1 | /* |
2 | * Copyright 2020 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/core/SkCompressedDataUtils.h" |
9 | |
10 | #include "include/core/SkColorPriv.h" |
11 | #include "include/core/SkData.h" |
12 | #include "include/private/SkColorData.h" |
13 | #include "src/core/SkMathPriv.h" |
14 | #include "src/core/SkMipmap.h" |
15 | |
16 | struct ETC1Block { |
17 | uint32_t fHigh; |
18 | uint32_t fLow; |
19 | }; |
20 | |
21 | constexpr uint32_t kFlipBit = 0x1; // set -> T/B sub-blocks; not-set -> L/R sub-blocks |
22 | constexpr uint32_t kDiffBit = 0x2; // set -> differential; not-set -> individual |
23 | |
24 | static inline int extend_4To8bits(int b) { |
25 | int c = b & 0xf; |
26 | return (c << 4) | c; |
27 | } |
28 | |
29 | static inline int extend_5To8bits(int b) { |
30 | int c = b & 0x1f; |
31 | return (c << 3) | (c >> 2); |
32 | } |
33 | |
34 | static inline int extend_5plus3To8Bits(int base, int diff) { |
35 | static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 }; |
36 | |
37 | return extend_5To8bits((0x1f & base) + kLookup[0x7 & diff]); |
38 | } |
39 | |
40 | static const int kNumETC1ModifierTables = 8; |
41 | static const int kNumETC1PixelIndices = 4; |
42 | |
43 | // The index of each row in this table is the ETC1 table codeword |
44 | // The index of each column in this table is the ETC1 pixel index value |
45 | static const int kETC1ModifierTables[kNumETC1ModifierTables][kNumETC1PixelIndices] = { |
46 | /* 0 */ { 2, 8, -2, -8 }, |
47 | /* 1 */ { 5, 17, -5, -17 }, |
48 | /* 2 */ { 9, 29, -9, -29 }, |
49 | /* 3 */ { 13, 42, -13, -42 }, |
50 | /* 4 */ { 18, 60, -18, -60 }, |
51 | /* 5 */ { 24, 80, -24, -80 }, |
52 | /* 6 */ { 33, 106, -33, -106 }, |
53 | /* 7 */ { 47, 183, -47, -183 } |
54 | }; |
55 | |
56 | static int num_4x4_blocks(int size) { |
57 | return ((size + 3) & ~3) >> 2; |
58 | } |
59 | |
60 | // Return which sub-block a given x,y location in the overall 4x4 block belongs to |
61 | static int xy_to_subblock_index(int x, int y, bool flip) { |
62 | SkASSERT(x >= 0 && x < 4); |
63 | SkASSERT(y >= 0 && y < 4); |
64 | |
65 | if (flip) { |
66 | return y < 2 ? 0 : 1; // sub-block 1 is on top of sub-block 2 |
67 | } else { |
68 | return x < 2 ? 0 : 1; // sub-block 1 is to the left of sub-block 2 |
69 | } |
70 | } |
71 | |
72 | struct IColor { |
73 | int fR, fG, fB; |
74 | }; |
75 | |
76 | static SkPMColor add_delta_and_clamp(const IColor& col, int delta) { |
77 | int r8 = SkTPin(col.fR + delta, 0, 255); |
78 | int g8 = SkTPin(col.fG + delta, 0, 255); |
79 | int b8 = SkTPin(col.fB + delta, 0, 255); |
80 | |
81 | return SkPackARGB32(0xFF, r8, g8, b8); |
82 | } |
83 | |
84 | static bool decompress_etc1(SkISize dimensions, const uint8_t* srcData, SkBitmap* dst) { |
85 | const ETC1Block* srcBlocks = reinterpret_cast<const ETC1Block*>(srcData); |
86 | |
87 | int numXBlocks = num_4x4_blocks(dimensions.width()); |
88 | int numYBlocks = num_4x4_blocks(dimensions.height()); |
89 | |
90 | for (int y = 0; y < numYBlocks; ++y) { |
91 | for (int x = 0; x < numXBlocks; ++x) { |
92 | const ETC1Block* curBlock1 = &srcBlocks[y * numXBlocks + x]; |
93 | uint32_t high = SkBSwap32(curBlock1->fHigh); |
94 | uint32_t low = SkBSwap32(curBlock1->fLow); |
95 | |
96 | bool flipped = SkToBool(high & kFlipBit); |
97 | bool differential = SkToBool(high & kDiffBit); |
98 | |
99 | IColor colors[2]; |
100 | |
101 | if (differential) { |
102 | colors[0].fR = extend_5To8bits(high >> 27); |
103 | colors[1].fR = extend_5plus3To8Bits(high >> 27, high >> 24); |
104 | colors[0].fG = extend_5To8bits(high >> 19); |
105 | colors[1].fG = extend_5plus3To8Bits(high >> 19, high >> 16); |
106 | colors[0].fB = extend_5To8bits(high >> 11); |
107 | colors[1].fB = extend_5plus3To8Bits(high >> 11, high >> 8); |
108 | } else { |
109 | colors[0].fR = extend_4To8bits(high >> 28); |
110 | colors[1].fR = extend_4To8bits(high >> 24); |
111 | colors[0].fG = extend_4To8bits(high >> 20); |
112 | colors[1].fG = extend_4To8bits(high >> 16); |
113 | colors[0].fB = extend_4To8bits(high >> 12); |
114 | colors[1].fB = extend_4To8bits(high >> 8); |
115 | } |
116 | |
117 | int tableIndex0 = (high >> 5) & 0x7; |
118 | int tableIndex1 = (high >> 2) & 0x7; |
119 | const int* tables[2] = { |
120 | kETC1ModifierTables[tableIndex0], |
121 | kETC1ModifierTables[tableIndex1] |
122 | }; |
123 | |
124 | int baseShift = 0; |
125 | int offsetX = 4 * x, offsetY = 4 * y; |
126 | for (int i = 0; i < 4; ++i, ++baseShift) { |
127 | for (int j = 0; j < 4; ++j) { |
128 | if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) { |
129 | // This can happen for the topmost levels of a mipmap and for |
130 | // non-multiple of 4 textures |
131 | continue; |
132 | } |
133 | |
134 | int subBlockIndex = xy_to_subblock_index(j, i, flipped); |
135 | int pixelIndex = ((low >> (baseShift+(j*4))) & 0x1) | |
136 | (low >> (baseShift+(j*4)+15) & 0x2); |
137 | |
138 | SkASSERT(subBlockIndex == 0 || subBlockIndex == 1); |
139 | SkASSERT(pixelIndex >= 0 && pixelIndex < 4); |
140 | |
141 | int delta = tables[subBlockIndex][pixelIndex]; |
142 | *dst->getAddr32(offsetX + j, offsetY + i) = |
143 | add_delta_and_clamp(colors[subBlockIndex], delta); |
144 | } |
145 | } |
146 | } |
147 | } |
148 | |
149 | return true; |
150 | } |
151 | |
152 | //------------------------------------------------------------------------------------------------ |
153 | struct BC1Block { |
154 | uint16_t fColor0; |
155 | uint16_t fColor1; |
156 | uint32_t fIndices; |
157 | }; |
158 | |
159 | static SkPMColor from565(uint16_t rgb565) { |
160 | uint8_t r8 = SkR16ToR32((rgb565 >> 11) & 0x1F); |
161 | uint8_t g8 = SkG16ToG32((rgb565 >> 5) & 0x3F); |
162 | uint8_t b8 = SkB16ToB32(rgb565 & 0x1F); |
163 | |
164 | return SkPackARGB32(0xFF, r8, g8, b8); |
165 | } |
166 | |
167 | // return t*col0 + (1-t)*col1 |
168 | static SkPMColor lerp(float t, SkPMColor col0, SkPMColor col1) { |
169 | SkASSERT(SkGetPackedA32(col0) == 0xFF && SkGetPackedA32(col1) == 0xFF); |
170 | |
171 | // TODO: given 't' is only either 1/3 or 2/3 this could be done faster |
172 | uint8_t r8 = SkScalarRoundToInt(t * SkGetPackedR32(col0) + (1.0f - t) * SkGetPackedR32(col1)); |
173 | uint8_t g8 = SkScalarRoundToInt(t * SkGetPackedG32(col0) + (1.0f - t) * SkGetPackedG32(col1)); |
174 | uint8_t b8 = SkScalarRoundToInt(t * SkGetPackedB32(col0) + (1.0f - t) * SkGetPackedB32(col1)); |
175 | return SkPackARGB32(0xFF, r8, g8, b8); |
176 | } |
177 | |
178 | static bool decompress_bc1(SkISize dimensions, const uint8_t* srcData, |
179 | bool isOpaque, SkBitmap* dst) { |
180 | const BC1Block* srcBlocks = reinterpret_cast<const BC1Block*>(srcData); |
181 | |
182 | int numXBlocks = num_4x4_blocks(dimensions.width()); |
183 | int numYBlocks = num_4x4_blocks(dimensions.height()); |
184 | |
185 | SkPMColor colors[4]; |
186 | |
187 | for (int y = 0; y < numYBlocks; ++y) { |
188 | for (int x = 0; x < numXBlocks; ++x) { |
189 | const BC1Block* curBlock = &srcBlocks[y * numXBlocks + x]; |
190 | |
191 | colors[0] = from565(curBlock->fColor0); |
192 | colors[1] = from565(curBlock->fColor1); |
193 | if (curBlock->fColor0 <= curBlock->fColor1) { // signal for a transparent block |
194 | colors[2] = SkPackARGB32( |
195 | 0xFF, |
196 | (SkGetPackedR32(colors[0]) + SkGetPackedR32(colors[1])) >> 1, |
197 | (SkGetPackedG32(colors[0]) + SkGetPackedG32(colors[1])) >> 1, |
198 | (SkGetPackedB32(colors[0]) + SkGetPackedB32(colors[1])) >> 1); |
199 | // The opacity of the overall texture trumps the per-block transparency |
200 | colors[3] = SkPackARGB32(isOpaque ? 0xFF : 0, 0, 0, 0); |
201 | } else { |
202 | colors[2] = lerp(2.0f/3.0f, colors[0], colors[1]); |
203 | colors[3] = lerp(1.0f/3.0f, colors[0], colors[1]); |
204 | } |
205 | |
206 | int shift = 0; |
207 | int offsetX = 4 * x, offsetY = 4 * y; |
208 | for (int i = 0; i < 4; ++i) { |
209 | for (int j = 0; j < 4; ++j, shift += 2) { |
210 | if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) { |
211 | // This can happen for the topmost levels of a mipmap and for |
212 | // non-multiple of 4 textures |
213 | continue; |
214 | } |
215 | |
216 | int index = (curBlock->fIndices >> shift) & 0x3; |
217 | *dst->getAddr32(offsetX + j, offsetY + i) = colors[index]; |
218 | } |
219 | } |
220 | } |
221 | } |
222 | |
223 | return true; |
224 | } |
225 | |
226 | bool SkDecompress(sk_sp<SkData> data, |
227 | SkISize dimensions, |
228 | SkImage::CompressionType compressionType, |
229 | SkBitmap* dst) { |
230 | using Type = SkImage::CompressionType; |
231 | |
232 | const uint8_t* bytes = data->bytes(); |
233 | switch (compressionType) { |
234 | case Type::kNone: return false; |
235 | case Type::kETC2_RGB8_UNORM: return decompress_etc1(dimensions, bytes, dst); |
236 | case Type::kBC1_RGB8_UNORM: return decompress_bc1(dimensions, bytes, true, dst); |
237 | case Type::kBC1_RGBA8_UNORM: return decompress_bc1(dimensions, bytes, false, dst); |
238 | } |
239 | |
240 | SkUNREACHABLE; |
241 | return false; |
242 | } |
243 | |
244 | size_t SkCompressedDataSize(SkImage::CompressionType type, SkISize dimensions, |
245 | SkTArray<size_t>* individualMipOffsets, bool mipMapped) { |
246 | SkASSERT(!individualMipOffsets || !individualMipOffsets->count()); |
247 | |
248 | int numMipLevels = 1; |
249 | if (mipMapped) { |
250 | numMipLevels = SkMipmap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1; |
251 | } |
252 | |
253 | size_t totalSize = 0; |
254 | switch (type) { |
255 | case SkImage::CompressionType::kNone: |
256 | break; |
257 | case SkImage::CompressionType::kETC2_RGB8_UNORM: |
258 | case SkImage::CompressionType::kBC1_RGB8_UNORM: |
259 | case SkImage::CompressionType::kBC1_RGBA8_UNORM: { |
260 | for (int i = 0; i < numMipLevels; ++i) { |
261 | int numBlocks = num_4x4_blocks(dimensions.width()) * |
262 | num_4x4_blocks(dimensions.height()); |
263 | |
264 | if (individualMipOffsets) { |
265 | individualMipOffsets->push_back(totalSize); |
266 | } |
267 | |
268 | static_assert(sizeof(ETC1Block) == sizeof(BC1Block)); |
269 | totalSize += numBlocks * sizeof(ETC1Block); |
270 | |
271 | dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; |
272 | } |
273 | break; |
274 | } |
275 | } |
276 | |
277 | return totalSize; |
278 | } |
279 | |
280 | size_t SkCompressedBlockSize(SkImage::CompressionType type) { |
281 | switch (type) { |
282 | case SkImage::CompressionType::kNone: |
283 | return 0; |
284 | case SkImage::CompressionType::kETC2_RGB8_UNORM: |
285 | return sizeof(ETC1Block); |
286 | case SkImage::CompressionType::kBC1_RGB8_UNORM: |
287 | case SkImage::CompressionType::kBC1_RGBA8_UNORM: |
288 | return sizeof(BC1Block); |
289 | } |
290 | SkUNREACHABLE; |
291 | } |
292 | |
293 | size_t SkCompressedFormatDataSize(SkImage::CompressionType compressionType, |
294 | SkISize dimensions, bool mipMapped) { |
295 | return SkCompressedDataSize(compressionType, dimensions, nullptr, mipMapped); |
296 | } |
297 | |