| 1 | /* |
| 2 | * Copyright 2011 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkScan.h" |
| 9 | |
| 10 | #include "include/private/SkColorData.h" |
| 11 | #include "include/private/SkTo.h" |
| 12 | #include "src/core/SkBlitter.h" |
| 13 | #include "src/core/SkFDot6.h" |
| 14 | #include "src/core/SkLineClipper.h" |
| 15 | #include "src/core/SkRasterClip.h" |
| 16 | |
| 17 | #include <utility> |
| 18 | |
| 19 | /* Our attempt to compute the worst case "bounds" for the horizontal and |
| 20 | vertical cases has some numerical bug in it, and we sometimes undervalue |
| 21 | our extends. The bug is that when this happens, we will set the clip to |
| 22 | nullptr (for speed), and thus draw outside of the clip by a pixel, which might |
| 23 | only look bad, but it might also access memory outside of the valid range |
| 24 | allcoated for the device bitmap. |
| 25 | |
| 26 | This define enables our fix to outset our "bounds" by 1, thus avoiding the |
| 27 | chance of the bug, but at the cost of sometimes taking the rectblitter |
| 28 | case (i.e. not setting the clip to nullptr) when we might not actually need |
| 29 | to. If we can improve/fix the actual calculations, then we can remove this |
| 30 | step. |
| 31 | */ |
| 32 | #define OUTSET_BEFORE_CLIP_TEST true |
| 33 | |
| 34 | #define HLINE_STACK_BUFFER 100 |
| 35 | |
| 36 | static inline int SmallDot6Scale(int value, int dot6) { |
| 37 | SkASSERT((int16_t)value == value); |
| 38 | SkASSERT((unsigned)dot6 <= 64); |
| 39 | return (value * dot6) >> 6; |
| 40 | } |
| 41 | |
| 42 | //#define TEST_GAMMA |
| 43 | |
| 44 | #ifdef TEST_GAMMA |
| 45 | static uint8_t gGammaTable[256]; |
| 46 | #define ApplyGamma(table, alpha) (table)[alpha] |
| 47 | |
| 48 | static void build_gamma_table() { |
| 49 | static bool gInit = false; |
| 50 | |
| 51 | if (gInit == false) { |
| 52 | for (int i = 0; i < 256; i++) { |
| 53 | SkFixed n = i * 257; |
| 54 | n += n >> 15; |
| 55 | SkASSERT(n >= 0 && n <= SK_Fixed1); |
| 56 | n = SkFixedSqrt(n); |
| 57 | n = n * 255 >> 16; |
| 58 | // SkDebugf("morph %d -> %d\n", i, n); |
| 59 | gGammaTable[i] = SkToU8(n); |
| 60 | } |
| 61 | gInit = true; |
| 62 | } |
| 63 | } |
| 64 | #else |
| 65 | #define ApplyGamma(table, alpha) SkToU8(alpha) |
| 66 | #endif |
| 67 | |
| 68 | /////////////////////////////////////////////////////////////////////////////// |
| 69 | |
| 70 | static void call_hline_blitter(SkBlitter* blitter, int x, int y, int count, |
| 71 | U8CPU alpha) { |
| 72 | SkASSERT(count > 0); |
| 73 | |
| 74 | int16_t runs[HLINE_STACK_BUFFER + 1]; |
| 75 | uint8_t aa[HLINE_STACK_BUFFER]; |
| 76 | |
| 77 | do { |
| 78 | // In theory, we should be able to just do this once (outside of the loop), |
| 79 | // since aa[] and runs[] are supposed" to be const when we call the blitter. |
| 80 | // In reality, some wrapper-blitters (e.g. SkRgnClipBlitter) cast away that |
| 81 | // constness, and modify the buffers in-place. Hence the need to be defensive |
| 82 | // here and reseed the aa value. |
| 83 | aa[0] = ApplyGamma(gGammaTable, alpha); |
| 84 | |
| 85 | int n = count; |
| 86 | if (n > HLINE_STACK_BUFFER) { |
| 87 | n = HLINE_STACK_BUFFER; |
| 88 | } |
| 89 | runs[0] = SkToS16(n); |
| 90 | runs[n] = 0; |
| 91 | blitter->blitAntiH(x, y, aa, runs); |
| 92 | x += n; |
| 93 | count -= n; |
| 94 | } while (count > 0); |
| 95 | } |
| 96 | |
| 97 | class SkAntiHairBlitter { |
| 98 | public: |
| 99 | SkAntiHairBlitter() : fBlitter(nullptr) {} |
| 100 | virtual ~SkAntiHairBlitter() {} |
| 101 | |
| 102 | SkBlitter* getBlitter() const { return fBlitter; } |
| 103 | |
| 104 | void setup(SkBlitter* blitter) { |
| 105 | fBlitter = blitter; |
| 106 | } |
| 107 | |
| 108 | virtual SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) = 0; |
| 109 | virtual SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed slope) = 0; |
| 110 | |
| 111 | private: |
| 112 | SkBlitter* fBlitter; |
| 113 | }; |
| 114 | |
| 115 | class HLine_SkAntiHairBlitter : public SkAntiHairBlitter { |
| 116 | public: |
| 117 | SkFixed drawCap(int x, SkFixed fy, SkFixed slope, int mod64) override { |
| 118 | fy += SK_Fixed1/2; |
| 119 | |
| 120 | int y = fy >> 16; |
| 121 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
| 122 | |
| 123 | // lower line |
| 124 | unsigned ma = SmallDot6Scale(a, mod64); |
| 125 | if (ma) { |
| 126 | call_hline_blitter(this->getBlitter(), x, y, 1, ma); |
| 127 | } |
| 128 | |
| 129 | // upper line |
| 130 | ma = SmallDot6Scale(255 - a, mod64); |
| 131 | if (ma) { |
| 132 | call_hline_blitter(this->getBlitter(), x, y - 1, 1, ma); |
| 133 | } |
| 134 | |
| 135 | return fy - SK_Fixed1/2; |
| 136 | } |
| 137 | |
| 138 | SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed slope) override { |
| 139 | SkASSERT(x < stopx); |
| 140 | int count = stopx - x; |
| 141 | fy += SK_Fixed1/2; |
| 142 | |
| 143 | int y = fy >> 16; |
| 144 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
| 145 | |
| 146 | // lower line |
| 147 | if (a) { |
| 148 | call_hline_blitter(this->getBlitter(), x, y, count, a); |
| 149 | } |
| 150 | |
| 151 | // upper line |
| 152 | a = 255 - a; |
| 153 | if (a) { |
| 154 | call_hline_blitter(this->getBlitter(), x, y - 1, count, a); |
| 155 | } |
| 156 | |
| 157 | return fy - SK_Fixed1/2; |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | class Horish_SkAntiHairBlitter : public SkAntiHairBlitter { |
| 162 | public: |
| 163 | SkFixed drawCap(int x, SkFixed fy, SkFixed dy, int mod64) override { |
| 164 | fy += SK_Fixed1/2; |
| 165 | |
| 166 | int lower_y = fy >> 16; |
| 167 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
| 168 | unsigned a0 = SmallDot6Scale(255 - a, mod64); |
| 169 | unsigned a1 = SmallDot6Scale(a, mod64); |
| 170 | this->getBlitter()->blitAntiV2(x, lower_y - 1, a0, a1); |
| 171 | |
| 172 | return fy + dy - SK_Fixed1/2; |
| 173 | } |
| 174 | |
| 175 | SkFixed drawLine(int x, int stopx, SkFixed fy, SkFixed dy) override { |
| 176 | SkASSERT(x < stopx); |
| 177 | |
| 178 | fy += SK_Fixed1/2; |
| 179 | SkBlitter* blitter = this->getBlitter(); |
| 180 | do { |
| 181 | int lower_y = fy >> 16; |
| 182 | uint8_t a = (uint8_t)((fy >> 8) & 0xFF); |
| 183 | blitter->blitAntiV2(x, lower_y - 1, 255 - a, a); |
| 184 | fy += dy; |
| 185 | } while (++x < stopx); |
| 186 | |
| 187 | return fy - SK_Fixed1/2; |
| 188 | } |
| 189 | }; |
| 190 | |
| 191 | class VLine_SkAntiHairBlitter : public SkAntiHairBlitter { |
| 192 | public: |
| 193 | SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) override { |
| 194 | SkASSERT(0 == dx); |
| 195 | fx += SK_Fixed1/2; |
| 196 | |
| 197 | int x = fx >> 16; |
| 198 | int a = (uint8_t)((fx >> 8) & 0xFF); |
| 199 | |
| 200 | unsigned ma = SmallDot6Scale(a, mod64); |
| 201 | if (ma) { |
| 202 | this->getBlitter()->blitV(x, y, 1, ma); |
| 203 | } |
| 204 | ma = SmallDot6Scale(255 - a, mod64); |
| 205 | if (ma) { |
| 206 | this->getBlitter()->blitV(x - 1, y, 1, ma); |
| 207 | } |
| 208 | |
| 209 | return fx - SK_Fixed1/2; |
| 210 | } |
| 211 | |
| 212 | SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) override { |
| 213 | SkASSERT(y < stopy); |
| 214 | SkASSERT(0 == dx); |
| 215 | fx += SK_Fixed1/2; |
| 216 | |
| 217 | int x = fx >> 16; |
| 218 | int a = (uint8_t)((fx >> 8) & 0xFF); |
| 219 | |
| 220 | if (a) { |
| 221 | this->getBlitter()->blitV(x, y, stopy - y, a); |
| 222 | } |
| 223 | a = 255 - a; |
| 224 | if (a) { |
| 225 | this->getBlitter()->blitV(x - 1, y, stopy - y, a); |
| 226 | } |
| 227 | |
| 228 | return fx - SK_Fixed1/2; |
| 229 | } |
| 230 | }; |
| 231 | |
| 232 | class Vertish_SkAntiHairBlitter : public SkAntiHairBlitter { |
| 233 | public: |
| 234 | SkFixed drawCap(int y, SkFixed fx, SkFixed dx, int mod64) override { |
| 235 | fx += SK_Fixed1/2; |
| 236 | |
| 237 | int x = fx >> 16; |
| 238 | uint8_t a = (uint8_t)((fx >> 8) & 0xFF); |
| 239 | this->getBlitter()->blitAntiH2(x - 1, y, |
| 240 | SmallDot6Scale(255 - a, mod64), SmallDot6Scale(a, mod64)); |
| 241 | |
| 242 | return fx + dx - SK_Fixed1/2; |
| 243 | } |
| 244 | |
| 245 | SkFixed drawLine(int y, int stopy, SkFixed fx, SkFixed dx) override { |
| 246 | SkASSERT(y < stopy); |
| 247 | fx += SK_Fixed1/2; |
| 248 | do { |
| 249 | int x = fx >> 16; |
| 250 | uint8_t a = (uint8_t)((fx >> 8) & 0xFF); |
| 251 | this->getBlitter()->blitAntiH2(x - 1, y, 255 - a, a); |
| 252 | fx += dx; |
| 253 | } while (++y < stopy); |
| 254 | |
| 255 | return fx - SK_Fixed1/2; |
| 256 | } |
| 257 | }; |
| 258 | |
| 259 | static inline SkFixed fastfixdiv(SkFDot6 a, SkFDot6 b) { |
| 260 | SkASSERT((SkLeftShift(a, 16) >> 16) == a); |
| 261 | SkASSERT(b != 0); |
| 262 | return SkLeftShift(a, 16) / b; |
| 263 | } |
| 264 | |
| 265 | #define SkBITCOUNT(x) (sizeof(x) << 3) |
| 266 | |
| 267 | #if 1 |
| 268 | // returns high-bit set iff x==0x8000... |
| 269 | static inline int bad_int(int x) { |
| 270 | return x & -x; |
| 271 | } |
| 272 | |
| 273 | static int any_bad_ints(int a, int b, int c, int d) { |
| 274 | return (bad_int(a) | bad_int(b) | bad_int(c) | bad_int(d)) >> (SkBITCOUNT(int) - 1); |
| 275 | } |
| 276 | #else |
| 277 | static inline int good_int(int x) { |
| 278 | return x ^ (1 << (SkBITCOUNT(x) - 1)); |
| 279 | } |
| 280 | |
| 281 | static int any_bad_ints(int a, int b, int c, int d) { |
| 282 | return !(good_int(a) & good_int(b) & good_int(c) & good_int(d)); |
| 283 | } |
| 284 | #endif |
| 285 | |
| 286 | #ifdef SK_DEBUG |
| 287 | static bool canConvertFDot6ToFixed(SkFDot6 x) { |
| 288 | const int maxDot6 = SK_MaxS32 >> (16 - 6); |
| 289 | return SkAbs32(x) <= maxDot6; |
| 290 | } |
| 291 | #endif |
| 292 | |
| 293 | /* |
| 294 | * We want the fractional part of ordinate, but we want multiples of 64 to |
| 295 | * return 64, not 0, so we can't just say (ordinate & 63). |
| 296 | * We basically want to compute those bits, and if they're 0, return 64. |
| 297 | * We can do that w/o a branch with an extra sub and add. |
| 298 | */ |
| 299 | static int contribution_64(SkFDot6 ordinate) { |
| 300 | #if 0 |
| 301 | int result = ordinate & 63; |
| 302 | if (0 == result) { |
| 303 | result = 64; |
| 304 | } |
| 305 | #else |
| 306 | int result = ((ordinate - 1) & 63) + 1; |
| 307 | #endif |
| 308 | SkASSERT(result > 0 && result <= 64); |
| 309 | return result; |
| 310 | } |
| 311 | |
| 312 | static void do_anti_hairline(SkFDot6 x0, SkFDot6 y0, SkFDot6 x1, SkFDot6 y1, |
| 313 | const SkIRect* clip, SkBlitter* blitter) { |
| 314 | // check for integer NaN (0x80000000) which we can't handle (can't negate it) |
| 315 | // It appears typically from a huge float (inf or nan) being converted to int. |
| 316 | // If we see it, just don't draw. |
| 317 | if (any_bad_ints(x0, y0, x1, y1)) { |
| 318 | return; |
| 319 | } |
| 320 | |
| 321 | // The caller must clip the line to [-32767.0 ... 32767.0] ahead of time |
| 322 | // (in dot6 format) |
| 323 | SkASSERT(canConvertFDot6ToFixed(x0)); |
| 324 | SkASSERT(canConvertFDot6ToFixed(y0)); |
| 325 | SkASSERT(canConvertFDot6ToFixed(x1)); |
| 326 | SkASSERT(canConvertFDot6ToFixed(y1)); |
| 327 | |
| 328 | if (SkAbs32(x1 - x0) > SkIntToFDot6(511) || SkAbs32(y1 - y0) > SkIntToFDot6(511)) { |
| 329 | /* instead of (x0 + x1) >> 1, we shift each separately. This is less |
| 330 | precise, but avoids overflowing the intermediate result if the |
| 331 | values are huge. A better fix might be to clip the original pts |
| 332 | directly (i.e. do the divide), so we don't spend time subdividing |
| 333 | huge lines at all. |
| 334 | */ |
| 335 | int hx = (x0 >> 1) + (x1 >> 1); |
| 336 | int hy = (y0 >> 1) + (y1 >> 1); |
| 337 | do_anti_hairline(x0, y0, hx, hy, clip, blitter); |
| 338 | do_anti_hairline(hx, hy, x1, y1, clip, blitter); |
| 339 | return; |
| 340 | } |
| 341 | |
| 342 | int scaleStart, scaleStop; |
| 343 | int istart, istop; |
| 344 | SkFixed fstart, slope; |
| 345 | |
| 346 | HLine_SkAntiHairBlitter hline_blitter; |
| 347 | Horish_SkAntiHairBlitter horish_blitter; |
| 348 | VLine_SkAntiHairBlitter vline_blitter; |
| 349 | Vertish_SkAntiHairBlitter vertish_blitter; |
| 350 | SkAntiHairBlitter* hairBlitter = nullptr; |
| 351 | |
| 352 | if (SkAbs32(x1 - x0) > SkAbs32(y1 - y0)) { // mostly horizontal |
| 353 | if (x0 > x1) { // we want to go left-to-right |
| 354 | using std::swap; |
| 355 | swap(x0, x1); |
| 356 | swap(y0, y1); |
| 357 | } |
| 358 | |
| 359 | istart = SkFDot6Floor(x0); |
| 360 | istop = SkFDot6Ceil(x1); |
| 361 | fstart = SkFDot6ToFixed(y0); |
| 362 | if (y0 == y1) { // completely horizontal, take fast case |
| 363 | slope = 0; |
| 364 | hairBlitter = &hline_blitter; |
| 365 | } else { |
| 366 | slope = fastfixdiv(y1 - y0, x1 - x0); |
| 367 | SkASSERT(slope >= -SK_Fixed1 && slope <= SK_Fixed1); |
| 368 | fstart += (slope * (32 - (x0 & 63)) + 32) >> 6; |
| 369 | hairBlitter = &horish_blitter; |
| 370 | } |
| 371 | |
| 372 | SkASSERT(istop > istart); |
| 373 | if (istop - istart == 1) { |
| 374 | // we are within a single pixel |
| 375 | scaleStart = x1 - x0; |
| 376 | SkASSERT(scaleStart >= 0 && scaleStart <= 64); |
| 377 | scaleStop = 0; |
| 378 | } else { |
| 379 | scaleStart = 64 - (x0 & 63); |
| 380 | scaleStop = x1 & 63; |
| 381 | } |
| 382 | |
| 383 | if (clip){ |
| 384 | if (istart >= clip->fRight || istop <= clip->fLeft) { |
| 385 | return; |
| 386 | } |
| 387 | if (istart < clip->fLeft) { |
| 388 | fstart += slope * (clip->fLeft - istart); |
| 389 | istart = clip->fLeft; |
| 390 | scaleStart = 64; |
| 391 | if (istop - istart == 1) { |
| 392 | // we are within a single pixel |
| 393 | scaleStart = contribution_64(x1); |
| 394 | scaleStop = 0; |
| 395 | } |
| 396 | } |
| 397 | if (istop > clip->fRight) { |
| 398 | istop = clip->fRight; |
| 399 | scaleStop = 0; // so we don't draw this last column |
| 400 | } |
| 401 | |
| 402 | SkASSERT(istart <= istop); |
| 403 | if (istart == istop) { |
| 404 | return; |
| 405 | } |
| 406 | // now test if our Y values are completely inside the clip |
| 407 | int top, bottom; |
| 408 | if (slope >= 0) { // T2B |
| 409 | top = SkFixedFloorToInt(fstart - SK_FixedHalf); |
| 410 | bottom = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf); |
| 411 | } else { // B2T |
| 412 | bottom = SkFixedCeilToInt(fstart + SK_FixedHalf); |
| 413 | top = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf); |
| 414 | } |
| 415 | #ifdef OUTSET_BEFORE_CLIP_TEST |
| 416 | top -= 1; |
| 417 | bottom += 1; |
| 418 | #endif |
| 419 | if (top >= clip->fBottom || bottom <= clip->fTop) { |
| 420 | return; |
| 421 | } |
| 422 | if (clip->fTop <= top && clip->fBottom >= bottom) { |
| 423 | clip = nullptr; |
| 424 | } |
| 425 | } |
| 426 | } else { // mostly vertical |
| 427 | if (y0 > y1) { // we want to go top-to-bottom |
| 428 | using std::swap; |
| 429 | swap(x0, x1); |
| 430 | swap(y0, y1); |
| 431 | } |
| 432 | |
| 433 | istart = SkFDot6Floor(y0); |
| 434 | istop = SkFDot6Ceil(y1); |
| 435 | fstart = SkFDot6ToFixed(x0); |
| 436 | if (x0 == x1) { |
| 437 | if (y0 == y1) { // are we zero length? |
| 438 | return; // nothing to do |
| 439 | } |
| 440 | slope = 0; |
| 441 | hairBlitter = &vline_blitter; |
| 442 | } else { |
| 443 | slope = fastfixdiv(x1 - x0, y1 - y0); |
| 444 | SkASSERT(slope <= SK_Fixed1 && slope >= -SK_Fixed1); |
| 445 | fstart += (slope * (32 - (y0 & 63)) + 32) >> 6; |
| 446 | hairBlitter = &vertish_blitter; |
| 447 | } |
| 448 | |
| 449 | SkASSERT(istop > istart); |
| 450 | if (istop - istart == 1) { |
| 451 | // we are within a single pixel |
| 452 | scaleStart = y1 - y0; |
| 453 | SkASSERT(scaleStart >= 0 && scaleStart <= 64); |
| 454 | scaleStop = 0; |
| 455 | } else { |
| 456 | scaleStart = 64 - (y0 & 63); |
| 457 | scaleStop = y1 & 63; |
| 458 | } |
| 459 | |
| 460 | if (clip) { |
| 461 | if (istart >= clip->fBottom || istop <= clip->fTop) { |
| 462 | return; |
| 463 | } |
| 464 | if (istart < clip->fTop) { |
| 465 | fstart += slope * (clip->fTop - istart); |
| 466 | istart = clip->fTop; |
| 467 | scaleStart = 64; |
| 468 | if (istop - istart == 1) { |
| 469 | // we are within a single pixel |
| 470 | scaleStart = contribution_64(y1); |
| 471 | scaleStop = 0; |
| 472 | } |
| 473 | } |
| 474 | if (istop > clip->fBottom) { |
| 475 | istop = clip->fBottom; |
| 476 | scaleStop = 0; // so we don't draw this last row |
| 477 | } |
| 478 | |
| 479 | SkASSERT(istart <= istop); |
| 480 | if (istart == istop) |
| 481 | return; |
| 482 | |
| 483 | // now test if our X values are completely inside the clip |
| 484 | int left, right; |
| 485 | if (slope >= 0) { // L2R |
| 486 | left = SkFixedFloorToInt(fstart - SK_FixedHalf); |
| 487 | right = SkFixedCeilToInt(fstart + (istop - istart - 1) * slope + SK_FixedHalf); |
| 488 | } else { // R2L |
| 489 | right = SkFixedCeilToInt(fstart + SK_FixedHalf); |
| 490 | left = SkFixedFloorToInt(fstart + (istop - istart - 1) * slope - SK_FixedHalf); |
| 491 | } |
| 492 | #ifdef OUTSET_BEFORE_CLIP_TEST |
| 493 | left -= 1; |
| 494 | right += 1; |
| 495 | #endif |
| 496 | if (left >= clip->fRight || right <= clip->fLeft) { |
| 497 | return; |
| 498 | } |
| 499 | if (clip->fLeft <= left && clip->fRight >= right) { |
| 500 | clip = nullptr; |
| 501 | } |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | SkRectClipBlitter rectClipper; |
| 506 | if (clip) { |
| 507 | rectClipper.init(blitter, *clip); |
| 508 | blitter = &rectClipper; |
| 509 | } |
| 510 | |
| 511 | SkASSERT(hairBlitter); |
| 512 | hairBlitter->setup(blitter); |
| 513 | |
| 514 | #ifdef SK_DEBUG |
| 515 | if (scaleStart > 0 && scaleStop > 0) { |
| 516 | // be sure we don't draw twice in the same pixel |
| 517 | SkASSERT(istart < istop - 1); |
| 518 | } |
| 519 | #endif |
| 520 | |
| 521 | fstart = hairBlitter->drawCap(istart, fstart, slope, scaleStart); |
| 522 | istart += 1; |
| 523 | int fullSpans = istop - istart - (scaleStop > 0); |
| 524 | if (fullSpans > 0) { |
| 525 | fstart = hairBlitter->drawLine(istart, istart + fullSpans, fstart, slope); |
| 526 | } |
| 527 | if (scaleStop > 0) { |
| 528 | hairBlitter->drawCap(istop - 1, fstart, slope, scaleStop); |
| 529 | } |
| 530 | } |
| 531 | |
| 532 | void SkScan::AntiHairLineRgn(const SkPoint array[], int arrayCount, const SkRegion* clip, |
| 533 | SkBlitter* blitter) { |
| 534 | if (clip && clip->isEmpty()) { |
| 535 | return; |
| 536 | } |
| 537 | |
| 538 | SkASSERT(clip == nullptr || !clip->getBounds().isEmpty()); |
| 539 | |
| 540 | #ifdef TEST_GAMMA |
| 541 | build_gamma_table(); |
| 542 | #endif |
| 543 | |
| 544 | const SkScalar max = SkIntToScalar(32767); |
| 545 | const SkRect fixedBounds = SkRect::MakeLTRB(-max, -max, max, max); |
| 546 | |
| 547 | SkRect clipBounds; |
| 548 | if (clip) { |
| 549 | clipBounds.set(clip->getBounds()); |
| 550 | /* We perform integral clipping later on, but we do a scalar clip first |
| 551 | to ensure that our coordinates are expressible in fixed/integers. |
| 552 | |
| 553 | antialiased hairlines can draw up to 1/2 of a pixel outside of |
| 554 | their bounds, so we need to outset the clip before calling the |
| 555 | clipper. To make the numerics safer, we outset by a whole pixel, |
| 556 | since the 1/2 pixel boundary is important to the antihair blitter, |
| 557 | we don't want to risk numerical fate by chopping on that edge. |
| 558 | */ |
| 559 | clipBounds.outset(SK_Scalar1, SK_Scalar1); |
| 560 | } |
| 561 | |
| 562 | for (int i = 0; i < arrayCount - 1; ++i) { |
| 563 | SkPoint pts[2]; |
| 564 | |
| 565 | // We have to pre-clip the line to fit in a SkFixed, so we just chop |
| 566 | // the line. TODO find a way to actually draw beyond that range. |
| 567 | if (!SkLineClipper::IntersectLine(&array[i], fixedBounds, pts)) { |
| 568 | continue; |
| 569 | } |
| 570 | |
| 571 | if (clip && !SkLineClipper::IntersectLine(pts, clipBounds, pts)) { |
| 572 | continue; |
| 573 | } |
| 574 | |
| 575 | SkFDot6 x0 = SkScalarToFDot6(pts[0].fX); |
| 576 | SkFDot6 y0 = SkScalarToFDot6(pts[0].fY); |
| 577 | SkFDot6 x1 = SkScalarToFDot6(pts[1].fX); |
| 578 | SkFDot6 y1 = SkScalarToFDot6(pts[1].fY); |
| 579 | |
| 580 | if (clip) { |
| 581 | SkFDot6 left = std::min(x0, x1); |
| 582 | SkFDot6 top = std::min(y0, y1); |
| 583 | SkFDot6 right = std::max(x0, x1); |
| 584 | SkFDot6 bottom = std::max(y0, y1); |
| 585 | SkIRect ir; |
| 586 | |
| 587 | ir.setLTRB(SkFDot6Floor(left) - 1, |
| 588 | SkFDot6Floor(top) - 1, |
| 589 | SkFDot6Ceil(right) + 1, |
| 590 | SkFDot6Ceil(bottom) + 1); |
| 591 | |
| 592 | if (clip->quickReject(ir)) { |
| 593 | continue; |
| 594 | } |
| 595 | if (!clip->quickContains(ir)) { |
| 596 | SkRegion::Cliperator iter(*clip, ir); |
| 597 | const SkIRect* r = &iter.rect(); |
| 598 | |
| 599 | while (!iter.done()) { |
| 600 | do_anti_hairline(x0, y0, x1, y1, r, blitter); |
| 601 | iter.next(); |
| 602 | } |
| 603 | continue; |
| 604 | } |
| 605 | // fall through to no-clip case |
| 606 | } |
| 607 | do_anti_hairline(x0, y0, x1, y1, nullptr, blitter); |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | void SkScan::AntiHairRect(const SkRect& rect, const SkRasterClip& clip, |
| 612 | SkBlitter* blitter) { |
| 613 | SkPoint pts[5]; |
| 614 | |
| 615 | pts[0].set(rect.fLeft, rect.fTop); |
| 616 | pts[1].set(rect.fRight, rect.fTop); |
| 617 | pts[2].set(rect.fRight, rect.fBottom); |
| 618 | pts[3].set(rect.fLeft, rect.fBottom); |
| 619 | pts[4] = pts[0]; |
| 620 | SkScan::AntiHairLine(pts, 5, clip, blitter); |
| 621 | } |
| 622 | |
| 623 | /////////////////////////////////////////////////////////////////////////////// |
| 624 | |
| 625 | typedef int FDot8; // 24.8 integer fixed point |
| 626 | |
| 627 | static inline FDot8 SkFixedToFDot8(SkFixed x) { |
| 628 | return (x + 0x80) >> 8; |
| 629 | } |
| 630 | |
| 631 | static void do_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, |
| 632 | SkBlitter* blitter) { |
| 633 | SkASSERT(L < R); |
| 634 | |
| 635 | if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel |
| 636 | blitter->blitV(L >> 8, top, 1, SkAlphaMul(alpha, R - L)); |
| 637 | return; |
| 638 | } |
| 639 | |
| 640 | int left = L >> 8; |
| 641 | |
| 642 | if (L & 0xFF) { |
| 643 | blitter->blitV(left, top, 1, SkAlphaMul(alpha, 256 - (L & 0xFF))); |
| 644 | left += 1; |
| 645 | } |
| 646 | |
| 647 | int rite = R >> 8; |
| 648 | int width = rite - left; |
| 649 | if (width > 0) { |
| 650 | call_hline_blitter(blitter, left, top, width, alpha); |
| 651 | } |
| 652 | if (R & 0xFF) { |
| 653 | blitter->blitV(rite, top, 1, SkAlphaMul(alpha, R & 0xFF)); |
| 654 | } |
| 655 | } |
| 656 | |
| 657 | static void antifilldot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, SkBlitter* blitter, |
| 658 | bool fillInner) { |
| 659 | // check for empty now that we're in our reduced precision space |
| 660 | if (L >= R || T >= B) { |
| 661 | return; |
| 662 | } |
| 663 | int top = T >> 8; |
| 664 | if (top == ((B - 1) >> 8)) { // just one scanline high |
| 665 | do_scanline(L, top, R, B - T - 1, blitter); |
| 666 | return; |
| 667 | } |
| 668 | |
| 669 | if (T & 0xFF) { |
| 670 | do_scanline(L, top, R, 256 - (T & 0xFF), blitter); |
| 671 | top += 1; |
| 672 | } |
| 673 | |
| 674 | int bot = B >> 8; |
| 675 | int height = bot - top; |
| 676 | if (height > 0) { |
| 677 | int left = L >> 8; |
| 678 | if (left == ((R - 1) >> 8)) { // just 1-pixel wide |
| 679 | blitter->blitV(left, top, height, R - L - 1); |
| 680 | } else { |
| 681 | if (L & 0xFF) { |
| 682 | blitter->blitV(left, top, height, 256 - (L & 0xFF)); |
| 683 | left += 1; |
| 684 | } |
| 685 | int rite = R >> 8; |
| 686 | int width = rite - left; |
| 687 | if (width > 0 && fillInner) { |
| 688 | blitter->blitRect(left, top, width, height); |
| 689 | } |
| 690 | if (R & 0xFF) { |
| 691 | blitter->blitV(rite, top, height, R & 0xFF); |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | if (B & 0xFF) { |
| 697 | do_scanline(L, bot, R, B & 0xFF, blitter); |
| 698 | } |
| 699 | } |
| 700 | |
| 701 | static void antifillrect(const SkXRect& xr, SkBlitter* blitter) { |
| 702 | antifilldot8(SkFixedToFDot8(xr.fLeft), SkFixedToFDot8(xr.fTop), |
| 703 | SkFixedToFDot8(xr.fRight), SkFixedToFDot8(xr.fBottom), |
| 704 | blitter, true); |
| 705 | } |
| 706 | |
| 707 | /////////////////////////////////////////////////////////////////////////////// |
| 708 | |
| 709 | void SkScan::AntiFillXRect(const SkXRect& xr, const SkRegion* clip, |
| 710 | SkBlitter* blitter) { |
| 711 | if (nullptr == clip) { |
| 712 | antifillrect(xr, blitter); |
| 713 | } else { |
| 714 | SkIRect outerBounds; |
| 715 | XRect_roundOut(xr, &outerBounds); |
| 716 | |
| 717 | if (clip->isRect()) { |
| 718 | const SkIRect& clipBounds = clip->getBounds(); |
| 719 | |
| 720 | if (clipBounds.contains(outerBounds)) { |
| 721 | antifillrect(xr, blitter); |
| 722 | } else { |
| 723 | SkXRect tmpR; |
| 724 | // this keeps our original edges fractional |
| 725 | XRect_set(&tmpR, clipBounds); |
| 726 | if (tmpR.intersect(xr)) { |
| 727 | antifillrect(tmpR, blitter); |
| 728 | } |
| 729 | } |
| 730 | } else { |
| 731 | SkRegion::Cliperator clipper(*clip, outerBounds); |
| 732 | const SkIRect& rr = clipper.rect(); |
| 733 | |
| 734 | while (!clipper.done()) { |
| 735 | SkXRect tmpR; |
| 736 | |
| 737 | // this keeps our original edges fractional |
| 738 | XRect_set(&tmpR, rr); |
| 739 | if (tmpR.intersect(xr)) { |
| 740 | antifillrect(tmpR, blitter); |
| 741 | } |
| 742 | clipper.next(); |
| 743 | } |
| 744 | } |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | void SkScan::AntiFillXRect(const SkXRect& xr, const SkRasterClip& clip, |
| 749 | SkBlitter* blitter) { |
| 750 | if (clip.isBW()) { |
| 751 | AntiFillXRect(xr, &clip.bwRgn(), blitter); |
| 752 | } else { |
| 753 | SkIRect outerBounds; |
| 754 | XRect_roundOut(xr, &outerBounds); |
| 755 | |
| 756 | if (clip.quickContains(outerBounds)) { |
| 757 | AntiFillXRect(xr, nullptr, blitter); |
| 758 | } else { |
| 759 | SkAAClipBlitterWrapper wrapper(clip, blitter); |
| 760 | AntiFillXRect(xr, &wrapper.getRgn(), wrapper.getBlitter()); |
| 761 | } |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /* This takes a float-rect, but with the key improvement that it has |
| 766 | already been clipped, so we know that it is safe to convert it into a |
| 767 | XRect (fixedpoint), as it won't overflow. |
| 768 | */ |
| 769 | static void antifillrect(const SkRect& r, SkBlitter* blitter) { |
| 770 | SkXRect xr; |
| 771 | |
| 772 | XRect_set(&xr, r); |
| 773 | antifillrect(xr, blitter); |
| 774 | } |
| 775 | |
| 776 | /* We repeat the clipping logic of AntiFillXRect because the float rect might |
| 777 | overflow if we blindly converted it to an XRect. This sucks that we have to |
| 778 | repeat the clipping logic, but I don't see how to share the code/logic. |
| 779 | |
| 780 | We clip r (as needed) into one or more (smaller) float rects, and then pass |
| 781 | those to our version of antifillrect, which converts it into an XRect and |
| 782 | then calls the blit. |
| 783 | */ |
| 784 | void SkScan::AntiFillRect(const SkRect& origR, const SkRegion* clip, |
| 785 | SkBlitter* blitter) { |
| 786 | if (clip) { |
| 787 | SkRect newR; |
| 788 | newR.set(clip->getBounds()); |
| 789 | if (!newR.intersect(origR)) { |
| 790 | return; |
| 791 | } |
| 792 | |
| 793 | const SkIRect outerBounds = newR.roundOut(); |
| 794 | |
| 795 | if (clip->isRect()) { |
| 796 | antifillrect(newR, blitter); |
| 797 | } else { |
| 798 | SkRegion::Cliperator clipper(*clip, outerBounds); |
| 799 | while (!clipper.done()) { |
| 800 | newR.set(clipper.rect()); |
| 801 | if (newR.intersect(origR)) { |
| 802 | antifillrect(newR, blitter); |
| 803 | } |
| 804 | clipper.next(); |
| 805 | } |
| 806 | } |
| 807 | } else { |
| 808 | antifillrect(origR, blitter); |
| 809 | } |
| 810 | } |
| 811 | |
| 812 | void SkScan::AntiFillRect(const SkRect& r, const SkRasterClip& clip, |
| 813 | SkBlitter* blitter) { |
| 814 | if (clip.isBW()) { |
| 815 | AntiFillRect(r, &clip.bwRgn(), blitter); |
| 816 | } else { |
| 817 | SkAAClipBlitterWrapper wrap(clip, blitter); |
| 818 | AntiFillRect(r, &wrap.getRgn(), wrap.getBlitter()); |
| 819 | } |
| 820 | } |
| 821 | |
| 822 | /////////////////////////////////////////////////////////////////////////////// |
| 823 | |
| 824 | #define SkAlphaMulRound(a, b) SkMulDiv255Round(a, b) |
| 825 | |
| 826 | // calls blitRect() if the rectangle is non-empty |
| 827 | static void fillcheckrect(int L, int T, int R, int B, SkBlitter* blitter) { |
| 828 | if (L < R && T < B) { |
| 829 | blitter->blitRect(L, T, R - L, B - T); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | static inline FDot8 SkScalarToFDot8(SkScalar x) { |
| 834 | return (int)(x * 256); |
| 835 | } |
| 836 | |
| 837 | static inline int FDot8Floor(FDot8 x) { |
| 838 | return x >> 8; |
| 839 | } |
| 840 | |
| 841 | static inline int FDot8Ceil(FDot8 x) { |
| 842 | return (x + 0xFF) >> 8; |
| 843 | } |
| 844 | |
| 845 | // 1 - (1 - a)*(1 - b) |
| 846 | static inline U8CPU InvAlphaMul(U8CPU a, U8CPU b) { |
| 847 | // need precise rounding (not just SkAlphaMul) so that values like |
| 848 | // a=228, b=252 don't overflow the result |
| 849 | return SkToU8(a + b - SkAlphaMulRound(a, b)); |
| 850 | } |
| 851 | |
| 852 | static void inner_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, |
| 853 | SkBlitter* blitter) { |
| 854 | SkASSERT(L < R); |
| 855 | |
| 856 | if ((L >> 8) == ((R - 1) >> 8)) { // 1x1 pixel |
| 857 | FDot8 widClamp = R - L; |
| 858 | // border case clamp 256 to 255 instead of going through call_hline_blitter |
| 859 | // see skbug/4406 |
| 860 | widClamp = widClamp - (widClamp >> 8); |
| 861 | blitter->blitV(L >> 8, top, 1, InvAlphaMul(alpha, widClamp)); |
| 862 | return; |
| 863 | } |
| 864 | |
| 865 | int left = L >> 8; |
| 866 | if (L & 0xFF) { |
| 867 | blitter->blitV(left, top, 1, InvAlphaMul(alpha, L & 0xFF)); |
| 868 | left += 1; |
| 869 | } |
| 870 | |
| 871 | int rite = R >> 8; |
| 872 | int width = rite - left; |
| 873 | if (width > 0) { |
| 874 | call_hline_blitter(blitter, left, top, width, alpha); |
| 875 | } |
| 876 | |
| 877 | if (R & 0xFF) { |
| 878 | blitter->blitV(rite, top, 1, InvAlphaMul(alpha, ~R & 0xFF)); |
| 879 | } |
| 880 | } |
| 881 | |
| 882 | static void innerstrokedot8(FDot8 L, FDot8 T, FDot8 R, FDot8 B, |
| 883 | SkBlitter* blitter) { |
| 884 | SkASSERT(L < R && T < B); |
| 885 | |
| 886 | int top = T >> 8; |
| 887 | if (top == ((B - 1) >> 8)) { // just one scanline high |
| 888 | // We want the inverse of B-T, since we're the inner-stroke |
| 889 | int alpha = 256 - (B - T); |
| 890 | if (alpha) { |
| 891 | inner_scanline(L, top, R, alpha, blitter); |
| 892 | } |
| 893 | return; |
| 894 | } |
| 895 | |
| 896 | if (T & 0xFF) { |
| 897 | inner_scanline(L, top, R, T & 0xFF, blitter); |
| 898 | top += 1; |
| 899 | } |
| 900 | |
| 901 | int bot = B >> 8; |
| 902 | int height = bot - top; |
| 903 | if (height > 0) { |
| 904 | if (L & 0xFF) { |
| 905 | blitter->blitV(L >> 8, top, height, L & 0xFF); |
| 906 | } |
| 907 | if (R & 0xFF) { |
| 908 | blitter->blitV(R >> 8, top, height, ~R & 0xFF); |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | if (B & 0xFF) { |
| 913 | inner_scanline(L, bot, R, ~B & 0xFF, blitter); |
| 914 | } |
| 915 | } |
| 916 | |
| 917 | static inline void align_thin_stroke(FDot8& edge1, FDot8& edge2) { |
| 918 | SkASSERT(edge1 <= edge2); |
| 919 | |
| 920 | if (FDot8Floor(edge1) == FDot8Floor(edge2)) { |
| 921 | edge2 -= (edge1 & 0xFF); |
| 922 | edge1 &= ~0xFF; |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize, |
| 927 | const SkRegion* clip, SkBlitter* blitter) { |
| 928 | SkASSERT(strokeSize.fX >= 0 && strokeSize.fY >= 0); |
| 929 | |
| 930 | SkScalar rx = SkScalarHalf(strokeSize.fX); |
| 931 | SkScalar ry = SkScalarHalf(strokeSize.fY); |
| 932 | |
| 933 | // outset by the radius |
| 934 | FDot8 outerL = SkScalarToFDot8(r.fLeft - rx); |
| 935 | FDot8 outerT = SkScalarToFDot8(r.fTop - ry); |
| 936 | FDot8 outerR = SkScalarToFDot8(r.fRight + rx); |
| 937 | FDot8 outerB = SkScalarToFDot8(r.fBottom + ry); |
| 938 | |
| 939 | SkIRect outer; |
| 940 | // set outer to the outer rect of the outer section |
| 941 | outer.setLTRB(FDot8Floor(outerL), FDot8Floor(outerT), FDot8Ceil(outerR), FDot8Ceil(outerB)); |
| 942 | |
| 943 | SkBlitterClipper clipper; |
| 944 | if (clip) { |
| 945 | if (clip->quickReject(outer)) { |
| 946 | return; |
| 947 | } |
| 948 | if (!clip->contains(outer)) { |
| 949 | blitter = clipper.apply(blitter, clip, &outer); |
| 950 | } |
| 951 | // now we can ignore clip for the rest of the function |
| 952 | } |
| 953 | |
| 954 | // in case we lost a bit with diameter/2 |
| 955 | rx = strokeSize.fX - rx; |
| 956 | ry = strokeSize.fY - ry; |
| 957 | |
| 958 | // inset by the radius |
| 959 | FDot8 innerL = SkScalarToFDot8(r.fLeft + rx); |
| 960 | FDot8 innerT = SkScalarToFDot8(r.fTop + ry); |
| 961 | FDot8 innerR = SkScalarToFDot8(r.fRight - rx); |
| 962 | FDot8 innerB = SkScalarToFDot8(r.fBottom - ry); |
| 963 | |
| 964 | // For sub-unit strokes, tweak the hulls such that one of the edges coincides with the pixel |
| 965 | // edge. This ensures that the general rect stroking logic below |
| 966 | // a) doesn't blit the same scanline twice |
| 967 | // b) computes the correct coverage when both edges fall within the same pixel |
| 968 | if (strokeSize.fX < 1 || strokeSize.fY < 1) { |
| 969 | align_thin_stroke(outerL, innerL); |
| 970 | align_thin_stroke(outerT, innerT); |
| 971 | align_thin_stroke(innerR, outerR); |
| 972 | align_thin_stroke(innerB, outerB); |
| 973 | } |
| 974 | |
| 975 | // stroke the outer hull |
| 976 | antifilldot8(outerL, outerT, outerR, outerB, blitter, false); |
| 977 | |
| 978 | // set outer to the outer rect of the middle section |
| 979 | outer.setLTRB(FDot8Ceil(outerL), FDot8Ceil(outerT), FDot8Floor(outerR), FDot8Floor(outerB)); |
| 980 | |
| 981 | if (innerL >= innerR || innerT >= innerB) { |
| 982 | fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, outer.fBottom, |
| 983 | blitter); |
| 984 | } else { |
| 985 | SkIRect inner; |
| 986 | // set inner to the inner rect of the middle section |
| 987 | inner.setLTRB(FDot8Floor(innerL), FDot8Floor(innerT), FDot8Ceil(innerR), FDot8Ceil(innerB)); |
| 988 | |
| 989 | // draw the frame in 4 pieces |
| 990 | fillcheckrect(outer.fLeft, outer.fTop, outer.fRight, inner.fTop, |
| 991 | blitter); |
| 992 | fillcheckrect(outer.fLeft, inner.fTop, inner.fLeft, inner.fBottom, |
| 993 | blitter); |
| 994 | fillcheckrect(inner.fRight, inner.fTop, outer.fRight, inner.fBottom, |
| 995 | blitter); |
| 996 | fillcheckrect(outer.fLeft, inner.fBottom, outer.fRight, outer.fBottom, |
| 997 | blitter); |
| 998 | |
| 999 | // now stroke the inner rect, which is similar to antifilldot8() except that |
| 1000 | // it treats the fractional coordinates with the inverse bias (since its |
| 1001 | // inner). |
| 1002 | innerstrokedot8(innerL, innerT, innerR, innerB, blitter); |
| 1003 | } |
| 1004 | } |
| 1005 | |
| 1006 | void SkScan::AntiFrameRect(const SkRect& r, const SkPoint& strokeSize, |
| 1007 | const SkRasterClip& clip, SkBlitter* blitter) { |
| 1008 | if (clip.isBW()) { |
| 1009 | AntiFrameRect(r, strokeSize, &clip.bwRgn(), blitter); |
| 1010 | } else { |
| 1011 | SkAAClipBlitterWrapper wrap(clip, blitter); |
| 1012 | AntiFrameRect(r, strokeSize, &wrap.getRgn(), wrap.getBlitter()); |
| 1013 | } |
| 1014 | } |
| 1015 | |