|
| 157 |  | 
|---|
| 158 | char* allocObject(uint32_t size, uint32_t alignment) { | 
|---|
| 159 | uintptr_t mask = alignment - 1; | 
|---|
| 160 | uintptr_t alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask; | 
|---|
| 161 | uintptr_t totalSize = size + alignedOffset; | 
|---|
| 162 | AssertRelease(totalSize >= size); | 
|---|
| 163 | if (totalSize > static_cast<uintptr_t>(fEnd - fCursor)) { | 
|---|
| 164 | this->ensureSpace(size, alignment); | 
|---|
| 165 | alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask; | 
|---|
| 166 | } | 
|---|
| 167 | return fCursor + alignedOffset; | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | char* (uint32_t , uint32_t alignment); | 
|---|
| 171 |  | 
|---|
| 172 | template <typename T> | 
|---|
| 173 | T* allocUninitializedArray(size_t countZ) { | 
|---|
| 174 | AssertRelease(SkTFitsIn<uint32_t>(countZ)); | 
|---|
| 175 | uint32_t count = ToU32(countZ); | 
|---|
| 176 |  | 
|---|
| 177 | char* objStart; | 
|---|
| 178 | AssertRelease(count <= std::numeric_limits<uint32_t>::max() / sizeof(T)); | 
|---|
| 179 | uint32_t arraySize = ToU32(count * sizeof(T)); | 
|---|
| 180 | uint32_t alignment = ToU32(alignof(T)); | 
|---|
| 181 |  | 
|---|
| 182 | if (std::is_trivially_destructible<T>::value) { | 
|---|
| 183 | objStart = this->allocObject(arraySize, alignment); | 
|---|
| 184 | fCursor = objStart + arraySize; | 
|---|
| 185 | } else { | 
|---|
| 186 | constexpr uint32_t overhead = sizeof(Footer) + sizeof(uint32_t); | 
|---|
| 187 | AssertRelease(arraySize <= std::numeric_limits<uint32_t>::max() - overhead); | 
|---|
| 188 | uint32_t totalSize = arraySize + overhead; | 
|---|
| 189 | objStart = this->allocObjectWithFooter(totalSize, alignment); | 
|---|
| 190 |  | 
|---|
| 191 | // Can never be UB because max value is alignof(T). | 
|---|
| 192 | uint32_t padding = ToU32(objStart - fCursor); | 
|---|
| 193 |  | 
|---|
| 194 | // Advance to end of array to install footer.? | 
|---|
| 195 | fCursor = objStart + arraySize; | 
|---|
| 196 | this->installUint32Footer( | 
|---|
| 197 | [](char* ) { | 
|---|
| 198 | char* objEnd = footerEnd - (sizeof(Footer) + sizeof(uint32_t)); | 
|---|
| 199 | uint32_t count; | 
|---|
| 200 | memmove(&count, objEnd, sizeof(uint32_t)); | 
|---|
| 201 | char* objStart = objEnd - count * sizeof(T); | 
|---|
| 202 | T* array = (T*) objStart; | 
|---|
| 203 | for (uint32_t i = 0; i < count; i++) { | 
|---|
| 204 | array[i].~T(); | 
|---|
| 205 | } | 
|---|
| 206 | return objStart; | 
|---|
| 207 | }, | 
|---|
| 208 | ToU32(count), | 
|---|
| 209 | padding); | 
|---|
| 210 | } | 
|---|
| 211 |  | 
|---|
| 212 | return (T*)objStart; | 
|---|
| 213 | } | 
|---|
| 214 |  | 
|---|
| 215 | char*          fDtorCursor; | 
|---|
| 216 | char*          fCursor; | 
|---|
| 217 | char*          fEnd; | 
|---|
| 218 |  | 
|---|
| 219 | // We found allocating strictly doubling amounts of memory from the heap left too | 
|---|
| 220 | // much unused slop, particularly on Android.  Instead we'll follow a Fibonacci-like | 
|---|
| 221 | // progression that's simple to implement and grows with roughly a 1.6 exponent: | 
|---|
| 222 | // | 
|---|
| 223 | // To start, | 
|---|
| 224 | //    fNextHeapAlloc = fYetNextHeapAlloc = 1*fFirstHeapAllocationSize; | 
|---|
| 225 | // | 
|---|
| 226 | // And then when we do allocate, follow a Fibonacci f(n+2) = f(n+1) + f(n) rule: | 
|---|
| 227 | //    void* block = malloc(fNextHeapAlloc); | 
|---|
| 228 | //    std::swap(fNextHeapAlloc, fYetNextHeapAlloc) | 
|---|
| 229 | //    fYetNextHeapAlloc += fNextHeapAlloc; | 
|---|
| 230 | // | 
|---|
| 231 | // That makes the nth allocation fib(n) * fFirstHeapAllocationSize bytes. | 
|---|
| 232 | uint32_t fNextHeapAlloc,     // How many bytes minimum will we allocate next from the heap? | 
|---|
| 233 | fYetNextHeapAlloc;           // And then how many the next allocation after that? | 
|---|
| 234 | }; | 
|---|
| 235 |  | 
|---|
| 236 | class SkArenaAllocWithReset : public SkArenaAlloc { | 
|---|
| 237 | public: | 
|---|
| 238 | SkArenaAllocWithReset(char* block, size_t blockSize, size_t firstHeapAllocation); | 
|---|
| 239 |  | 
|---|
| 240 | explicit SkArenaAllocWithReset(size_t firstHeapAllocation) | 
|---|
| 241 | : SkArenaAllocWithReset(nullptr, 0, firstHeapAllocation) {} | 
|---|
| 242 |  | 
|---|
| 243 | // Destroy all allocated objects, free any heap allocations. | 
|---|
| 244 | void reset(); | 
|---|
| 245 |  | 
|---|
| 246 | private: | 
|---|
| 247 | char* const    fFirstBlock; | 
|---|
| 248 | const uint32_t fFirstSize; | 
|---|
| 249 | const uint32_t fFirstHeapAllocationSize; | 
|---|
| 250 | }; | 
|---|
| 251 |  | 
|---|
| 252 | // Helper for defining allocators with inline/reserved storage. | 
|---|
| 253 | // For argument declarations, stick to the base type (SkArenaAlloc). | 
|---|
| 254 | // Note: Inheriting from the storage first means the storage will outlive the | 
|---|
| 255 | // SkArenaAlloc, letting ~SkArenaAlloc read it as it calls destructors. | 
|---|
| 256 | // (This is mostly only relevant for strict tools like MSAN.) | 
|---|
| 257 | template <size_t InlineStorageSize> | 
|---|
| 258 | class SkSTArenaAlloc : private std::array<char, InlineStorageSize>, public SkArenaAlloc { | 
|---|
| 259 | public: | 
|---|
| 260 | explicit SkSTArenaAlloc(size_t firstHeapAllocation = InlineStorageSize) | 
|---|
| 261 | : SkArenaAlloc{this->data(), this->size(), firstHeapAllocation} {} | 
|---|
| 262 | }; | 
|---|
| 263 |  | 
|---|
| 264 | template <size_t InlineStorageSize> | 
|---|
| 265 | class SkSTArenaAllocWithReset | 
|---|
| 266 | : private std::array<char, InlineStorageSize>, public SkArenaAllocWithReset { | 
|---|
| 267 | public: | 
|---|
| 268 | explicit SkSTArenaAllocWithReset(size_t firstHeapAllocation = InlineStorageSize) | 
|---|
| 269 | : SkArenaAllocWithReset{this->data(), this->size(), firstHeapAllocation} {} | 
|---|
| 270 | }; | 
|---|
| 271 |  | 
|---|
| 272 | #endif  // SkArenaAlloc_DEFINED | 
|---|
| 273 |  | 
|---|