| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkMatrix.h" |
| 9 | #include "include/private/SkMalloc.h" |
| 10 | #include "src/core/SkBuffer.h" |
| 11 | #include "src/core/SkRRectPriv.h" |
| 12 | #include "src/core/SkScaleToSides.h" |
| 13 | |
| 14 | #include <cmath> |
| 15 | #include <utility> |
| 16 | |
| 17 | /////////////////////////////////////////////////////////////////////////////// |
| 18 | |
| 19 | void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) { |
| 20 | if (!this->initializeRect(rect)) { |
| 21 | return; |
| 22 | } |
| 23 | |
| 24 | if (!SkScalarsAreFinite(xRad, yRad)) { |
| 25 | xRad = yRad = 0; // devolve into a simple rect |
| 26 | } |
| 27 | |
| 28 | if (fRect.width() < xRad+xRad || fRect.height() < yRad+yRad) { |
| 29 | // At most one of these two divides will be by zero, and neither numerator is zero. |
| 30 | SkScalar scale = std::min(sk_ieee_float_divide(fRect. width(), xRad + xRad), |
| 31 | sk_ieee_float_divide(fRect.height(), yRad + yRad)); |
| 32 | SkASSERT(scale < SK_Scalar1); |
| 33 | xRad *= scale; |
| 34 | yRad *= scale; |
| 35 | } |
| 36 | |
| 37 | if (xRad <= 0 || yRad <= 0) { |
| 38 | // all corners are square in this case |
| 39 | this->setRect(rect); |
| 40 | return; |
| 41 | } |
| 42 | |
| 43 | for (int i = 0; i < 4; ++i) { |
| 44 | fRadii[i].set(xRad, yRad); |
| 45 | } |
| 46 | fType = kSimple_Type; |
| 47 | if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) { |
| 48 | fType = kOval_Type; |
| 49 | // TODO: assert that all the x&y radii are already W/2 & H/2 |
| 50 | } |
| 51 | |
| 52 | SkASSERT(this->isValid()); |
| 53 | } |
| 54 | |
| 55 | void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad, |
| 56 | SkScalar rightRad, SkScalar bottomRad) { |
| 57 | if (!this->initializeRect(rect)) { |
| 58 | return; |
| 59 | } |
| 60 | |
| 61 | const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad }; |
| 62 | if (!SkScalarsAreFinite(array, 4)) { |
| 63 | this->setRect(rect); // devolve into a simple rect |
| 64 | return; |
| 65 | } |
| 66 | |
| 67 | leftRad = std::max(leftRad, 0.0f); |
| 68 | topRad = std::max(topRad, 0.0f); |
| 69 | rightRad = std::max(rightRad, 0.0f); |
| 70 | bottomRad = std::max(bottomRad, 0.0f); |
| 71 | |
| 72 | SkScalar scale = SK_Scalar1; |
| 73 | if (leftRad + rightRad > fRect.width()) { |
| 74 | scale = fRect.width() / (leftRad + rightRad); |
| 75 | } |
| 76 | if (topRad + bottomRad > fRect.height()) { |
| 77 | scale = std::min(scale, fRect.height() / (topRad + bottomRad)); |
| 78 | } |
| 79 | |
| 80 | if (scale < SK_Scalar1) { |
| 81 | leftRad *= scale; |
| 82 | topRad *= scale; |
| 83 | rightRad *= scale; |
| 84 | bottomRad *= scale; |
| 85 | } |
| 86 | |
| 87 | if (leftRad == rightRad && topRad == bottomRad) { |
| 88 | if (leftRad >= SkScalarHalf(fRect.width()) && topRad >= SkScalarHalf(fRect.height())) { |
| 89 | fType = kOval_Type; |
| 90 | } else if (0 == leftRad || 0 == topRad) { |
| 91 | // If the left and (by equality check above) right radii are zero then it is a rect. |
| 92 | // Same goes for top/bottom. |
| 93 | fType = kRect_Type; |
| 94 | leftRad = 0; |
| 95 | topRad = 0; |
| 96 | rightRad = 0; |
| 97 | bottomRad = 0; |
| 98 | } else { |
| 99 | fType = kSimple_Type; |
| 100 | } |
| 101 | } else { |
| 102 | fType = kNinePatch_Type; |
| 103 | } |
| 104 | |
| 105 | fRadii[kUpperLeft_Corner].set(leftRad, topRad); |
| 106 | fRadii[kUpperRight_Corner].set(rightRad, topRad); |
| 107 | fRadii[kLowerRight_Corner].set(rightRad, bottomRad); |
| 108 | fRadii[kLowerLeft_Corner].set(leftRad, bottomRad); |
| 109 | |
| 110 | SkASSERT(this->isValid()); |
| 111 | } |
| 112 | |
| 113 | // These parameters intentionally double. Apropos crbug.com/463920, if one of the |
| 114 | // radii is huge while the other is small, single precision math can completely |
| 115 | // miss the fact that a scale is required. |
| 116 | static double compute_min_scale(double rad1, double rad2, double limit, double curMin) { |
| 117 | if ((rad1 + rad2) > limit) { |
| 118 | return std::min(curMin, limit / (rad1 + rad2)); |
| 119 | } |
| 120 | return curMin; |
| 121 | } |
| 122 | |
| 123 | static bool clamp_to_zero(SkVector radii[4]) { |
| 124 | bool = true; |
| 125 | |
| 126 | // Clamp negative radii to zero |
| 127 | for (int i = 0; i < 4; ++i) { |
| 128 | if (radii[i].fX <= 0 || radii[i].fY <= 0) { |
| 129 | // In this case we are being a little fast & loose. Since one of |
| 130 | // the radii is 0 the corner is square. However, the other radii |
| 131 | // could still be non-zero and play in the global scale factor |
| 132 | // computation. |
| 133 | radii[i].fX = 0; |
| 134 | radii[i].fY = 0; |
| 135 | } else { |
| 136 | allCornersSquare = false; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | return allCornersSquare; |
| 141 | } |
| 142 | |
| 143 | void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) { |
| 144 | if (!this->initializeRect(rect)) { |
| 145 | return; |
| 146 | } |
| 147 | |
| 148 | if (!SkScalarsAreFinite(&radii[0].fX, 8)) { |
| 149 | this->setRect(rect); // devolve into a simple rect |
| 150 | return; |
| 151 | } |
| 152 | |
| 153 | memcpy(fRadii, radii, sizeof(fRadii)); |
| 154 | |
| 155 | if (clamp_to_zero(fRadii)) { |
| 156 | this->setRect(rect); |
| 157 | return; |
| 158 | } |
| 159 | |
| 160 | this->scaleRadii(); |
| 161 | |
| 162 | if (!this->isValid()) { |
| 163 | this->setRect(rect); |
| 164 | return; |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | bool SkRRect::initializeRect(const SkRect& rect) { |
| 169 | // Check this before sorting because sorting can hide nans. |
| 170 | if (!rect.isFinite()) { |
| 171 | *this = SkRRect(); |
| 172 | return false; |
| 173 | } |
| 174 | fRect = rect.makeSorted(); |
| 175 | if (fRect.isEmpty()) { |
| 176 | memset(fRadii, 0, sizeof(fRadii)); |
| 177 | fType = kEmpty_Type; |
| 178 | return false; |
| 179 | } |
| 180 | return true; |
| 181 | } |
| 182 | |
| 183 | // If we can't distinguish one of the radii relative to the other, force it to zero so it |
| 184 | // doesn't confuse us later. See crbug.com/850350 |
| 185 | // |
| 186 | static void flush_to_zero(SkScalar& a, SkScalar& b) { |
| 187 | SkASSERT(a >= 0); |
| 188 | SkASSERT(b >= 0); |
| 189 | if (a + b == a) { |
| 190 | b = 0; |
| 191 | } else if (a + b == b) { |
| 192 | a = 0; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | bool SkRRect::scaleRadii() { |
| 197 | // Proportionally scale down all radii to fit. Find the minimum ratio |
| 198 | // of a side and the radii on that side (for all four sides) and use |
| 199 | // that to scale down _all_ the radii. This algorithm is from the |
| 200 | // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping |
| 201 | // Curves: |
| 202 | // "Let f = min(Li/Si), where i is one of { top, right, bottom, left }, |
| 203 | // Si is the sum of the two corresponding radii of the corners on side i, |
| 204 | // and Ltop = Lbottom = the width of the box, |
| 205 | // and Lleft = Lright = the height of the box. |
| 206 | // If f < 1, then all corner radii are reduced by multiplying them by f." |
| 207 | double scale = 1.0; |
| 208 | |
| 209 | // The sides of the rectangle may be larger than a float. |
| 210 | double width = (double)fRect.fRight - (double)fRect.fLeft; |
| 211 | double height = (double)fRect.fBottom - (double)fRect.fTop; |
| 212 | scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale); |
| 213 | scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale); |
| 214 | scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale); |
| 215 | scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale); |
| 216 | |
| 217 | flush_to_zero(fRadii[0].fX, fRadii[1].fX); |
| 218 | flush_to_zero(fRadii[1].fY, fRadii[2].fY); |
| 219 | flush_to_zero(fRadii[2].fX, fRadii[3].fX); |
| 220 | flush_to_zero(fRadii[3].fY, fRadii[0].fY); |
| 221 | |
| 222 | if (scale < 1.0) { |
| 223 | SkScaleToSides::AdjustRadii(width, scale, &fRadii[0].fX, &fRadii[1].fX); |
| 224 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[1].fY, &fRadii[2].fY); |
| 225 | SkScaleToSides::AdjustRadii(width, scale, &fRadii[2].fX, &fRadii[3].fX); |
| 226 | SkScaleToSides::AdjustRadii(height, scale, &fRadii[3].fY, &fRadii[0].fY); |
| 227 | } |
| 228 | |
| 229 | // adjust radii may set x or y to zero; set companion to zero as well |
| 230 | clamp_to_zero(fRadii); |
| 231 | |
| 232 | // May be simple, oval, or complex, or become a rect/empty if the radii adjustment made them 0 |
| 233 | this->computeType(); |
| 234 | |
| 235 | // TODO: Why can't we assert this here? |
| 236 | //SkASSERT(this->isValid()); |
| 237 | |
| 238 | return scale < 1.0; |
| 239 | } |
| 240 | |
| 241 | // This method determines if a point known to be inside the RRect's bounds is |
| 242 | // inside all the corners. |
| 243 | bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const { |
| 244 | SkPoint canonicalPt; // (x,y) translated to one of the quadrants |
| 245 | int index; |
| 246 | |
| 247 | if (kOval_Type == this->type()) { |
| 248 | canonicalPt.set(x - fRect.centerX(), y - fRect.centerY()); |
| 249 | index = kUpperLeft_Corner; // any corner will do in this case |
| 250 | } else { |
| 251 | if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX && |
| 252 | y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) { |
| 253 | // UL corner |
| 254 | index = kUpperLeft_Corner; |
| 255 | canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX), |
| 256 | y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY)); |
| 257 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0); |
| 258 | } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX && |
| 259 | y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) { |
| 260 | // LL corner |
| 261 | index = kLowerLeft_Corner; |
| 262 | canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX), |
| 263 | y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY)); |
| 264 | SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0); |
| 265 | } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX && |
| 266 | y < fRect.fTop + fRadii[kUpperRight_Corner].fY) { |
| 267 | // UR corner |
| 268 | index = kUpperRight_Corner; |
| 269 | canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX), |
| 270 | y - (fRect.fTop + fRadii[kUpperRight_Corner].fY)); |
| 271 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0); |
| 272 | } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX && |
| 273 | y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) { |
| 274 | // LR corner |
| 275 | index = kLowerRight_Corner; |
| 276 | canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX), |
| 277 | y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY)); |
| 278 | SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0); |
| 279 | } else { |
| 280 | // not in any of the corners |
| 281 | return true; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | // A point is in an ellipse (in standard position) if: |
| 286 | // x^2 y^2 |
| 287 | // ----- + ----- <= 1 |
| 288 | // a^2 b^2 |
| 289 | // or : |
| 290 | // b^2*x^2 + a^2*y^2 <= (ab)^2 |
| 291 | SkScalar dist = SkScalarSquare(canonicalPt.fX) * SkScalarSquare(fRadii[index].fY) + |
| 292 | SkScalarSquare(canonicalPt.fY) * SkScalarSquare(fRadii[index].fX); |
| 293 | return dist <= SkScalarSquare(fRadii[index].fX * fRadii[index].fY); |
| 294 | } |
| 295 | |
| 296 | bool SkRRectPriv::AllCornersCircular(const SkRRect& rr, SkScalar tolerance) { |
| 297 | return SkScalarNearlyEqual(rr.fRadii[0].fX, rr.fRadii[0].fY, tolerance) && |
| 298 | SkScalarNearlyEqual(rr.fRadii[1].fX, rr.fRadii[1].fY, tolerance) && |
| 299 | SkScalarNearlyEqual(rr.fRadii[2].fX, rr.fRadii[2].fY, tolerance) && |
| 300 | SkScalarNearlyEqual(rr.fRadii[3].fX, rr.fRadii[3].fY, tolerance); |
| 301 | } |
| 302 | |
| 303 | bool SkRRect::contains(const SkRect& rect) const { |
| 304 | if (!this->getBounds().contains(rect)) { |
| 305 | // If 'rect' isn't contained by the RR's bounds then the |
| 306 | // RR definitely doesn't contain it |
| 307 | return false; |
| 308 | } |
| 309 | |
| 310 | if (this->isRect()) { |
| 311 | // the prior test was sufficient |
| 312 | return true; |
| 313 | } |
| 314 | |
| 315 | // At this point we know all four corners of 'rect' are inside the |
| 316 | // bounds of of this RR. Check to make sure all the corners are inside |
| 317 | // all the curves |
| 318 | return this->checkCornerContainment(rect.fLeft, rect.fTop) && |
| 319 | this->checkCornerContainment(rect.fRight, rect.fTop) && |
| 320 | this->checkCornerContainment(rect.fRight, rect.fBottom) && |
| 321 | this->checkCornerContainment(rect.fLeft, rect.fBottom); |
| 322 | } |
| 323 | |
| 324 | static bool radii_are_nine_patch(const SkVector radii[4]) { |
| 325 | return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX && |
| 326 | radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY && |
| 327 | radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX && |
| 328 | radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY; |
| 329 | } |
| 330 | |
| 331 | // There is a simplified version of this method in setRectXY |
| 332 | void SkRRect::computeType() { |
| 333 | if (fRect.isEmpty()) { |
| 334 | SkASSERT(fRect.isSorted()); |
| 335 | for (size_t i = 0; i < SK_ARRAY_COUNT(fRadii); ++i) { |
| 336 | SkASSERT((fRadii[i] == SkVector{0, 0})); |
| 337 | } |
| 338 | fType = kEmpty_Type; |
| 339 | SkASSERT(this->isValid()); |
| 340 | return; |
| 341 | } |
| 342 | |
| 343 | bool allRadiiEqual = true; // are all x radii equal and all y radii? |
| 344 | bool = 0 == fRadii[0].fX || 0 == fRadii[0].fY; |
| 345 | |
| 346 | for (int i = 1; i < 4; ++i) { |
| 347 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| 348 | // if either radius is zero the corner is square so both have to |
| 349 | // be non-zero to have a rounded corner |
| 350 | allCornersSquare = false; |
| 351 | } |
| 352 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| 353 | allRadiiEqual = false; |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | if (allCornersSquare) { |
| 358 | fType = kRect_Type; |
| 359 | SkASSERT(this->isValid()); |
| 360 | return; |
| 361 | } |
| 362 | |
| 363 | if (allRadiiEqual) { |
| 364 | if (fRadii[0].fX >= SkScalarHalf(fRect.width()) && |
| 365 | fRadii[0].fY >= SkScalarHalf(fRect.height())) { |
| 366 | fType = kOval_Type; |
| 367 | } else { |
| 368 | fType = kSimple_Type; |
| 369 | } |
| 370 | SkASSERT(this->isValid()); |
| 371 | return; |
| 372 | } |
| 373 | |
| 374 | if (radii_are_nine_patch(fRadii)) { |
| 375 | fType = kNinePatch_Type; |
| 376 | } else { |
| 377 | fType = kComplex_Type; |
| 378 | } |
| 379 | |
| 380 | if (!this->isValid()) { |
| 381 | this->setRect(this->rect()); |
| 382 | SkASSERT(this->isValid()); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const { |
| 387 | if (nullptr == dst) { |
| 388 | return false; |
| 389 | } |
| 390 | |
| 391 | // Assert that the caller is not trying to do this in place, which |
| 392 | // would violate const-ness. Do not return false though, so that |
| 393 | // if they know what they're doing and want to violate it they can. |
| 394 | SkASSERT(dst != this); |
| 395 | |
| 396 | if (matrix.isIdentity()) { |
| 397 | *dst = *this; |
| 398 | return true; |
| 399 | } |
| 400 | |
| 401 | if (!matrix.preservesAxisAlignment()) { |
| 402 | return false; |
| 403 | } |
| 404 | |
| 405 | SkRect newRect; |
| 406 | if (!matrix.mapRect(&newRect, fRect)) { |
| 407 | return false; |
| 408 | } |
| 409 | |
| 410 | // The matrix may have scaled us to zero (or due to float madness, we now have collapsed |
| 411 | // some dimension of the rect, so we need to check for that. Note that matrix must be |
| 412 | // scale and translate and mapRect() produces a sorted rect. So an empty rect indicates |
| 413 | // loss of precision. |
| 414 | if (!newRect.isFinite() || newRect.isEmpty()) { |
| 415 | return false; |
| 416 | } |
| 417 | |
| 418 | // At this point, this is guaranteed to succeed, so we can modify dst. |
| 419 | dst->fRect = newRect; |
| 420 | |
| 421 | // Since the only transforms that were allowed are axis aligned, the type |
| 422 | // remains unchanged. |
| 423 | dst->fType = fType; |
| 424 | |
| 425 | if (kRect_Type == fType) { |
| 426 | SkASSERT(dst->isValid()); |
| 427 | return true; |
| 428 | } |
| 429 | if (kOval_Type == fType) { |
| 430 | for (int i = 0; i < 4; ++i) { |
| 431 | dst->fRadii[i].fX = SkScalarHalf(newRect.width()); |
| 432 | dst->fRadii[i].fY = SkScalarHalf(newRect.height()); |
| 433 | } |
| 434 | SkASSERT(dst->isValid()); |
| 435 | return true; |
| 436 | } |
| 437 | |
| 438 | // Now scale each corner |
| 439 | SkScalar xScale = matrix.getScaleX(); |
| 440 | SkScalar yScale = matrix.getScaleY(); |
| 441 | |
| 442 | // There is a rotation of 90 (Clockwise 90) or 270 (Counter clockwise 90). |
| 443 | // 180 degrees rotations are simply flipX with a flipY and would come under |
| 444 | // a scale transform. |
| 445 | if (!matrix.isScaleTranslate()) { |
| 446 | const bool isClockwise = matrix.getSkewX() < 0; |
| 447 | |
| 448 | // The matrix location for scale changes if there is a rotation. |
| 449 | xScale = matrix.getSkewY() * (isClockwise ? 1 : -1); |
| 450 | yScale = matrix.getSkewX() * (isClockwise ? -1 : 1); |
| 451 | |
| 452 | const int dir = isClockwise ? 3 : 1; |
| 453 | for (int i = 0; i < 4; ++i) { |
| 454 | const int src = (i + dir) >= 4 ? (i + dir) % 4 : (i + dir); |
| 455 | // Swap X and Y axis for the radii. |
| 456 | dst->fRadii[i].fX = fRadii[src].fY; |
| 457 | dst->fRadii[i].fY = fRadii[src].fX; |
| 458 | } |
| 459 | } else { |
| 460 | for (int i = 0; i < 4; ++i) { |
| 461 | dst->fRadii[i].fX = fRadii[i].fX; |
| 462 | dst->fRadii[i].fY = fRadii[i].fY; |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | const bool flipX = xScale < 0; |
| 467 | if (flipX) { |
| 468 | xScale = -xScale; |
| 469 | } |
| 470 | |
| 471 | const bool flipY = yScale < 0; |
| 472 | if (flipY) { |
| 473 | yScale = -yScale; |
| 474 | } |
| 475 | |
| 476 | // Scale the radii without respecting the flip. |
| 477 | for (int i = 0; i < 4; ++i) { |
| 478 | dst->fRadii[i].fX *= xScale; |
| 479 | dst->fRadii[i].fY *= yScale; |
| 480 | } |
| 481 | |
| 482 | // Now swap as necessary. |
| 483 | using std::swap; |
| 484 | if (flipX) { |
| 485 | if (flipY) { |
| 486 | // Swap with opposite corners |
| 487 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]); |
| 488 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| 489 | } else { |
| 490 | // Only swap in x |
| 491 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]); |
| 492 | swap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]); |
| 493 | } |
| 494 | } else if (flipY) { |
| 495 | // Only swap in y |
| 496 | swap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]); |
| 497 | swap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]); |
| 498 | } |
| 499 | |
| 500 | if (!AreRectAndRadiiValid(dst->fRect, dst->fRadii)) { |
| 501 | return false; |
| 502 | } |
| 503 | |
| 504 | dst->scaleRadii(); |
| 505 | dst->isValid(); // TODO: is this meant to be SkASSERT(dst->isValid())? |
| 506 | |
| 507 | return true; |
| 508 | } |
| 509 | |
| 510 | /////////////////////////////////////////////////////////////////////////////// |
| 511 | |
| 512 | void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const { |
| 513 | SkRect r = fRect.makeInset(dx, dy); |
| 514 | bool degenerate = false; |
| 515 | if (r.fRight <= r.fLeft) { |
| 516 | degenerate = true; |
| 517 | r.fLeft = r.fRight = SkScalarAve(r.fLeft, r.fRight); |
| 518 | } |
| 519 | if (r.fBottom <= r.fTop) { |
| 520 | degenerate = true; |
| 521 | r.fTop = r.fBottom = SkScalarAve(r.fTop, r.fBottom); |
| 522 | } |
| 523 | if (degenerate) { |
| 524 | dst->fRect = r; |
| 525 | memset(dst->fRadii, 0, sizeof(dst->fRadii)); |
| 526 | dst->fType = kEmpty_Type; |
| 527 | return; |
| 528 | } |
| 529 | if (!r.isFinite()) { |
| 530 | *dst = SkRRect(); |
| 531 | return; |
| 532 | } |
| 533 | |
| 534 | SkVector radii[4]; |
| 535 | memcpy(radii, fRadii, sizeof(radii)); |
| 536 | for (int i = 0; i < 4; ++i) { |
| 537 | if (radii[i].fX) { |
| 538 | radii[i].fX -= dx; |
| 539 | } |
| 540 | if (radii[i].fY) { |
| 541 | radii[i].fY -= dy; |
| 542 | } |
| 543 | } |
| 544 | dst->setRectRadii(r, radii); |
| 545 | } |
| 546 | |
| 547 | /////////////////////////////////////////////////////////////////////////////// |
| 548 | |
| 549 | size_t SkRRect::writeToMemory(void* buffer) const { |
| 550 | // Serialize only the rect and corners, but not the derived type tag. |
| 551 | memcpy(buffer, this, kSizeInMemory); |
| 552 | return kSizeInMemory; |
| 553 | } |
| 554 | |
| 555 | void SkRRectPriv::WriteToBuffer(const SkRRect& rr, SkWBuffer* buffer) { |
| 556 | // Serialize only the rect and corners, but not the derived type tag. |
| 557 | buffer->write(&rr, SkRRect::kSizeInMemory); |
| 558 | } |
| 559 | |
| 560 | size_t SkRRect::readFromMemory(const void* buffer, size_t length) { |
| 561 | if (length < kSizeInMemory) { |
| 562 | return 0; |
| 563 | } |
| 564 | |
| 565 | // The extra (void*) tells GCC not to worry that kSizeInMemory < sizeof(SkRRect). |
| 566 | |
| 567 | SkRRect raw; |
| 568 | memcpy((void*)&raw, buffer, kSizeInMemory); |
| 569 | this->setRectRadii(raw.fRect, raw.fRadii); |
| 570 | return kSizeInMemory; |
| 571 | } |
| 572 | |
| 573 | bool SkRRectPriv::ReadFromBuffer(SkRBuffer* buffer, SkRRect* rr) { |
| 574 | if (buffer->available() < SkRRect::kSizeInMemory) { |
| 575 | return false; |
| 576 | } |
| 577 | SkRRect storage; |
| 578 | return buffer->read(&storage, SkRRect::kSizeInMemory) && |
| 579 | (rr->readFromMemory(&storage, SkRRect::kSizeInMemory) == SkRRect::kSizeInMemory); |
| 580 | } |
| 581 | |
| 582 | #include "include/core/SkString.h" |
| 583 | #include "src/core/SkStringUtils.h" |
| 584 | |
| 585 | void SkRRect::dump(bool asHex) const { |
| 586 | SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType; |
| 587 | |
| 588 | fRect.dump(asHex); |
| 589 | SkString line("const SkPoint corners[] = {\n" ); |
| 590 | for (int i = 0; i < 4; ++i) { |
| 591 | SkString strX, strY; |
| 592 | SkAppendScalar(&strX, fRadii[i].x(), asType); |
| 593 | SkAppendScalar(&strY, fRadii[i].y(), asType); |
| 594 | line.appendf(" { %s, %s }," , strX.c_str(), strY.c_str()); |
| 595 | if (asHex) { |
| 596 | line.appendf(" /* %f %f */" , fRadii[i].x(), fRadii[i].y()); |
| 597 | } |
| 598 | line.append("\n" ); |
| 599 | } |
| 600 | line.append("};" ); |
| 601 | SkDebugf("%s\n" , line.c_str()); |
| 602 | } |
| 603 | |
| 604 | /////////////////////////////////////////////////////////////////////////////// |
| 605 | |
| 606 | /** |
| 607 | * We need all combinations of predicates to be true to have a "safe" radius value. |
| 608 | */ |
| 609 | static bool are_radius_check_predicates_valid(SkScalar rad, SkScalar min, SkScalar max) { |
| 610 | return (min <= max) && (rad <= max - min) && (min + rad <= max) && (max - rad >= min) && |
| 611 | rad >= 0; |
| 612 | } |
| 613 | |
| 614 | bool SkRRect::isValid() const { |
| 615 | if (!AreRectAndRadiiValid(fRect, fRadii)) { |
| 616 | return false; |
| 617 | } |
| 618 | |
| 619 | bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY); |
| 620 | bool = (0 == fRadii[0].fX || 0 == fRadii[0].fY); |
| 621 | bool allRadiiSame = true; |
| 622 | |
| 623 | for (int i = 1; i < 4; ++i) { |
| 624 | if (0 != fRadii[i].fX || 0 != fRadii[i].fY) { |
| 625 | allRadiiZero = false; |
| 626 | } |
| 627 | |
| 628 | if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) { |
| 629 | allRadiiSame = false; |
| 630 | } |
| 631 | |
| 632 | if (0 != fRadii[i].fX && 0 != fRadii[i].fY) { |
| 633 | allCornersSquare = false; |
| 634 | } |
| 635 | } |
| 636 | bool patchesOfNine = radii_are_nine_patch(fRadii); |
| 637 | |
| 638 | if (fType < 0 || fType > kLastType) { |
| 639 | return false; |
| 640 | } |
| 641 | |
| 642 | switch (fType) { |
| 643 | case kEmpty_Type: |
| 644 | if (!fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| 645 | return false; |
| 646 | } |
| 647 | break; |
| 648 | case kRect_Type: |
| 649 | if (fRect.isEmpty() || !allRadiiZero || !allRadiiSame || !allCornersSquare) { |
| 650 | return false; |
| 651 | } |
| 652 | break; |
| 653 | case kOval_Type: |
| 654 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| 655 | return false; |
| 656 | } |
| 657 | |
| 658 | for (int i = 0; i < 4; ++i) { |
| 659 | if (!SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())) || |
| 660 | !SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height()))) { |
| 661 | return false; |
| 662 | } |
| 663 | } |
| 664 | break; |
| 665 | case kSimple_Type: |
| 666 | if (fRect.isEmpty() || allRadiiZero || !allRadiiSame || allCornersSquare) { |
| 667 | return false; |
| 668 | } |
| 669 | break; |
| 670 | case kNinePatch_Type: |
| 671 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| 672 | !patchesOfNine) { |
| 673 | return false; |
| 674 | } |
| 675 | break; |
| 676 | case kComplex_Type: |
| 677 | if (fRect.isEmpty() || allRadiiZero || allRadiiSame || allCornersSquare || |
| 678 | patchesOfNine) { |
| 679 | return false; |
| 680 | } |
| 681 | break; |
| 682 | } |
| 683 | |
| 684 | return true; |
| 685 | } |
| 686 | |
| 687 | bool SkRRect::AreRectAndRadiiValid(const SkRect& rect, const SkVector radii[4]) { |
| 688 | if (!rect.isFinite() || !rect.isSorted()) { |
| 689 | return false; |
| 690 | } |
| 691 | for (int i = 0; i < 4; ++i) { |
| 692 | if (!are_radius_check_predicates_valid(radii[i].fX, rect.fLeft, rect.fRight) || |
| 693 | !are_radius_check_predicates_valid(radii[i].fY, rect.fTop, rect.fBottom)) { |
| 694 | return false; |
| 695 | } |
| 696 | } |
| 697 | return true; |
| 698 | } |
| 699 | /////////////////////////////////////////////////////////////////////////////// |
| 700 | |
| 701 | SkRect SkRRectPriv::InnerBounds(const SkRRect& rr) { |
| 702 | if (rr.isEmpty() || rr.isRect()) { |
| 703 | return rr.rect(); |
| 704 | } |
| 705 | |
| 706 | // We start with the outer bounds of the round rect and consider three subsets and take the |
| 707 | // one with maximum area. The first two are the horizontal and vertical rects inset from the |
| 708 | // corners, the third is the rect inscribed at the corner curves' maximal point. This forms |
| 709 | // the exact solution when all corners have the same radii (the radii do not have to be |
| 710 | // circular). |
| 711 | SkRect innerBounds = rr.getBounds(); |
| 712 | SkVector tl = rr.radii(SkRRect::kUpperLeft_Corner); |
| 713 | SkVector tr = rr.radii(SkRRect::kUpperRight_Corner); |
| 714 | SkVector bl = rr.radii(SkRRect::kLowerLeft_Corner); |
| 715 | SkVector br = rr.radii(SkRRect::kLowerRight_Corner); |
| 716 | |
| 717 | // Select maximum inset per edge, which may move an adjacent corner of the inscribed |
| 718 | // rectangle off of the rounded-rect path, but that is acceptable given that the general |
| 719 | // equation for inscribed area is non-trivial to evaluate. |
| 720 | SkScalar leftShift = std::max(tl.fX, bl.fX); |
| 721 | SkScalar topShift = std::max(tl.fY, tr.fY); |
| 722 | SkScalar rightShift = std::max(tr.fX, br.fX); |
| 723 | SkScalar bottomShift = std::max(bl.fY, br.fY); |
| 724 | |
| 725 | SkScalar dw = leftShift + rightShift; |
| 726 | SkScalar dh = topShift + bottomShift; |
| 727 | |
| 728 | // Area removed by shifting left/right |
| 729 | SkScalar horizArea = (innerBounds.width() - dw) * innerBounds.height(); |
| 730 | // And by shifting top/bottom |
| 731 | SkScalar vertArea = (innerBounds.height() - dh) * innerBounds.width(); |
| 732 | // And by shifting all edges: just considering a corner ellipse, the maximum inscribed rect has |
| 733 | // a corner at sqrt(2)/2 * (rX, rY), so scale all corner shifts by (1 - sqrt(2)/2) to get the |
| 734 | // safe shift per edge (since the shifts already are the max radius for that edge). |
| 735 | // - We actually scale by a value slightly increased to make it so that the shifted corners are |
| 736 | // safely inside the curves, otherwise numerical stability can cause it to fail contains(). |
| 737 | static constexpr SkScalar kScale = (1.f - SK_ScalarRoot2Over2) + 1e-5f; |
| 738 | SkScalar innerArea = (innerBounds.width() - kScale * dw) * (innerBounds.height() - kScale * dh); |
| 739 | |
| 740 | if (horizArea > vertArea && horizArea > innerArea) { |
| 741 | // Cut off corners by insetting left and right |
| 742 | innerBounds.fLeft += leftShift; |
| 743 | innerBounds.fRight -= rightShift; |
| 744 | } else if (vertArea > innerArea) { |
| 745 | // Cut off corners by insetting top and bottom |
| 746 | innerBounds.fTop += topShift; |
| 747 | innerBounds.fBottom -= bottomShift; |
| 748 | } else if (innerArea > 0.f) { |
| 749 | // Inset on all sides, scaled to touch |
| 750 | innerBounds.fLeft += kScale * leftShift; |
| 751 | innerBounds.fRight -= kScale * rightShift; |
| 752 | innerBounds.fTop += kScale * topShift; |
| 753 | innerBounds.fBottom -= kScale * bottomShift; |
| 754 | } else { |
| 755 | // Inner region would collapse to empty |
| 756 | return SkRect::MakeEmpty(); |
| 757 | } |
| 758 | |
| 759 | SkASSERT(innerBounds.isSorted() && !innerBounds.isEmpty()); |
| 760 | SkASSERT(rr.contains(innerBounds)); |
| 761 | return innerBounds; |
| 762 | } |
| 763 | |
| 764 | SkRRect SkRRectPriv::ConservativeIntersect(const SkRRect& a, const SkRRect& b) { |
| 765 | // Returns the coordinate of the rect matching the corner enum. |
| 766 | auto getCorner = [](const SkRect& r, SkRRect::Corner corner) -> SkPoint { |
| 767 | switch(corner) { |
| 768 | case SkRRect::kUpperLeft_Corner: return {r.fLeft, r.fTop}; |
| 769 | case SkRRect::kUpperRight_Corner: return {r.fRight, r.fTop}; |
| 770 | case SkRRect::kLowerLeft_Corner: return {r.fLeft, r.fBottom}; |
| 771 | case SkRRect::kLowerRight_Corner: return {r.fRight, r.fBottom}; |
| 772 | default: SkUNREACHABLE; |
| 773 | } |
| 774 | }; |
| 775 | // Returns true if shape A's extreme point is contained within shape B's extreme point, relative |
| 776 | // to the 'corner' location. If the two shapes' corners have the same ellipse radii, this |
| 777 | // is sufficient for A's ellipse arc to be contained by B's ellipse arc. |
| 778 | auto insideCorner = [](SkRRect::Corner corner, const SkPoint& a, const SkPoint& b) { |
| 779 | switch(corner) { |
| 780 | case SkRRect::kUpperLeft_Corner: return a.fX >= b.fX && a.fY >= b.fY; |
| 781 | case SkRRect::kUpperRight_Corner: return a.fX <= b.fX && a.fY >= b.fY; |
| 782 | case SkRRect::kLowerRight_Corner: return a.fX <= b.fX && a.fY <= b.fY; |
| 783 | case SkRRect::kLowerLeft_Corner: return a.fX >= b.fX && a.fY <= b.fY; |
| 784 | default: SkUNREACHABLE; |
| 785 | } |
| 786 | }; |
| 787 | |
| 788 | auto getIntersectionRadii = [&](const SkRect& r, SkRRect::Corner corner, SkVector* radii) { |
| 789 | SkPoint test = getCorner(r, corner); |
| 790 | SkPoint aCorner = getCorner(a.rect(), corner); |
| 791 | SkPoint bCorner = getCorner(b.rect(), corner); |
| 792 | |
| 793 | if (test == aCorner) { |
| 794 | // Test that A's ellipse is contained by B. This is a non-trivial function to evaluate |
| 795 | // so we resrict it to when the corners have the same radii. If not, we use the more |
| 796 | // conservative test that the extreme point of A's bounding box is contained in B. |
| 797 | *radii = a.radii(corner); |
| 798 | if (*radii == b.radii(corner)) { |
| 799 | return insideCorner(corner, aCorner, bCorner); // A inside B |
| 800 | } else { |
| 801 | return b.checkCornerContainment(aCorner.fX, aCorner.fY); |
| 802 | } |
| 803 | } else if (test == bCorner) { |
| 804 | // Mirror of the above |
| 805 | *radii = b.radii(corner); |
| 806 | if (*radii == a.radii(corner)) { |
| 807 | return insideCorner(corner, bCorner, aCorner); // B inside A |
| 808 | } else { |
| 809 | return a.checkCornerContainment(bCorner.fX, bCorner.fY); |
| 810 | } |
| 811 | } else { |
| 812 | // This is a corner formed by two straight edges of A and B, so confirm that it is |
| 813 | // contained in both (if not, then the intersection can't be a round rect). |
| 814 | *radii = {0.f, 0.f}; |
| 815 | return a.checkCornerContainment(test.fX, test.fY) && |
| 816 | b.checkCornerContainment(test.fX, test.fY); |
| 817 | } |
| 818 | }; |
| 819 | |
| 820 | // We fill in the SkRRect directly. Since the rect and radii are either 0s or determined by |
| 821 | // valid existing SkRRects, we know we are finite. |
| 822 | SkRRect intersection; |
| 823 | if (!intersection.fRect.intersect(a.rect(), b.rect())) { |
| 824 | // Definitely no intersection |
| 825 | return SkRRect::MakeEmpty(); |
| 826 | } |
| 827 | |
| 828 | const SkRRect::Corner corners[] = { |
| 829 | SkRRect::kUpperLeft_Corner, |
| 830 | SkRRect::kUpperRight_Corner, |
| 831 | SkRRect::kLowerRight_Corner, |
| 832 | SkRRect::kLowerLeft_Corner |
| 833 | }; |
| 834 | // By definition, edges is contained in the bounds of 'a' and 'b', but now we need to consider |
| 835 | // the corners. If the bound's corner point is in both rrects, the corner radii will be 0s. |
| 836 | // If the bound's corner point matches a's edges and is inside 'b', we use a's radii. |
| 837 | // Same for b's radii. If any corner fails these conditions, we reject the intersection as an |
| 838 | // rrect. If after determining radii for all 4 corners, they would overlap, we also reject the |
| 839 | // intersection shape. |
| 840 | for (auto c : corners) { |
| 841 | if (!getIntersectionRadii(intersection.fRect, c, &intersection.fRadii[c])) { |
| 842 | return SkRRect::MakeEmpty(); // Resulting intersection is not a rrect |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | // Check for radius overlap along the four edges, since the earlier evaluation was only a |
| 847 | // one-sided corner check. If they aren't valid, a corner's radii doesn't fit within the rect. |
| 848 | // If the radii are scaled, the combination of radii from two adjacent corners doesn't fit. |
| 849 | // Normally for a regularly constructed SkRRect, we want this scaling, but in this case it means |
| 850 | // the intersection shape is definitively not a round rect. |
| 851 | if (!SkRRect::AreRectAndRadiiValid(intersection.fRect, intersection.fRadii) || |
| 852 | intersection.scaleRadii()) { |
| 853 | return SkRRect::MakeEmpty(); |
| 854 | } |
| 855 | |
| 856 | // The intersection is an rrect of the given radii. Potentially all 4 corners could have |
| 857 | // been simplified to (0,0) radii, making the intersection a rectangle. |
| 858 | intersection.computeType(); |
| 859 | return intersection; |
| 860 | } |
| 861 | |