| 1 | /* | 
|---|
| 2 | * Copyright 2009 The Android Open Source Project | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "src/core/SkGeometry.h" | 
|---|
| 9 | #include "src/core/SkQuadClipper.h" | 
|---|
| 10 |  | 
|---|
| 11 | #include <utility> | 
|---|
| 12 |  | 
|---|
| 13 | SkQuadClipper::SkQuadClipper() { | 
|---|
| 14 | fClip.setEmpty(); | 
|---|
| 15 | } | 
|---|
| 16 |  | 
|---|
| 17 | void SkQuadClipper::setClip(const SkIRect& clip) { | 
|---|
| 18 | // conver to scalars, since that's where we'll see the points | 
|---|
| 19 | fClip.set(clip); | 
|---|
| 20 | } | 
|---|
| 21 |  | 
|---|
| 22 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 23 |  | 
|---|
| 24 | static bool chopMonoQuadAt(SkScalar c0, SkScalar c1, SkScalar c2, | 
|---|
| 25 | SkScalar target, SkScalar* t) { | 
|---|
| 26 | /* Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 | 
|---|
| 27 | *  We solve for t, using quadratic equation, hence we have to rearrange | 
|---|
| 28 | * our cooefficents to look like At^2 + Bt + C | 
|---|
| 29 | */ | 
|---|
| 30 | SkScalar A = c0 - c1 - c1 + c2; | 
|---|
| 31 | SkScalar B = 2*(c1 - c0); | 
|---|
| 32 | SkScalar C = c0 - target; | 
|---|
| 33 |  | 
|---|
| 34 | SkScalar roots[2];  // we only expect one, but make room for 2 for safety | 
|---|
| 35 | int count = SkFindUnitQuadRoots(A, B, C, roots); | 
|---|
| 36 | if (count) { | 
|---|
| 37 | *t = roots[0]; | 
|---|
| 38 | return true; | 
|---|
| 39 | } | 
|---|
| 40 | return false; | 
|---|
| 41 | } | 
|---|
| 42 |  | 
|---|
| 43 | static bool chopMonoQuadAtY(SkPoint pts[3], SkScalar y, SkScalar* t) { | 
|---|
| 44 | return chopMonoQuadAt(pts[0].fY, pts[1].fY, pts[2].fY, y, t); | 
|---|
| 45 | } | 
|---|
| 46 |  | 
|---|
| 47 | /////////////////////////////////////////////////////////////////////////////// | 
|---|
| 48 |  | 
|---|
| 49 | /*  If we somehow returned the fact that we had to flip the pts in Y, we could | 
|---|
| 50 | communicate that to setQuadratic, and then avoid having to flip it back | 
|---|
| 51 | here (only to have setQuadratic do the flip again) | 
|---|
| 52 | */ | 
|---|
| 53 | bool SkQuadClipper::clipQuad(const SkPoint srcPts[3], SkPoint dst[3]) { | 
|---|
| 54 | bool reverse; | 
|---|
| 55 |  | 
|---|
| 56 | // we need the data to be monotonically increasing in Y | 
|---|
| 57 | if (srcPts[0].fY > srcPts[2].fY) { | 
|---|
| 58 | dst[0] = srcPts[2]; | 
|---|
| 59 | dst[1] = srcPts[1]; | 
|---|
| 60 | dst[2] = srcPts[0]; | 
|---|
| 61 | reverse = true; | 
|---|
| 62 | } else { | 
|---|
| 63 | memcpy(dst, srcPts, 3 * sizeof(SkPoint)); | 
|---|
| 64 | reverse = false; | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | // are we completely above or below | 
|---|
| 68 | const SkScalar ctop = fClip.fTop; | 
|---|
| 69 | const SkScalar cbot = fClip.fBottom; | 
|---|
| 70 | if (dst[2].fY <= ctop || dst[0].fY >= cbot) { | 
|---|
| 71 | return false; | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | SkScalar t; | 
|---|
| 75 | SkPoint tmp[5]; // for SkChopQuadAt | 
|---|
| 76 |  | 
|---|
| 77 | // are we partially above | 
|---|
| 78 | if (dst[0].fY < ctop) { | 
|---|
| 79 | if (chopMonoQuadAtY(dst, ctop, &t)) { | 
|---|
| 80 | // take the 2nd chopped quad | 
|---|
| 81 | SkChopQuadAt(dst, tmp, t); | 
|---|
| 82 | dst[0] = tmp[2]; | 
|---|
| 83 | dst[1] = tmp[3]; | 
|---|
| 84 | } else { | 
|---|
| 85 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
|---|
| 86 | // so we just clamp against the top | 
|---|
| 87 | for (int i = 0; i < 3; i++) { | 
|---|
| 88 | if (dst[i].fY < ctop) { | 
|---|
| 89 | dst[i].fY = ctop; | 
|---|
| 90 | } | 
|---|
| 91 | } | 
|---|
| 92 | } | 
|---|
| 93 | } | 
|---|
| 94 |  | 
|---|
| 95 | // are we partially below | 
|---|
| 96 | if (dst[2].fY > cbot) { | 
|---|
| 97 | if (chopMonoQuadAtY(dst, cbot, &t)) { | 
|---|
| 98 | SkChopQuadAt(dst, tmp, t); | 
|---|
| 99 | dst[1] = tmp[1]; | 
|---|
| 100 | dst[2] = tmp[2]; | 
|---|
| 101 | } else { | 
|---|
| 102 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics | 
|---|
| 103 | // so we just clamp against the bottom | 
|---|
| 104 | for (int i = 0; i < 3; i++) { | 
|---|
| 105 | if (dst[i].fY > cbot) { | 
|---|
| 106 | dst[i].fY = cbot; | 
|---|
| 107 | } | 
|---|
| 108 | } | 
|---|
| 109 | } | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | if (reverse) { | 
|---|
| 113 | using std::swap; | 
|---|
| 114 | swap(dst[0], dst[2]); | 
|---|
| 115 | } | 
|---|
| 116 | return true; | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|