1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkString.h" |
9 | #include "include/private/SkTo.h" |
10 | #include "src/core/SkSafeMath.h" |
11 | #include "src/core/SkUtils.h" |
12 | #include "src/utils/SkUTF.h" |
13 | |
14 | #include <cstdio> |
15 | #include <new> |
16 | #include <utility> |
17 | #include <vector> |
18 | |
19 | // number of bytes (on the stack) to receive the printf result |
20 | static const size_t kBufferSize = 1024; |
21 | |
22 | struct StringBuffer { |
23 | char* fText; |
24 | int fLength; |
25 | }; |
26 | |
27 | template <int SIZE> |
28 | static StringBuffer apply_format_string(const char* format, va_list args, char (&stackBuffer)[SIZE], |
29 | SkString* heapBuffer) { |
30 | // First, attempt to print directly to the stack buffer. |
31 | va_list argsCopy; |
32 | va_copy(argsCopy, args); |
33 | int outLength = std::vsnprintf(stackBuffer, SIZE, format, args); |
34 | if (outLength < 0) { |
35 | SkDebugf("SkString: vsnprintf reported error." ); |
36 | va_end(argsCopy); |
37 | return {stackBuffer, 0}; |
38 | } |
39 | if (outLength < SIZE) { |
40 | va_end(argsCopy); |
41 | return {stackBuffer, outLength}; |
42 | } |
43 | |
44 | // Our text was too long to fit on the stack! However, we now know how much space we need to |
45 | // format it. Format the string into our heap buffer. `set` automatically reserves an extra |
46 | // byte at the end of the buffer for a null terminator, so we don't need to add one here. |
47 | heapBuffer->set(nullptr, outLength); |
48 | char* heapBufferDest = heapBuffer->writable_str(); |
49 | SkDEBUGCODE(int checkLength =) std::vsnprintf(heapBufferDest, outLength + 1, format, argsCopy); |
50 | SkASSERT(checkLength == outLength); |
51 | va_end(argsCopy); |
52 | return {heapBufferDest, outLength}; |
53 | } |
54 | |
55 | /////////////////////////////////////////////////////////////////////////////// |
56 | |
57 | bool SkStrEndsWith(const char string[], const char suffixStr[]) { |
58 | SkASSERT(string); |
59 | SkASSERT(suffixStr); |
60 | size_t strLen = strlen(string); |
61 | size_t suffixLen = strlen(suffixStr); |
62 | return strLen >= suffixLen && |
63 | !strncmp(string + strLen - suffixLen, suffixStr, suffixLen); |
64 | } |
65 | |
66 | bool SkStrEndsWith(const char string[], const char suffixChar) { |
67 | SkASSERT(string); |
68 | size_t strLen = strlen(string); |
69 | if (0 == strLen) { |
70 | return false; |
71 | } else { |
72 | return (suffixChar == string[strLen-1]); |
73 | } |
74 | } |
75 | |
76 | int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { |
77 | int index = 0; |
78 | do { |
79 | const char* limit = strchr(prefixes, '\0'); |
80 | if (!strncmp(string, prefixes, limit - prefixes)) { |
81 | return index; |
82 | } |
83 | prefixes = limit + 1; |
84 | index++; |
85 | } while (prefixes[0]); |
86 | return -1; |
87 | } |
88 | |
89 | char* SkStrAppendU32(char string[], uint32_t dec) { |
90 | SkDEBUGCODE(char* start = string;) |
91 | |
92 | char buffer[kSkStrAppendU32_MaxSize]; |
93 | char* p = buffer + sizeof(buffer); |
94 | |
95 | do { |
96 | *--p = SkToU8('0' + dec % 10); |
97 | dec /= 10; |
98 | } while (dec != 0); |
99 | |
100 | SkASSERT(p >= buffer); |
101 | char* stop = buffer + sizeof(buffer); |
102 | while (p < stop) { |
103 | *string++ = *p++; |
104 | } |
105 | SkASSERT(string - start <= kSkStrAppendU32_MaxSize); |
106 | return string; |
107 | } |
108 | |
109 | char* SkStrAppendS32(char string[], int32_t dec) { |
110 | uint32_t udec = dec; |
111 | if (dec < 0) { |
112 | *string++ = '-'; |
113 | udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful |
114 | } |
115 | return SkStrAppendU32(string, udec); |
116 | } |
117 | |
118 | char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) { |
119 | SkDEBUGCODE(char* start = string;) |
120 | |
121 | char buffer[kSkStrAppendU64_MaxSize]; |
122 | char* p = buffer + sizeof(buffer); |
123 | |
124 | do { |
125 | *--p = SkToU8('0' + (int32_t) (dec % 10)); |
126 | dec /= 10; |
127 | minDigits--; |
128 | } while (dec != 0); |
129 | |
130 | while (minDigits > 0) { |
131 | *--p = '0'; |
132 | minDigits--; |
133 | } |
134 | |
135 | SkASSERT(p >= buffer); |
136 | size_t cp_len = buffer + sizeof(buffer) - p; |
137 | memcpy(string, p, cp_len); |
138 | string += cp_len; |
139 | |
140 | SkASSERT(string - start <= kSkStrAppendU64_MaxSize); |
141 | return string; |
142 | } |
143 | |
144 | char* SkStrAppendS64(char string[], int64_t dec, int minDigits) { |
145 | uint64_t udec = dec; |
146 | if (dec < 0) { |
147 | *string++ = '-'; |
148 | udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful |
149 | } |
150 | return SkStrAppendU64(string, udec, minDigits); |
151 | } |
152 | |
153 | char* SkStrAppendScalar(char string[], SkScalar value) { |
154 | // since floats have at most 8 significant digits, we limit our %g to that. |
155 | static const char gFormat[] = "%.8g" ; |
156 | // make it 1 larger for the terminating 0 |
157 | char buffer[kSkStrAppendScalar_MaxSize + 1]; |
158 | int len = snprintf(buffer, sizeof(buffer), gFormat, value); |
159 | memcpy(string, buffer, len); |
160 | SkASSERT(len <= kSkStrAppendScalar_MaxSize); |
161 | return string + len; |
162 | } |
163 | |
164 | /////////////////////////////////////////////////////////////////////////////// |
165 | |
166 | const SkString::Rec SkString::gEmptyRec(0, 0); |
167 | |
168 | #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) |
169 | |
170 | static uint32_t trim_size_t_to_u32(size_t value) { |
171 | if (sizeof(size_t) > sizeof(uint32_t)) { |
172 | if (value > UINT32_MAX) { |
173 | value = UINT32_MAX; |
174 | } |
175 | } |
176 | return (uint32_t)value; |
177 | } |
178 | |
179 | static size_t check_add32(size_t base, size_t ) { |
180 | SkASSERT(base <= UINT32_MAX); |
181 | if (sizeof(size_t) > sizeof(uint32_t)) { |
182 | if (base + extra > UINT32_MAX) { |
183 | extra = UINT32_MAX - base; |
184 | } |
185 | } |
186 | return extra; |
187 | } |
188 | |
189 | sk_sp<SkString::Rec> SkString::Rec::Make(const char text[], size_t len) { |
190 | if (0 == len) { |
191 | return sk_sp<SkString::Rec>(const_cast<Rec*>(&gEmptyRec)); |
192 | } |
193 | |
194 | SkSafeMath safe; |
195 | // We store a 32bit version of the length |
196 | uint32_t stringLen = safe.castTo<uint32_t>(len); |
197 | // Add SizeOfRec() for our overhead and 1 for null-termination |
198 | size_t allocationSize = safe.add(len, SizeOfRec() + sizeof(char)); |
199 | // Align up to a multiple of 4 |
200 | allocationSize = safe.alignUp(allocationSize, 4); |
201 | |
202 | SkASSERT_RELEASE(safe.ok()); |
203 | |
204 | void* storage = ::operator new (allocationSize); |
205 | sk_sp<Rec> rec(new (storage) Rec(stringLen, 1)); |
206 | if (text) { |
207 | memcpy(rec->data(), text, len); |
208 | } |
209 | rec->data()[len] = 0; |
210 | return rec; |
211 | } |
212 | |
213 | void SkString::Rec::ref() const { |
214 | if (this == &SkString::gEmptyRec) { |
215 | return; |
216 | } |
217 | SkAssertResult(this->fRefCnt.fetch_add(+1, std::memory_order_relaxed)); |
218 | } |
219 | |
220 | void SkString::Rec::unref() const { |
221 | if (this == &SkString::gEmptyRec) { |
222 | return; |
223 | } |
224 | int32_t oldRefCnt = this->fRefCnt.fetch_add(-1, std::memory_order_acq_rel); |
225 | SkASSERT(oldRefCnt); |
226 | if (1 == oldRefCnt) { |
227 | delete this; |
228 | } |
229 | } |
230 | |
231 | bool SkString::Rec::unique() const { |
232 | return fRefCnt.load(std::memory_order_acquire) == 1; |
233 | } |
234 | |
235 | #ifdef SK_DEBUG |
236 | const SkString& SkString::validate() const { |
237 | // make sure know one has written over our global |
238 | SkASSERT(0 == gEmptyRec.fLength); |
239 | SkASSERT(0 == gEmptyRec.fRefCnt.load(std::memory_order_relaxed)); |
240 | SkASSERT(0 == gEmptyRec.data()[0]); |
241 | |
242 | if (fRec.get() != &gEmptyRec) { |
243 | SkASSERT(fRec->fLength > 0); |
244 | SkASSERT(fRec->fRefCnt.load(std::memory_order_relaxed) > 0); |
245 | SkASSERT(0 == fRec->data()[fRec->fLength]); |
246 | } |
247 | return *this; |
248 | } |
249 | #endif |
250 | |
251 | /////////////////////////////////////////////////////////////////////////////// |
252 | |
253 | SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) { |
254 | } |
255 | |
256 | SkString::SkString(size_t len) { |
257 | fRec = Rec::Make(nullptr, len); |
258 | } |
259 | |
260 | SkString::SkString(const char text[]) { |
261 | size_t len = text ? strlen(text) : 0; |
262 | |
263 | fRec = Rec::Make(text, len); |
264 | } |
265 | |
266 | SkString::SkString(const char text[], size_t len) { |
267 | fRec = Rec::Make(text, len); |
268 | } |
269 | |
270 | SkString::SkString(const SkString& src) : fRec(src.validate().fRec) {} |
271 | |
272 | SkString::SkString(SkString&& src) : fRec(std::move(src.validate().fRec)) { |
273 | src.fRec.reset(const_cast<Rec*>(&gEmptyRec)); |
274 | } |
275 | |
276 | SkString::SkString(const std::string& src) { |
277 | fRec = Rec::Make(src.c_str(), src.size()); |
278 | } |
279 | |
280 | SkString::~SkString() { |
281 | this->validate(); |
282 | } |
283 | |
284 | bool SkString::equals(const SkString& src) const { |
285 | return fRec == src.fRec || this->equals(src.c_str(), src.size()); |
286 | } |
287 | |
288 | bool SkString::equals(const char text[]) const { |
289 | return this->equals(text, text ? strlen(text) : 0); |
290 | } |
291 | |
292 | bool SkString::equals(const char text[], size_t len) const { |
293 | SkASSERT(len == 0 || text != nullptr); |
294 | |
295 | return fRec->fLength == len && !sk_careful_memcmp(fRec->data(), text, len); |
296 | } |
297 | |
298 | SkString& SkString::operator=(const SkString& src) { |
299 | this->validate(); |
300 | fRec = src.fRec; // sk_sp<Rec>::operator=(const sk_sp<Ref>&) checks for self-assignment. |
301 | return *this; |
302 | } |
303 | |
304 | SkString& SkString::operator=(SkString&& src) { |
305 | this->validate(); |
306 | |
307 | if (fRec != src.fRec) { |
308 | this->swap(src); |
309 | } |
310 | return *this; |
311 | } |
312 | |
313 | SkString& SkString::operator=(const char text[]) { |
314 | this->validate(); |
315 | return *this = SkString(text); |
316 | } |
317 | |
318 | void SkString::reset() { |
319 | this->validate(); |
320 | fRec.reset(const_cast<Rec*>(&gEmptyRec)); |
321 | } |
322 | |
323 | char* SkString::writable_str() { |
324 | this->validate(); |
325 | |
326 | if (fRec->fLength) { |
327 | if (!fRec->unique()) { |
328 | fRec = Rec::Make(fRec->data(), fRec->fLength); |
329 | } |
330 | } |
331 | return fRec->data(); |
332 | } |
333 | |
334 | void SkString::resize(size_t len) { |
335 | len = trim_size_t_to_u32(len); |
336 | if (0 == len) { |
337 | this->reset(); |
338 | } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) { |
339 | // Use less of the buffer we have without allocating a smaller one. |
340 | char* p = this->writable_str(); |
341 | p[len] = '\0'; |
342 | fRec->fLength = SkToU32(len); |
343 | } else { |
344 | SkString newString(len); |
345 | char* dest = newString.writable_str(); |
346 | int copyLen = std::min<uint32_t>(len, this->size()); |
347 | memcpy(dest, this->c_str(), copyLen); |
348 | dest[copyLen] = '\0'; |
349 | this->swap(newString); |
350 | } |
351 | } |
352 | |
353 | void SkString::set(const char text[]) { |
354 | this->set(text, text ? strlen(text) : 0); |
355 | } |
356 | |
357 | void SkString::set(const char text[], size_t len) { |
358 | len = trim_size_t_to_u32(len); |
359 | if (0 == len) { |
360 | this->reset(); |
361 | } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) { |
362 | // Use less of the buffer we have without allocating a smaller one. |
363 | char* p = this->writable_str(); |
364 | if (text) { |
365 | memcpy(p, text, len); |
366 | } |
367 | p[len] = '\0'; |
368 | fRec->fLength = SkToU32(len); |
369 | } else { |
370 | SkString tmp(text, len); |
371 | this->swap(tmp); |
372 | } |
373 | } |
374 | |
375 | void SkString::insert(size_t offset, const char text[]) { |
376 | this->insert(offset, text, text ? strlen(text) : 0); |
377 | } |
378 | |
379 | void SkString::insert(size_t offset, const char text[], size_t len) { |
380 | if (len) { |
381 | size_t length = fRec->fLength; |
382 | if (offset > length) { |
383 | offset = length; |
384 | } |
385 | |
386 | // Check if length + len exceeds 32bits, we trim len |
387 | len = check_add32(length, len); |
388 | if (0 == len) { |
389 | return; |
390 | } |
391 | |
392 | /* If we're the only owner, and we have room in our allocation for the insert, |
393 | do it in place, rather than allocating a new buffer. |
394 | |
395 | To know we have room, compare the allocated sizes |
396 | beforeAlloc = SkAlign4(length + 1) |
397 | afterAlloc = SkAligh4(length + 1 + len) |
398 | but SkAlign4(x) is (x + 3) >> 2 << 2 |
399 | which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 |
400 | and we can then eliminate the +1+3 since that doesn't affec the answer |
401 | */ |
402 | if (fRec->unique() && (length >> 2) == ((length + len) >> 2)) { |
403 | char* dst = this->writable_str(); |
404 | |
405 | if (offset < length) { |
406 | memmove(dst + offset + len, dst + offset, length - offset); |
407 | } |
408 | memcpy(dst + offset, text, len); |
409 | |
410 | dst[length + len] = 0; |
411 | fRec->fLength = SkToU32(length + len); |
412 | } else { |
413 | /* Seems we should use realloc here, since that is safe if it fails |
414 | (we have the original data), and might be faster than alloc/copy/free. |
415 | */ |
416 | SkString tmp(fRec->fLength + len); |
417 | char* dst = tmp.writable_str(); |
418 | |
419 | if (offset > 0) { |
420 | memcpy(dst, fRec->data(), offset); |
421 | } |
422 | memcpy(dst + offset, text, len); |
423 | if (offset < fRec->fLength) { |
424 | memcpy(dst + offset + len, fRec->data() + offset, |
425 | fRec->fLength - offset); |
426 | } |
427 | |
428 | this->swap(tmp); |
429 | } |
430 | } |
431 | } |
432 | |
433 | void SkString::insertUnichar(size_t offset, SkUnichar uni) { |
434 | char buffer[SkUTF::kMaxBytesInUTF8Sequence]; |
435 | size_t len = SkUTF::ToUTF8(uni, buffer); |
436 | |
437 | if (len) { |
438 | this->insert(offset, buffer, len); |
439 | } |
440 | } |
441 | |
442 | void SkString::insertS32(size_t offset, int32_t dec) { |
443 | char buffer[kSkStrAppendS32_MaxSize]; |
444 | char* stop = SkStrAppendS32(buffer, dec); |
445 | this->insert(offset, buffer, stop - buffer); |
446 | } |
447 | |
448 | void SkString::insertS64(size_t offset, int64_t dec, int minDigits) { |
449 | char buffer[kSkStrAppendS64_MaxSize]; |
450 | char* stop = SkStrAppendS64(buffer, dec, minDigits); |
451 | this->insert(offset, buffer, stop - buffer); |
452 | } |
453 | |
454 | void SkString::insertU32(size_t offset, uint32_t dec) { |
455 | char buffer[kSkStrAppendU32_MaxSize]; |
456 | char* stop = SkStrAppendU32(buffer, dec); |
457 | this->insert(offset, buffer, stop - buffer); |
458 | } |
459 | |
460 | void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) { |
461 | char buffer[kSkStrAppendU64_MaxSize]; |
462 | char* stop = SkStrAppendU64(buffer, dec, minDigits); |
463 | this->insert(offset, buffer, stop - buffer); |
464 | } |
465 | |
466 | void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { |
467 | minDigits = SkTPin(minDigits, 0, 8); |
468 | |
469 | char buffer[8]; |
470 | char* p = buffer + sizeof(buffer); |
471 | |
472 | do { |
473 | *--p = SkHexadecimalDigits::gUpper[hex & 0xF]; |
474 | hex >>= 4; |
475 | minDigits -= 1; |
476 | } while (hex != 0); |
477 | |
478 | while (--minDigits >= 0) { |
479 | *--p = '0'; |
480 | } |
481 | |
482 | SkASSERT(p >= buffer); |
483 | this->insert(offset, p, buffer + sizeof(buffer) - p); |
484 | } |
485 | |
486 | void SkString::insertScalar(size_t offset, SkScalar value) { |
487 | char buffer[kSkStrAppendScalar_MaxSize]; |
488 | char* stop = SkStrAppendScalar(buffer, value); |
489 | this->insert(offset, buffer, stop - buffer); |
490 | } |
491 | |
492 | /////////////////////////////////////////////////////////////////////////////// |
493 | |
494 | void SkString::printf(const char format[], ...) { |
495 | va_list args; |
496 | va_start(args, format); |
497 | this->printVAList(format, args); |
498 | va_end(args); |
499 | } |
500 | |
501 | void SkString::printVAList(const char format[], va_list args) { |
502 | char stackBuffer[kBufferSize]; |
503 | StringBuffer result = apply_format_string(format, args, stackBuffer, this); |
504 | |
505 | if (result.fText == stackBuffer) { |
506 | this->set(result.fText, result.fLength); |
507 | } |
508 | } |
509 | |
510 | void SkString::appendf(const char format[], ...) { |
511 | va_list args; |
512 | va_start(args, format); |
513 | this->appendVAList(format, args); |
514 | va_end(args); |
515 | } |
516 | |
517 | void SkString::appendVAList(const char format[], va_list args) { |
518 | if (this->isEmpty()) { |
519 | this->printVAList(format, args); |
520 | return; |
521 | } |
522 | |
523 | SkString overflow; |
524 | char stackBuffer[kBufferSize]; |
525 | StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow); |
526 | |
527 | this->append(result.fText, result.fLength); |
528 | } |
529 | |
530 | void SkString::prependf(const char format[], ...) { |
531 | va_list args; |
532 | va_start(args, format); |
533 | this->prependVAList(format, args); |
534 | va_end(args); |
535 | } |
536 | |
537 | void SkString::prependVAList(const char format[], va_list args) { |
538 | if (this->isEmpty()) { |
539 | this->printVAList(format, args); |
540 | return; |
541 | } |
542 | |
543 | SkString overflow; |
544 | char stackBuffer[kBufferSize]; |
545 | StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow); |
546 | |
547 | this->prepend(result.fText, result.fLength); |
548 | } |
549 | |
550 | /////////////////////////////////////////////////////////////////////////////// |
551 | |
552 | void SkString::remove(size_t offset, size_t length) { |
553 | size_t size = this->size(); |
554 | |
555 | if (offset < size) { |
556 | if (length > size - offset) { |
557 | length = size - offset; |
558 | } |
559 | SkASSERT(length <= size); |
560 | SkASSERT(offset <= size - length); |
561 | if (length > 0) { |
562 | SkString tmp(size - length); |
563 | char* dst = tmp.writable_str(); |
564 | const char* src = this->c_str(); |
565 | |
566 | if (offset) { |
567 | memcpy(dst, src, offset); |
568 | } |
569 | size_t tail = size - (offset + length); |
570 | if (tail) { |
571 | memcpy(dst + offset, src + (offset + length), tail); |
572 | } |
573 | SkASSERT(dst[tmp.size()] == 0); |
574 | this->swap(tmp); |
575 | } |
576 | } |
577 | } |
578 | |
579 | void SkString::swap(SkString& other) { |
580 | this->validate(); |
581 | other.validate(); |
582 | |
583 | using std::swap; |
584 | swap(fRec, other.fRec); |
585 | } |
586 | |
587 | /////////////////////////////////////////////////////////////////////////////// |
588 | |
589 | SkString SkStringPrintf(const char* format, ...) { |
590 | SkString formattedOutput; |
591 | va_list args; |
592 | va_start(args, format); |
593 | formattedOutput.printVAList(format, args); |
594 | va_end(args); |
595 | return formattedOutput; |
596 | } |
597 | |
598 | void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode, |
599 | SkTArray<SkString>* out) { |
600 | if (splitMode == kCoalesce_SkStrSplitMode) { |
601 | // Skip any delimiters. |
602 | str += strspn(str, delimiters); |
603 | } |
604 | if (!*str) { |
605 | return; |
606 | } |
607 | |
608 | while (true) { |
609 | // Find a token. |
610 | const size_t len = strcspn(str, delimiters); |
611 | if (splitMode == kStrict_SkStrSplitMode || len > 0) { |
612 | out->push_back().set(str, len); |
613 | str += len; |
614 | } |
615 | |
616 | if (!*str) { |
617 | return; |
618 | } |
619 | if (splitMode == kCoalesce_SkStrSplitMode) { |
620 | // Skip any delimiters. |
621 | str += strspn(str, delimiters); |
622 | } else { |
623 | // Skip one delimiter. |
624 | str += 1; |
625 | } |
626 | } |
627 | } |
628 | |