| 1 | /* | 
|---|
| 2 | * Copyright 2006 The Android Open Source Project | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #ifndef SkGeometry_DEFINED | 
|---|
| 9 | #define SkGeometry_DEFINED | 
|---|
| 10 |  | 
|---|
| 11 | #include "include/core/SkMatrix.h" | 
|---|
| 12 | #include "include/private/SkNx.h" | 
|---|
| 13 |  | 
|---|
| 14 | static inline Sk2s from_point(const SkPoint& point) { | 
|---|
| 15 | return Sk2s::Load(&point); | 
|---|
| 16 | } | 
|---|
| 17 |  | 
|---|
| 18 | static inline SkPoint to_point(const Sk2s& x) { | 
|---|
| 19 | SkPoint point; | 
|---|
| 20 | x.store(&point); | 
|---|
| 21 | return point; | 
|---|
| 22 | } | 
|---|
| 23 |  | 
|---|
| 24 | static Sk2s times_2(const Sk2s& value) { | 
|---|
| 25 | return value + value; | 
|---|
| 26 | } | 
|---|
| 27 |  | 
|---|
| 28 | /** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the | 
|---|
| 29 | equation. | 
|---|
| 30 | */ | 
|---|
| 31 | int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); | 
|---|
| 32 |  | 
|---|
| 33 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 34 |  | 
|---|
| 35 | SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t); | 
|---|
| 36 | SkPoint SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t); | 
|---|
| 37 |  | 
|---|
| 38 | /** Set pt to the point on the src quadratic specified by t. t must be | 
|---|
| 39 | 0 <= t <= 1.0 | 
|---|
| 40 | */ | 
|---|
| 41 | void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = nullptr); | 
|---|
| 42 |  | 
|---|
| 43 | /** Given a src quadratic bezier, chop it at the specified t value, | 
|---|
| 44 | where 0 < t < 1, and return the two new quadratics in dst: | 
|---|
| 45 | dst[0..2] and dst[2..4] | 
|---|
| 46 | */ | 
|---|
| 47 | void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); | 
|---|
| 48 |  | 
|---|
| 49 | /** Given a src quadratic bezier, chop it at the specified t == 1/2, | 
|---|
| 50 | The new quads are returned in dst[0..2] and dst[2..4] | 
|---|
| 51 | */ | 
|---|
| 52 | void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); | 
|---|
| 53 |  | 
|---|
| 54 | /** Given the 3 coefficients for a quadratic bezier (either X or Y values), look | 
|---|
| 55 | for extrema, and return the number of t-values that are found that represent | 
|---|
| 56 | these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the | 
|---|
| 57 | function returns 0. | 
|---|
| 58 | Returned count      tValues[] | 
|---|
| 59 | 0                   ignored | 
|---|
| 60 | 1                   0 < tValues[0] < 1 | 
|---|
| 61 | */ | 
|---|
| 62 | int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); | 
|---|
| 63 |  | 
|---|
| 64 | /** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that | 
|---|
| 65 | the resulting beziers are monotonic in Y. This is called by the scan converter. | 
|---|
| 66 | Depending on what is returned, dst[] is treated as follows | 
|---|
| 67 | 0   dst[0..2] is the original quad | 
|---|
| 68 | 1   dst[0..2] and dst[2..4] are the two new quads | 
|---|
| 69 | */ | 
|---|
| 70 | int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); | 
|---|
| 71 | int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]); | 
|---|
| 72 |  | 
|---|
| 73 | /** Given 3 points on a quadratic bezier, if the point of maximum | 
|---|
| 74 | curvature exists on the segment, returns the t value for this | 
|---|
| 75 | point along the curve. Otherwise it will return a value of 0. | 
|---|
| 76 | */ | 
|---|
| 77 | SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]); | 
|---|
| 78 |  | 
|---|
| 79 | /** Given 3 points on a quadratic bezier, divide it into 2 quadratics | 
|---|
| 80 | if the point of maximum curvature exists on the quad segment. | 
|---|
| 81 | Depending on what is returned, dst[] is treated as follows | 
|---|
| 82 | 1   dst[0..2] is the original quad | 
|---|
| 83 | 2   dst[0..2] and dst[2..4] are the two new quads | 
|---|
| 84 | If dst == null, it is ignored and only the count is returned. | 
|---|
| 85 | */ | 
|---|
| 86 | int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); | 
|---|
| 87 |  | 
|---|
| 88 | /** Given 3 points on a quadratic bezier, use degree elevation to | 
|---|
| 89 | convert it into the cubic fitting the same curve. The new cubic | 
|---|
| 90 | curve is returned in dst[0..3]. | 
|---|
| 91 | */ | 
|---|
| 92 | void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]); | 
|---|
| 93 |  | 
|---|
| 94 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 95 |  | 
|---|
| 96 | /** Set pt to the point on the src cubic specified by t. t must be | 
|---|
| 97 | 0 <= t <= 1.0 | 
|---|
| 98 | */ | 
|---|
| 99 | void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, | 
|---|
| 100 | SkVector* tangentOrNull, SkVector* curvatureOrNull); | 
|---|
| 101 |  | 
|---|
| 102 | /** Given a src cubic bezier, chop it at the specified t value, | 
|---|
| 103 | where 0 < t < 1, and return the two new cubics in dst: | 
|---|
| 104 | dst[0..3] and dst[3..6] | 
|---|
| 105 | */ | 
|---|
| 106 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); | 
|---|
| 107 |  | 
|---|
| 108 | /** Given a src cubic bezier, chop it at the specified t values, | 
|---|
| 109 | where 0 < t < 1, and return the new cubics in dst: | 
|---|
| 110 | dst[0..3],dst[3..6],...,dst[3*t_count..3*(t_count+1)] | 
|---|
| 111 | */ | 
|---|
| 112 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar t[], | 
|---|
| 113 | int t_count); | 
|---|
| 114 |  | 
|---|
| 115 | /** Given a src cubic bezier, chop it at the specified t == 1/2, | 
|---|
| 116 | The new cubics are returned in dst[0..3] and dst[3..6] | 
|---|
| 117 | */ | 
|---|
| 118 | void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); | 
|---|
| 119 |  | 
|---|
| 120 | /** Given the 4 coefficients for a cubic bezier (either X or Y values), look | 
|---|
| 121 | for extrema, and return the number of t-values that are found that represent | 
|---|
| 122 | these extrema. If the cubic has no extrema betwee (0..1) exclusive, the | 
|---|
| 123 | function returns 0. | 
|---|
| 124 | Returned count      tValues[] | 
|---|
| 125 | 0                   ignored | 
|---|
| 126 | 1                   0 < tValues[0] < 1 | 
|---|
| 127 | 2                   0 < tValues[0] < tValues[1] < 1 | 
|---|
| 128 | */ | 
|---|
| 129 | int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, | 
|---|
| 130 | SkScalar tValues[2]); | 
|---|
| 131 |  | 
|---|
| 132 | /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that | 
|---|
| 133 | the resulting beziers are monotonic in Y. This is called by the scan converter. | 
|---|
| 134 | Depending on what is returned, dst[] is treated as follows | 
|---|
| 135 | 0   dst[0..3] is the original cubic | 
|---|
| 136 | 1   dst[0..3] and dst[3..6] are the two new cubics | 
|---|
| 137 | 2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics | 
|---|
| 138 | If dst == null, it is ignored and only the count is returned. | 
|---|
| 139 | */ | 
|---|
| 140 | int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); | 
|---|
| 141 | int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]); | 
|---|
| 142 |  | 
|---|
| 143 | /** Given a cubic bezier, return 0, 1, or 2 t-values that represent the | 
|---|
| 144 | inflection points. | 
|---|
| 145 | */ | 
|---|
| 146 | int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); | 
|---|
| 147 |  | 
|---|
| 148 | /** Return 1 for no chop, 2 for having chopped the cubic at a single | 
|---|
| 149 | inflection point, 3 for having chopped at 2 inflection points. | 
|---|
| 150 | dst will hold the resulting 1, 2, or 3 cubics. | 
|---|
| 151 | */ | 
|---|
| 152 | int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); | 
|---|
| 153 |  | 
|---|
| 154 | int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); | 
|---|
| 155 | int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], | 
|---|
| 156 | SkScalar tValues[3] = nullptr); | 
|---|
| 157 | /** Returns t value of cusp if cubic has one; returns -1 otherwise. | 
|---|
| 158 | */ | 
|---|
| 159 | SkScalar SkFindCubicCusp(const SkPoint src[4]); | 
|---|
| 160 |  | 
|---|
| 161 | bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar y, SkPoint dst[7]); | 
|---|
| 162 | bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar x, SkPoint dst[7]); | 
|---|
| 163 |  | 
|---|
| 164 | enum class SkCubicType { | 
|---|
| 165 | kSerpentine, | 
|---|
| 166 | kLoop, | 
|---|
| 167 | kLocalCusp,       // Cusp at a non-infinite parameter value with an inflection at t=infinity. | 
|---|
| 168 | kCuspAtInfinity,  // Cusp with a cusp at t=infinity and a local inflection. | 
|---|
| 169 | kQuadratic, | 
|---|
| 170 | kLineOrPoint | 
|---|
| 171 | }; | 
|---|
| 172 |  | 
|---|
| 173 | static inline bool SkCubicIsDegenerate(SkCubicType type) { | 
|---|
| 174 | switch (type) { | 
|---|
| 175 | case SkCubicType::kSerpentine: | 
|---|
| 176 | case SkCubicType::kLoop: | 
|---|
| 177 | case SkCubicType::kLocalCusp: | 
|---|
| 178 | case SkCubicType::kCuspAtInfinity: | 
|---|
| 179 | return false; | 
|---|
| 180 | case SkCubicType::kQuadratic: | 
|---|
| 181 | case SkCubicType::kLineOrPoint: | 
|---|
| 182 | return true; | 
|---|
| 183 | } | 
|---|
| 184 | SK_ABORT( "Invalid SkCubicType"); | 
|---|
| 185 | } | 
|---|
| 186 |  | 
|---|
| 187 | static inline const char* SkCubicTypeName(SkCubicType type) { | 
|---|
| 188 | switch (type) { | 
|---|
| 189 | case SkCubicType::kSerpentine: return "kSerpentine"; | 
|---|
| 190 | case SkCubicType::kLoop: return "kLoop"; | 
|---|
| 191 | case SkCubicType::kLocalCusp: return "kLocalCusp"; | 
|---|
| 192 | case SkCubicType::kCuspAtInfinity: return "kCuspAtInfinity"; | 
|---|
| 193 | case SkCubicType::kQuadratic: return "kQuadratic"; | 
|---|
| 194 | case SkCubicType::kLineOrPoint: return "kLineOrPoint"; | 
|---|
| 195 | } | 
|---|
| 196 | SK_ABORT( "Invalid SkCubicType"); | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | /** Returns the cubic classification. | 
|---|
| 200 |  | 
|---|
| 201 | t[],s[] are set to the two homogeneous parameter values at which points the lines L & M | 
|---|
| 202 | intersect with K, sorted from smallest to largest and oriented so positive values of the | 
|---|
| 203 | implicit are on the "left" side. For a serpentine curve they are the inflection points. For a | 
|---|
| 204 | loop they are the double point. For a local cusp, they are both equal and denote the cusp point. | 
|---|
| 205 | For a cusp at an infinite parameter value, one will be the local inflection point and the other | 
|---|
| 206 | +inf (t,s = 1,0). If the curve is degenerate (i.e. quadratic or linear) they are both set to a | 
|---|
| 207 | parameter value of +inf (t,s = 1,0). | 
|---|
| 208 |  | 
|---|
| 209 | d[] is filled with the cubic inflection function coefficients. See "Resolution Independent | 
|---|
| 210 | Curve Rendering using Programmable Graphics Hardware", 4.2 Curve Categorization: | 
|---|
| 211 |  | 
|---|
| 212 | If the input points contain infinities or NaN, the return values are undefined. | 
|---|
| 213 |  | 
|---|
| 214 | https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf | 
|---|
| 215 | */ | 
|---|
| 216 | SkCubicType SkClassifyCubic(const SkPoint p[4], double t[2] = nullptr, double s[2] = nullptr, | 
|---|
| 217 | double d[4] = nullptr); | 
|---|
| 218 |  | 
|---|
| 219 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 220 |  | 
|---|
| 221 | enum SkRotationDirection { | 
|---|
| 222 | kCW_SkRotationDirection, | 
|---|
| 223 | kCCW_SkRotationDirection | 
|---|
| 224 | }; | 
|---|
| 225 |  | 
|---|
| 226 | struct SkConic { | 
|---|
| 227 | SkConic() {} | 
|---|
| 228 | SkConic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { | 
|---|
| 229 | fPts[0] = p0; | 
|---|
| 230 | fPts[1] = p1; | 
|---|
| 231 | fPts[2] = p2; | 
|---|
| 232 | fW = w; | 
|---|
| 233 | } | 
|---|
| 234 | SkConic(const SkPoint pts[3], SkScalar w) { | 
|---|
| 235 | memcpy(fPts, pts, sizeof(fPts)); | 
|---|
| 236 | fW = w; | 
|---|
| 237 | } | 
|---|
| 238 |  | 
|---|
| 239 | SkPoint  fPts[3]; | 
|---|
| 240 | SkScalar fW; | 
|---|
| 241 |  | 
|---|
| 242 | void set(const SkPoint pts[3], SkScalar w) { | 
|---|
| 243 | memcpy(fPts, pts, 3 * sizeof(SkPoint)); | 
|---|
| 244 | fW = w; | 
|---|
| 245 | } | 
|---|
| 246 |  | 
|---|
| 247 | void set(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, SkScalar w) { | 
|---|
| 248 | fPts[0] = p0; | 
|---|
| 249 | fPts[1] = p1; | 
|---|
| 250 | fPts[2] = p2; | 
|---|
| 251 | fW = w; | 
|---|
| 252 | } | 
|---|
| 253 |  | 
|---|
| 254 | /** | 
|---|
| 255 | *  Given a t-value [0...1] return its position and/or tangent. | 
|---|
| 256 | *  If pos is not null, return its position at the t-value. | 
|---|
| 257 | *  If tangent is not null, return its tangent at the t-value. NOTE the | 
|---|
| 258 | *  tangent value's length is arbitrary, and only its direction should | 
|---|
| 259 | *  be used. | 
|---|
| 260 | */ | 
|---|
| 261 | void evalAt(SkScalar t, SkPoint* pos, SkVector* tangent = nullptr) const; | 
|---|
| 262 | bool SK_WARN_UNUSED_RESULT chopAt(SkScalar t, SkConic dst[2]) const; | 
|---|
| 263 | void chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const; | 
|---|
| 264 | void chop(SkConic dst[2]) const; | 
|---|
| 265 |  | 
|---|
| 266 | SkPoint evalAt(SkScalar t) const; | 
|---|
| 267 | SkVector evalTangentAt(SkScalar t) const; | 
|---|
| 268 |  | 
|---|
| 269 | void computeAsQuadError(SkVector* err) const; | 
|---|
| 270 | bool asQuadTol(SkScalar tol) const; | 
|---|
| 271 |  | 
|---|
| 272 | /** | 
|---|
| 273 | *  return the power-of-2 number of quads needed to approximate this conic | 
|---|
| 274 | *  with a sequence of quads. Will be >= 0. | 
|---|
| 275 | */ | 
|---|
| 276 | int SK_SPI computeQuadPOW2(SkScalar tol) const; | 
|---|
| 277 |  | 
|---|
| 278 | /** | 
|---|
| 279 | *  Chop this conic into N quads, stored continguously in pts[], where | 
|---|
| 280 | *  N = 1 << pow2. The amount of storage needed is (1 + 2 * N) | 
|---|
| 281 | */ | 
|---|
| 282 | int SK_SPI SK_WARN_UNUSED_RESULT chopIntoQuadsPOW2(SkPoint pts[], int pow2) const; | 
|---|
| 283 |  | 
|---|
| 284 | bool findXExtrema(SkScalar* t) const; | 
|---|
| 285 | bool findYExtrema(SkScalar* t) const; | 
|---|
| 286 | bool chopAtXExtrema(SkConic dst[2]) const; | 
|---|
| 287 | bool chopAtYExtrema(SkConic dst[2]) const; | 
|---|
| 288 |  | 
|---|
| 289 | void computeTightBounds(SkRect* bounds) const; | 
|---|
| 290 | void computeFastBounds(SkRect* bounds) const; | 
|---|
| 291 |  | 
|---|
| 292 | /** Find the parameter value where the conic takes on its maximum curvature. | 
|---|
| 293 | * | 
|---|
| 294 | *  @param t   output scalar for max curvature.  Will be unchanged if | 
|---|
| 295 | *             max curvature outside 0..1 range. | 
|---|
| 296 | * | 
|---|
| 297 | *  @return  true if max curvature found inside 0..1 range, false otherwise | 
|---|
| 298 | */ | 
|---|
| 299 | //    bool findMaxCurvature(SkScalar* t) const;  // unimplemented | 
|---|
| 300 |  | 
|---|
| 301 | static SkScalar TransformW(const SkPoint[3], SkScalar w, const SkMatrix&); | 
|---|
| 302 |  | 
|---|
| 303 | enum { | 
|---|
| 304 | kMaxConicsForArc = 5 | 
|---|
| 305 | }; | 
|---|
| 306 | static int BuildUnitArc(const SkVector& start, const SkVector& stop, SkRotationDirection, | 
|---|
| 307 | const SkMatrix*, SkConic conics[kMaxConicsForArc]); | 
|---|
| 308 | }; | 
|---|
| 309 |  | 
|---|
| 310 | // inline helpers are contained in a namespace to avoid external leakage to fragile SkNx members | 
|---|
| 311 | namespace {  // NOLINT(google-build-namespaces) | 
|---|
| 312 |  | 
|---|
| 313 | /** | 
|---|
| 314 | *  use for : eval(t) == A * t^2 + B * t + C | 
|---|
| 315 | */ | 
|---|
| 316 | struct SkQuadCoeff { | 
|---|
| 317 | SkQuadCoeff() {} | 
|---|
| 318 |  | 
|---|
| 319 | SkQuadCoeff(const Sk2s& A, const Sk2s& B, const Sk2s& C) | 
|---|
| 320 | : fA(A) | 
|---|
| 321 | , fB(B) | 
|---|
| 322 | , fC(C) | 
|---|
| 323 | { | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | SkQuadCoeff(const SkPoint src[3]) { | 
|---|
| 327 | fC = from_point(src[0]); | 
|---|
| 328 | Sk2s P1 = from_point(src[1]); | 
|---|
| 329 | Sk2s P2 = from_point(src[2]); | 
|---|
| 330 | fB = times_2(P1 - fC); | 
|---|
| 331 | fA = P2 - times_2(P1) + fC; | 
|---|
| 332 | } | 
|---|
| 333 |  | 
|---|
| 334 | Sk2s eval(SkScalar t) { | 
|---|
| 335 | Sk2s tt(t); | 
|---|
| 336 | return eval(tt); | 
|---|
| 337 | } | 
|---|
| 338 |  | 
|---|
| 339 | Sk2s eval(const Sk2s& tt) { | 
|---|
| 340 | return (fA * tt + fB) * tt + fC; | 
|---|
| 341 | } | 
|---|
| 342 |  | 
|---|
| 343 | Sk2s fA; | 
|---|
| 344 | Sk2s fB; | 
|---|
| 345 | Sk2s fC; | 
|---|
| 346 | }; | 
|---|
| 347 |  | 
|---|
| 348 | struct SkConicCoeff { | 
|---|
| 349 | SkConicCoeff(const SkConic& conic) { | 
|---|
| 350 | Sk2s p0 = from_point(conic.fPts[0]); | 
|---|
| 351 | Sk2s p1 = from_point(conic.fPts[1]); | 
|---|
| 352 | Sk2s p2 = from_point(conic.fPts[2]); | 
|---|
| 353 | Sk2s ww(conic.fW); | 
|---|
| 354 |  | 
|---|
| 355 | Sk2s p1w = p1 * ww; | 
|---|
| 356 | fNumer.fC = p0; | 
|---|
| 357 | fNumer.fA = p2 - times_2(p1w) + p0; | 
|---|
| 358 | fNumer.fB = times_2(p1w - p0); | 
|---|
| 359 |  | 
|---|
| 360 | fDenom.fC = Sk2s(1); | 
|---|
| 361 | fDenom.fB = times_2(ww - fDenom.fC); | 
|---|
| 362 | fDenom.fA = Sk2s(0) - fDenom.fB; | 
|---|
| 363 | } | 
|---|
| 364 |  | 
|---|
| 365 | Sk2s eval(SkScalar t) { | 
|---|
| 366 | Sk2s tt(t); | 
|---|
| 367 | Sk2s numer = fNumer.eval(tt); | 
|---|
| 368 | Sk2s denom = fDenom.eval(tt); | 
|---|
| 369 | return numer / denom; | 
|---|
| 370 | } | 
|---|
| 371 |  | 
|---|
| 372 | SkQuadCoeff fNumer; | 
|---|
| 373 | SkQuadCoeff fDenom; | 
|---|
| 374 | }; | 
|---|
| 375 |  | 
|---|
| 376 | struct SkCubicCoeff { | 
|---|
| 377 | SkCubicCoeff(const SkPoint src[4]) { | 
|---|
| 378 | Sk2s P0 = from_point(src[0]); | 
|---|
| 379 | Sk2s P1 = from_point(src[1]); | 
|---|
| 380 | Sk2s P2 = from_point(src[2]); | 
|---|
| 381 | Sk2s P3 = from_point(src[3]); | 
|---|
| 382 | Sk2s three(3); | 
|---|
| 383 | fA = P3 + three * (P1 - P2) - P0; | 
|---|
| 384 | fB = three * (P2 - times_2(P1) + P0); | 
|---|
| 385 | fC = three * (P1 - P0); | 
|---|
| 386 | fD = P0; | 
|---|
| 387 | } | 
|---|
| 388 |  | 
|---|
| 389 | Sk2s eval(SkScalar t) { | 
|---|
| 390 | Sk2s tt(t); | 
|---|
| 391 | return eval(tt); | 
|---|
| 392 | } | 
|---|
| 393 |  | 
|---|
| 394 | Sk2s eval(const Sk2s& t) { | 
|---|
| 395 | return ((fA * t + fB) * t + fC) * t + fD; | 
|---|
| 396 | } | 
|---|
| 397 |  | 
|---|
| 398 | Sk2s fA; | 
|---|
| 399 | Sk2s fB; | 
|---|
| 400 | Sk2s fC; | 
|---|
| 401 | Sk2s fD; | 
|---|
| 402 | }; | 
|---|
| 403 |  | 
|---|
| 404 | }  // namespace | 
|---|
| 405 |  | 
|---|
| 406 | #include "include/private/SkTemplates.h" | 
|---|
| 407 |  | 
|---|
| 408 | /** | 
|---|
| 409 | *  Help class to allocate storage for approximating a conic with N quads. | 
|---|
| 410 | */ | 
|---|
| 411 | class SkAutoConicToQuads { | 
|---|
| 412 | public: | 
|---|
| 413 | SkAutoConicToQuads() : fQuadCount(0) {} | 
|---|
| 414 |  | 
|---|
| 415 | /** | 
|---|
| 416 | *  Given a conic and a tolerance, return the array of points for the | 
|---|
| 417 | *  approximating quad(s). Call countQuads() to know the number of quads | 
|---|
| 418 | *  represented in these points. | 
|---|
| 419 | * | 
|---|
| 420 | *  The quads are allocated to share end-points. e.g. if there are 4 quads, | 
|---|
| 421 | *  there will be 9 points allocated as follows | 
|---|
| 422 | *      quad[0] == pts[0..2] | 
|---|
| 423 | *      quad[1] == pts[2..4] | 
|---|
| 424 | *      quad[2] == pts[4..6] | 
|---|
| 425 | *      quad[3] == pts[6..8] | 
|---|
| 426 | */ | 
|---|
| 427 | const SkPoint* computeQuads(const SkConic& conic, SkScalar tol) { | 
|---|
| 428 | int pow2 = conic.computeQuadPOW2(tol); | 
|---|
| 429 | fQuadCount = 1 << pow2; | 
|---|
| 430 | SkPoint* pts = fStorage.reset(1 + 2 * fQuadCount); | 
|---|
| 431 | fQuadCount = conic.chopIntoQuadsPOW2(pts, pow2); | 
|---|
| 432 | return pts; | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 | const SkPoint* computeQuads(const SkPoint pts[3], SkScalar weight, | 
|---|
| 436 | SkScalar tol) { | 
|---|
| 437 | SkConic conic; | 
|---|
| 438 | conic.set(pts, weight); | 
|---|
| 439 | return computeQuads(conic, tol); | 
|---|
| 440 | } | 
|---|
| 441 |  | 
|---|
| 442 | int countQuads() const { return fQuadCount; } | 
|---|
| 443 |  | 
|---|
| 444 | private: | 
|---|
| 445 | enum { | 
|---|
| 446 | kQuadCount = 8, // should handle most conics | 
|---|
| 447 | kPointCount = 1 + 2 * kQuadCount, | 
|---|
| 448 | }; | 
|---|
| 449 | SkAutoSTMalloc<kPointCount, SkPoint> fStorage; | 
|---|
| 450 | int fQuadCount; // #quads for current usage | 
|---|
| 451 | }; | 
|---|
| 452 |  | 
|---|
| 453 | #endif | 
|---|
| 454 |  | 
|---|