| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkEdge.h" |
| 9 | |
| 10 | #include "include/private/SkTo.h" |
| 11 | #include "src/core/SkFDot6.h" |
| 12 | #include "src/core/SkMathPriv.h" |
| 13 | |
| 14 | #include <utility> |
| 15 | |
| 16 | /* |
| 17 | In setLine, setQuadratic, setCubic, the first thing we do is to convert |
| 18 | the points into FDot6. This is modulated by the shift parameter, which |
| 19 | will either be 0, or something like 2 for antialiasing. |
| 20 | |
| 21 | In the float case, we want to turn the float into .6 by saying pt * 64, |
| 22 | or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). |
| 23 | |
| 24 | In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, |
| 25 | or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). |
| 26 | */ |
| 27 | |
| 28 | static inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { |
| 29 | // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw |
| 30 | // away data in value, so just perform a modify up-shift |
| 31 | return SkLeftShift(value, 16 - 6 - 1); |
| 32 | } |
| 33 | |
| 34 | ///////////////////////////////////////////////////////////////////////// |
| 35 | |
| 36 | int SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, |
| 37 | int shift) { |
| 38 | SkFDot6 x0, y0, x1, y1; |
| 39 | |
| 40 | { |
| 41 | #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| 42 | x0 = SkScalarRoundToFDot6(p0.fX, shift); |
| 43 | y0 = SkScalarRoundToFDot6(p0.fY, shift); |
| 44 | x1 = SkScalarRoundToFDot6(p1.fX, shift); |
| 45 | y1 = SkScalarRoundToFDot6(p1.fY, shift); |
| 46 | #else |
| 47 | float scale = float(1 << (shift + 6)); |
| 48 | x0 = int(p0.fX * scale); |
| 49 | y0 = int(p0.fY * scale); |
| 50 | x1 = int(p1.fX * scale); |
| 51 | y1 = int(p1.fY * scale); |
| 52 | #endif |
| 53 | } |
| 54 | |
| 55 | int winding = 1; |
| 56 | |
| 57 | if (y0 > y1) { |
| 58 | using std::swap; |
| 59 | swap(x0, x1); |
| 60 | swap(y0, y1); |
| 61 | winding = -1; |
| 62 | } |
| 63 | |
| 64 | int top = SkFDot6Round(y0); |
| 65 | int bot = SkFDot6Round(y1); |
| 66 | |
| 67 | // are we a zero-height line? |
| 68 | if (top == bot) { |
| 69 | return 0; |
| 70 | } |
| 71 | // are we completely above or below the clip? |
| 72 | if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { |
| 73 | return 0; |
| 74 | } |
| 75 | |
| 76 | SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); |
| 77 | const SkFDot6 dy = SkEdge_Compute_DY(top, y0); |
| 78 | |
| 79 | fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 |
| 80 | fDX = slope; |
| 81 | fFirstY = top; |
| 82 | fLastY = bot - 1; |
| 83 | fCurveCount = 0; |
| 84 | fWinding = SkToS8(winding); |
| 85 | fCurveShift = 0; |
| 86 | |
| 87 | if (clip) { |
| 88 | this->chopLineWithClip(*clip); |
| 89 | } |
| 90 | return 1; |
| 91 | } |
| 92 | |
| 93 | // called from a curve subclass |
| 94 | int SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) |
| 95 | { |
| 96 | SkASSERT(fWinding == 1 || fWinding == -1); |
| 97 | SkASSERT(fCurveCount != 0); |
| 98 | // SkASSERT(fCurveShift != 0); |
| 99 | |
| 100 | y0 >>= 10; |
| 101 | y1 >>= 10; |
| 102 | |
| 103 | SkASSERT(y0 <= y1); |
| 104 | |
| 105 | int top = SkFDot6Round(y0); |
| 106 | int bot = SkFDot6Round(y1); |
| 107 | |
| 108 | // SkASSERT(top >= fFirstY); |
| 109 | |
| 110 | // are we a zero-height line? |
| 111 | if (top == bot) |
| 112 | return 0; |
| 113 | |
| 114 | x0 >>= 10; |
| 115 | x1 >>= 10; |
| 116 | |
| 117 | SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); |
| 118 | const SkFDot6 dy = SkEdge_Compute_DY(top, y0); |
| 119 | |
| 120 | fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 |
| 121 | fDX = slope; |
| 122 | fFirstY = top; |
| 123 | fLastY = bot - 1; |
| 124 | |
| 125 | return 1; |
| 126 | } |
| 127 | |
| 128 | void SkEdge::chopLineWithClip(const SkIRect& clip) |
| 129 | { |
| 130 | int top = fFirstY; |
| 131 | |
| 132 | SkASSERT(top < clip.fBottom); |
| 133 | |
| 134 | // clip the line to the top |
| 135 | if (top < clip.fTop) |
| 136 | { |
| 137 | SkASSERT(fLastY >= clip.fTop); |
| 138 | fX += fDX * (clip.fTop - top); |
| 139 | fFirstY = clip.fTop; |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /////////////////////////////////////////////////////////////////////////////// |
| 144 | |
| 145 | /* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. |
| 146 | Note that this limits the number of lines we use to approximate a curve. |
| 147 | If we need to increase this, we need to store fCurveCount in something |
| 148 | larger than int8_t. |
| 149 | */ |
| 150 | #define MAX_COEFF_SHIFT 6 |
| 151 | |
| 152 | static inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) |
| 153 | { |
| 154 | dx = SkAbs32(dx); |
| 155 | dy = SkAbs32(dy); |
| 156 | // return max + min/2 |
| 157 | if (dx > dy) |
| 158 | dx += dy >> 1; |
| 159 | else |
| 160 | dx = dy + (dx >> 1); |
| 161 | return dx; |
| 162 | } |
| 163 | |
| 164 | static inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2) |
| 165 | { |
| 166 | // cheap calc of distance from center of p0-p2 to the center of the curve |
| 167 | SkFDot6 dist = cheap_distance(dx, dy); |
| 168 | |
| 169 | // shift down dist (it is currently in dot6) |
| 170 | // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) |
| 171 | // this is chosen by heuristic: make it as big as possible (to minimize segments) |
| 172 | // ... but small enough so that our curves still look smooth |
| 173 | // When shift > 0, we're using AA and everything is scaled up so we can |
| 174 | // lower the accuracy. |
| 175 | dist = (dist + (1 << 4)) >> (3 + shiftAA); |
| 176 | |
| 177 | // each subdivision (shift value) cuts this dist (error) by 1/4 |
| 178 | return (32 - SkCLZ(dist)) >> 1; |
| 179 | } |
| 180 | |
| 181 | bool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) { |
| 182 | SkFDot6 x0, y0, x1, y1, x2, y2; |
| 183 | |
| 184 | { |
| 185 | #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| 186 | x0 = SkScalarRoundToFDot6(pts[0].fX, shift); |
| 187 | y0 = SkScalarRoundToFDot6(pts[0].fY, shift); |
| 188 | x1 = SkScalarRoundToFDot6(pts[1].fX, shift); |
| 189 | y1 = SkScalarRoundToFDot6(pts[1].fY, shift); |
| 190 | x2 = SkScalarRoundToFDot6(pts[2].fX, shift); |
| 191 | y2 = SkScalarRoundToFDot6(pts[2].fY, shift); |
| 192 | #else |
| 193 | float scale = float(1 << (shift + 6)); |
| 194 | x0 = int(pts[0].fX * scale); |
| 195 | y0 = int(pts[0].fY * scale); |
| 196 | x1 = int(pts[1].fX * scale); |
| 197 | y1 = int(pts[1].fY * scale); |
| 198 | x2 = int(pts[2].fX * scale); |
| 199 | y2 = int(pts[2].fY * scale); |
| 200 | #endif |
| 201 | } |
| 202 | |
| 203 | int winding = 1; |
| 204 | if (y0 > y2) |
| 205 | { |
| 206 | using std::swap; |
| 207 | swap(x0, x2); |
| 208 | swap(y0, y2); |
| 209 | winding = -1; |
| 210 | } |
| 211 | SkASSERT(y0 <= y1 && y1 <= y2); |
| 212 | |
| 213 | int top = SkFDot6Round(y0); |
| 214 | int bot = SkFDot6Round(y2); |
| 215 | |
| 216 | // are we a zero-height quad (line)? |
| 217 | if (top == bot) |
| 218 | return 0; |
| 219 | |
| 220 | // compute number of steps needed (1 << shift) |
| 221 | { |
| 222 | SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2; |
| 223 | SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2; |
| 224 | // This is a little confusing: |
| 225 | // before this line, shift is the scale up factor for AA; |
| 226 | // after this line, shift is the fCurveShift. |
| 227 | shift = diff_to_shift(dx, dy, shift); |
| 228 | SkASSERT(shift >= 0); |
| 229 | } |
| 230 | // need at least 1 subdivision for our bias trick |
| 231 | if (shift == 0) { |
| 232 | shift = 1; |
| 233 | } else if (shift > MAX_COEFF_SHIFT) { |
| 234 | shift = MAX_COEFF_SHIFT; |
| 235 | } |
| 236 | |
| 237 | fWinding = SkToS8(winding); |
| 238 | //fCubicDShift only set for cubics |
| 239 | fCurveCount = SkToS8(1 << shift); |
| 240 | |
| 241 | /* |
| 242 | * We want to reformulate into polynomial form, to make it clear how we |
| 243 | * should forward-difference. |
| 244 | * |
| 245 | * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C |
| 246 | * |
| 247 | * A = p0 - 2p1 + p2 |
| 248 | * B = 2(p1 - p0) |
| 249 | * C = p0 |
| 250 | * |
| 251 | * Our caller must have constrained our inputs (p0..p2) to all fit into |
| 252 | * 16.16. However, as seen above, we sometimes compute values that can be |
| 253 | * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store |
| 254 | * A and B at 1/2 of their actual value, and just apply a 2x scale during |
| 255 | * application in updateQuadratic(). Hence we store (shift - 1) in |
| 256 | * fCurveShift. |
| 257 | */ |
| 258 | |
| 259 | fCurveShift = SkToU8(shift - 1); |
| 260 | |
| 261 | SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value |
| 262 | SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value |
| 263 | |
| 264 | fQx = SkFDot6ToFixed(x0); |
| 265 | fQDx = B + (A >> shift); // biased by shift |
| 266 | fQDDx = A >> (shift - 1); // biased by shift |
| 267 | |
| 268 | A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value |
| 269 | B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value |
| 270 | |
| 271 | fQy = SkFDot6ToFixed(y0); |
| 272 | fQDy = B + (A >> shift); // biased by shift |
| 273 | fQDDy = A >> (shift - 1); // biased by shift |
| 274 | |
| 275 | fQLastX = SkFDot6ToFixed(x2); |
| 276 | fQLastY = SkFDot6ToFixed(y2); |
| 277 | |
| 278 | return true; |
| 279 | } |
| 280 | |
| 281 | int SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) { |
| 282 | if (!setQuadraticWithoutUpdate(pts, shift)) { |
| 283 | return 0; |
| 284 | } |
| 285 | return this->updateQuadratic(); |
| 286 | } |
| 287 | |
| 288 | int SkQuadraticEdge::updateQuadratic() |
| 289 | { |
| 290 | int success; |
| 291 | int count = fCurveCount; |
| 292 | SkFixed oldx = fQx; |
| 293 | SkFixed oldy = fQy; |
| 294 | SkFixed dx = fQDx; |
| 295 | SkFixed dy = fQDy; |
| 296 | SkFixed newx, newy; |
| 297 | int shift = fCurveShift; |
| 298 | |
| 299 | SkASSERT(count > 0); |
| 300 | |
| 301 | do { |
| 302 | if (--count > 0) |
| 303 | { |
| 304 | newx = oldx + (dx >> shift); |
| 305 | dx += fQDDx; |
| 306 | newy = oldy + (dy >> shift); |
| 307 | dy += fQDDy; |
| 308 | } |
| 309 | else // last segment |
| 310 | { |
| 311 | newx = fQLastX; |
| 312 | newy = fQLastY; |
| 313 | } |
| 314 | success = this->updateLine(oldx, oldy, newx, newy); |
| 315 | oldx = newx; |
| 316 | oldy = newy; |
| 317 | } while (count > 0 && !success); |
| 318 | |
| 319 | fQx = newx; |
| 320 | fQy = newy; |
| 321 | fQDx = dx; |
| 322 | fQDy = dy; |
| 323 | fCurveCount = SkToS8(count); |
| 324 | return success; |
| 325 | } |
| 326 | |
| 327 | ///////////////////////////////////////////////////////////////////////// |
| 328 | |
| 329 | static inline int SkFDot6UpShift(SkFDot6 x, int upShift) { |
| 330 | SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); |
| 331 | return SkLeftShift(x, upShift); |
| 332 | } |
| 333 | |
| 334 | /* f(1/3) = (8a + 12b + 6c + d) / 27 |
| 335 | f(2/3) = (a + 6b + 12c + 8d) / 27 |
| 336 | |
| 337 | f(1/3)-b = (8a - 15b + 6c + d) / 27 |
| 338 | f(2/3)-c = (a + 6b - 15c + 8d) / 27 |
| 339 | |
| 340 | use 16/512 to approximate 1/27 |
| 341 | */ |
| 342 | static SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) |
| 343 | { |
| 344 | // since our parameters may be negative, we don't use << to avoid ASAN warnings |
| 345 | SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; |
| 346 | SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; |
| 347 | |
| 348 | return std::max(SkAbs32(oneThird), SkAbs32(twoThird)); |
| 349 | } |
| 350 | |
| 351 | bool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) { |
| 352 | SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; |
| 353 | |
| 354 | { |
| 355 | #ifdef SK_RASTERIZE_EVEN_ROUNDING |
| 356 | x0 = SkScalarRoundToFDot6(pts[0].fX, shift); |
| 357 | y0 = SkScalarRoundToFDot6(pts[0].fY, shift); |
| 358 | x1 = SkScalarRoundToFDot6(pts[1].fX, shift); |
| 359 | y1 = SkScalarRoundToFDot6(pts[1].fY, shift); |
| 360 | x2 = SkScalarRoundToFDot6(pts[2].fX, shift); |
| 361 | y2 = SkScalarRoundToFDot6(pts[2].fY, shift); |
| 362 | x3 = SkScalarRoundToFDot6(pts[3].fX, shift); |
| 363 | y3 = SkScalarRoundToFDot6(pts[3].fY, shift); |
| 364 | #else |
| 365 | float scale = float(1 << (shift + 6)); |
| 366 | x0 = int(pts[0].fX * scale); |
| 367 | y0 = int(pts[0].fY * scale); |
| 368 | x1 = int(pts[1].fX * scale); |
| 369 | y1 = int(pts[1].fY * scale); |
| 370 | x2 = int(pts[2].fX * scale); |
| 371 | y2 = int(pts[2].fY * scale); |
| 372 | x3 = int(pts[3].fX * scale); |
| 373 | y3 = int(pts[3].fY * scale); |
| 374 | #endif |
| 375 | } |
| 376 | |
| 377 | int winding = 1; |
| 378 | if (sortY && y0 > y3) |
| 379 | { |
| 380 | using std::swap; |
| 381 | swap(x0, x3); |
| 382 | swap(x1, x2); |
| 383 | swap(y0, y3); |
| 384 | swap(y1, y2); |
| 385 | winding = -1; |
| 386 | } |
| 387 | |
| 388 | int top = SkFDot6Round(y0); |
| 389 | int bot = SkFDot6Round(y3); |
| 390 | |
| 391 | // are we a zero-height cubic (line)? |
| 392 | if (sortY && top == bot) |
| 393 | return 0; |
| 394 | |
| 395 | // compute number of steps needed (1 << shift) |
| 396 | { |
| 397 | // Can't use (center of curve - center of baseline), since center-of-curve |
| 398 | // need not be the max delta from the baseline (it could even be coincident) |
| 399 | // so we try just looking at the two off-curve points |
| 400 | SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); |
| 401 | SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); |
| 402 | // add 1 (by observation) |
| 403 | shift = diff_to_shift(dx, dy) + 1; |
| 404 | } |
| 405 | // need at least 1 subdivision for our bias trick |
| 406 | SkASSERT(shift > 0); |
| 407 | if (shift > MAX_COEFF_SHIFT) { |
| 408 | shift = MAX_COEFF_SHIFT; |
| 409 | } |
| 410 | |
| 411 | /* Since our in coming data is initially shifted down by 10 (or 8 in |
| 412 | antialias). That means the most we can shift up is 8. However, we |
| 413 | compute coefficients with a 3*, so the safest upshift is really 6 |
| 414 | */ |
| 415 | int upShift = 6; // largest safe value |
| 416 | int downShift = shift + upShift - 10; |
| 417 | if (downShift < 0) { |
| 418 | downShift = 0; |
| 419 | upShift = 10 - shift; |
| 420 | } |
| 421 | |
| 422 | fWinding = SkToS8(winding); |
| 423 | fCurveCount = SkToS8(SkLeftShift(-1, shift)); |
| 424 | fCurveShift = SkToU8(shift); |
| 425 | fCubicDShift = SkToU8(downShift); |
| 426 | |
| 427 | SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); |
| 428 | SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); |
| 429 | SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); |
| 430 | |
| 431 | fCx = SkFDot6ToFixed(x0); |
| 432 | fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| 433 | fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| 434 | fCDDDx = 3*D >> (shift - 1); // biased by 2*shift |
| 435 | |
| 436 | B = SkFDot6UpShift(3 * (y1 - y0), upShift); |
| 437 | C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); |
| 438 | D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); |
| 439 | |
| 440 | fCy = SkFDot6ToFixed(y0); |
| 441 | fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift |
| 442 | fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift |
| 443 | fCDDDy = 3*D >> (shift - 1); // biased by 2*shift |
| 444 | |
| 445 | fCLastX = SkFDot6ToFixed(x3); |
| 446 | fCLastY = SkFDot6ToFixed(y3); |
| 447 | |
| 448 | return true; |
| 449 | } |
| 450 | |
| 451 | int SkCubicEdge::setCubic(const SkPoint pts[4], int shift) { |
| 452 | if (!this->setCubicWithoutUpdate(pts, shift)) { |
| 453 | return 0; |
| 454 | } |
| 455 | return this->updateCubic(); |
| 456 | } |
| 457 | |
| 458 | int SkCubicEdge::updateCubic() |
| 459 | { |
| 460 | int success; |
| 461 | int count = fCurveCount; |
| 462 | SkFixed oldx = fCx; |
| 463 | SkFixed oldy = fCy; |
| 464 | SkFixed newx, newy; |
| 465 | const int ddshift = fCurveShift; |
| 466 | const int dshift = fCubicDShift; |
| 467 | |
| 468 | SkASSERT(count < 0); |
| 469 | |
| 470 | do { |
| 471 | if (++count < 0) |
| 472 | { |
| 473 | newx = oldx + (fCDx >> dshift); |
| 474 | fCDx += fCDDx >> ddshift; |
| 475 | fCDDx += fCDDDx; |
| 476 | |
| 477 | newy = oldy + (fCDy >> dshift); |
| 478 | fCDy += fCDDy >> ddshift; |
| 479 | fCDDy += fCDDDy; |
| 480 | } |
| 481 | else // last segment |
| 482 | { |
| 483 | // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); |
| 484 | newx = fCLastX; |
| 485 | newy = fCLastY; |
| 486 | } |
| 487 | |
| 488 | // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint |
| 489 | // doesn't always achieve that, so we have to explicitly pin it here. |
| 490 | if (newy < oldy) { |
| 491 | newy = oldy; |
| 492 | } |
| 493 | |
| 494 | success = this->updateLine(oldx, oldy, newx, newy); |
| 495 | oldx = newx; |
| 496 | oldy = newy; |
| 497 | } while (count < 0 && !success); |
| 498 | |
| 499 | fCx = newx; |
| 500 | fCy = newy; |
| 501 | fCurveCount = SkToS8(count); |
| 502 | return success; |
| 503 | } |
| 504 | |