| 1 | /* |
| 2 | * Copyright 2006 The Android Open Source Project |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkString.h" |
| 9 | #include "include/private/SkTo.h" |
| 10 | #include "src/core/SkSafeMath.h" |
| 11 | #include "src/core/SkUtils.h" |
| 12 | #include "src/utils/SkUTF.h" |
| 13 | |
| 14 | #include <cstdio> |
| 15 | #include <new> |
| 16 | #include <utility> |
| 17 | #include <vector> |
| 18 | |
| 19 | // number of bytes (on the stack) to receive the printf result |
| 20 | static const size_t kBufferSize = 1024; |
| 21 | |
| 22 | struct StringBuffer { |
| 23 | char* fText; |
| 24 | int fLength; |
| 25 | }; |
| 26 | |
| 27 | template <int SIZE> |
| 28 | static StringBuffer apply_format_string(const char* format, va_list args, char (&stackBuffer)[SIZE], |
| 29 | SkString* heapBuffer) { |
| 30 | // First, attempt to print directly to the stack buffer. |
| 31 | va_list argsCopy; |
| 32 | va_copy(argsCopy, args); |
| 33 | int outLength = std::vsnprintf(stackBuffer, SIZE, format, args); |
| 34 | if (outLength < 0) { |
| 35 | SkDebugf("SkString: vsnprintf reported error." ); |
| 36 | va_end(argsCopy); |
| 37 | return {stackBuffer, 0}; |
| 38 | } |
| 39 | if (outLength < SIZE) { |
| 40 | va_end(argsCopy); |
| 41 | return {stackBuffer, outLength}; |
| 42 | } |
| 43 | |
| 44 | // Our text was too long to fit on the stack! However, we now know how much space we need to |
| 45 | // format it. Format the string into our heap buffer. `set` automatically reserves an extra |
| 46 | // byte at the end of the buffer for a null terminator, so we don't need to add one here. |
| 47 | heapBuffer->set(nullptr, outLength); |
| 48 | char* heapBufferDest = heapBuffer->writable_str(); |
| 49 | SkDEBUGCODE(int checkLength =) std::vsnprintf(heapBufferDest, outLength + 1, format, argsCopy); |
| 50 | SkASSERT(checkLength == outLength); |
| 51 | va_end(argsCopy); |
| 52 | return {heapBufferDest, outLength}; |
| 53 | } |
| 54 | |
| 55 | /////////////////////////////////////////////////////////////////////////////// |
| 56 | |
| 57 | bool SkStrEndsWith(const char string[], const char suffixStr[]) { |
| 58 | SkASSERT(string); |
| 59 | SkASSERT(suffixStr); |
| 60 | size_t strLen = strlen(string); |
| 61 | size_t suffixLen = strlen(suffixStr); |
| 62 | return strLen >= suffixLen && |
| 63 | !strncmp(string + strLen - suffixLen, suffixStr, suffixLen); |
| 64 | } |
| 65 | |
| 66 | bool SkStrEndsWith(const char string[], const char suffixChar) { |
| 67 | SkASSERT(string); |
| 68 | size_t strLen = strlen(string); |
| 69 | if (0 == strLen) { |
| 70 | return false; |
| 71 | } else { |
| 72 | return (suffixChar == string[strLen-1]); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { |
| 77 | int index = 0; |
| 78 | do { |
| 79 | const char* limit = strchr(prefixes, '\0'); |
| 80 | if (!strncmp(string, prefixes, limit - prefixes)) { |
| 81 | return index; |
| 82 | } |
| 83 | prefixes = limit + 1; |
| 84 | index++; |
| 85 | } while (prefixes[0]); |
| 86 | return -1; |
| 87 | } |
| 88 | |
| 89 | char* SkStrAppendU32(char string[], uint32_t dec) { |
| 90 | SkDEBUGCODE(char* start = string;) |
| 91 | |
| 92 | char buffer[kSkStrAppendU32_MaxSize]; |
| 93 | char* p = buffer + sizeof(buffer); |
| 94 | |
| 95 | do { |
| 96 | *--p = SkToU8('0' + dec % 10); |
| 97 | dec /= 10; |
| 98 | } while (dec != 0); |
| 99 | |
| 100 | SkASSERT(p >= buffer); |
| 101 | char* stop = buffer + sizeof(buffer); |
| 102 | while (p < stop) { |
| 103 | *string++ = *p++; |
| 104 | } |
| 105 | SkASSERT(string - start <= kSkStrAppendU32_MaxSize); |
| 106 | return string; |
| 107 | } |
| 108 | |
| 109 | char* SkStrAppendS32(char string[], int32_t dec) { |
| 110 | uint32_t udec = dec; |
| 111 | if (dec < 0) { |
| 112 | *string++ = '-'; |
| 113 | udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful |
| 114 | } |
| 115 | return SkStrAppendU32(string, udec); |
| 116 | } |
| 117 | |
| 118 | char* SkStrAppendU64(char string[], uint64_t dec, int minDigits) { |
| 119 | SkDEBUGCODE(char* start = string;) |
| 120 | |
| 121 | char buffer[kSkStrAppendU64_MaxSize]; |
| 122 | char* p = buffer + sizeof(buffer); |
| 123 | |
| 124 | do { |
| 125 | *--p = SkToU8('0' + (int32_t) (dec % 10)); |
| 126 | dec /= 10; |
| 127 | minDigits--; |
| 128 | } while (dec != 0); |
| 129 | |
| 130 | while (minDigits > 0) { |
| 131 | *--p = '0'; |
| 132 | minDigits--; |
| 133 | } |
| 134 | |
| 135 | SkASSERT(p >= buffer); |
| 136 | size_t cp_len = buffer + sizeof(buffer) - p; |
| 137 | memcpy(string, p, cp_len); |
| 138 | string += cp_len; |
| 139 | |
| 140 | SkASSERT(string - start <= kSkStrAppendU64_MaxSize); |
| 141 | return string; |
| 142 | } |
| 143 | |
| 144 | char* SkStrAppendS64(char string[], int64_t dec, int minDigits) { |
| 145 | uint64_t udec = dec; |
| 146 | if (dec < 0) { |
| 147 | *string++ = '-'; |
| 148 | udec = ~udec + 1; // udec = -udec, but silences some warnings that are trying to be helpful |
| 149 | } |
| 150 | return SkStrAppendU64(string, udec, minDigits); |
| 151 | } |
| 152 | |
| 153 | char* SkStrAppendScalar(char string[], SkScalar value) { |
| 154 | // since floats have at most 8 significant digits, we limit our %g to that. |
| 155 | static const char gFormat[] = "%.8g" ; |
| 156 | // make it 1 larger for the terminating 0 |
| 157 | char buffer[kSkStrAppendScalar_MaxSize + 1]; |
| 158 | int len = snprintf(buffer, sizeof(buffer), gFormat, value); |
| 159 | memcpy(string, buffer, len); |
| 160 | SkASSERT(len <= kSkStrAppendScalar_MaxSize); |
| 161 | return string + len; |
| 162 | } |
| 163 | |
| 164 | /////////////////////////////////////////////////////////////////////////////// |
| 165 | |
| 166 | const SkString::Rec SkString::gEmptyRec(0, 0); |
| 167 | |
| 168 | #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) |
| 169 | |
| 170 | static uint32_t trim_size_t_to_u32(size_t value) { |
| 171 | if (sizeof(size_t) > sizeof(uint32_t)) { |
| 172 | if (value > UINT32_MAX) { |
| 173 | value = UINT32_MAX; |
| 174 | } |
| 175 | } |
| 176 | return (uint32_t)value; |
| 177 | } |
| 178 | |
| 179 | static size_t check_add32(size_t base, size_t ) { |
| 180 | SkASSERT(base <= UINT32_MAX); |
| 181 | if (sizeof(size_t) > sizeof(uint32_t)) { |
| 182 | if (base + extra > UINT32_MAX) { |
| 183 | extra = UINT32_MAX - base; |
| 184 | } |
| 185 | } |
| 186 | return extra; |
| 187 | } |
| 188 | |
| 189 | sk_sp<SkString::Rec> SkString::Rec::Make(const char text[], size_t len) { |
| 190 | if (0 == len) { |
| 191 | return sk_sp<SkString::Rec>(const_cast<Rec*>(&gEmptyRec)); |
| 192 | } |
| 193 | |
| 194 | SkSafeMath safe; |
| 195 | // We store a 32bit version of the length |
| 196 | uint32_t stringLen = safe.castTo<uint32_t>(len); |
| 197 | // Add SizeOfRec() for our overhead and 1 for null-termination |
| 198 | size_t allocationSize = safe.add(len, SizeOfRec() + sizeof(char)); |
| 199 | // Align up to a multiple of 4 |
| 200 | allocationSize = safe.alignUp(allocationSize, 4); |
| 201 | |
| 202 | SkASSERT_RELEASE(safe.ok()); |
| 203 | |
| 204 | void* storage = ::operator new (allocationSize); |
| 205 | sk_sp<Rec> rec(new (storage) Rec(stringLen, 1)); |
| 206 | if (text) { |
| 207 | memcpy(rec->data(), text, len); |
| 208 | } |
| 209 | rec->data()[len] = 0; |
| 210 | return rec; |
| 211 | } |
| 212 | |
| 213 | void SkString::Rec::ref() const { |
| 214 | if (this == &SkString::gEmptyRec) { |
| 215 | return; |
| 216 | } |
| 217 | SkAssertResult(this->fRefCnt.fetch_add(+1, std::memory_order_relaxed)); |
| 218 | } |
| 219 | |
| 220 | void SkString::Rec::unref() const { |
| 221 | if (this == &SkString::gEmptyRec) { |
| 222 | return; |
| 223 | } |
| 224 | int32_t oldRefCnt = this->fRefCnt.fetch_add(-1, std::memory_order_acq_rel); |
| 225 | SkASSERT(oldRefCnt); |
| 226 | if (1 == oldRefCnt) { |
| 227 | delete this; |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | bool SkString::Rec::unique() const { |
| 232 | return fRefCnt.load(std::memory_order_acquire) == 1; |
| 233 | } |
| 234 | |
| 235 | #ifdef SK_DEBUG |
| 236 | const SkString& SkString::validate() const { |
| 237 | // make sure know one has written over our global |
| 238 | SkASSERT(0 == gEmptyRec.fLength); |
| 239 | SkASSERT(0 == gEmptyRec.fRefCnt.load(std::memory_order_relaxed)); |
| 240 | SkASSERT(0 == gEmptyRec.data()[0]); |
| 241 | |
| 242 | if (fRec.get() != &gEmptyRec) { |
| 243 | SkASSERT(fRec->fLength > 0); |
| 244 | SkASSERT(fRec->fRefCnt.load(std::memory_order_relaxed) > 0); |
| 245 | SkASSERT(0 == fRec->data()[fRec->fLength]); |
| 246 | } |
| 247 | return *this; |
| 248 | } |
| 249 | #endif |
| 250 | |
| 251 | /////////////////////////////////////////////////////////////////////////////// |
| 252 | |
| 253 | SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) { |
| 254 | } |
| 255 | |
| 256 | SkString::SkString(size_t len) { |
| 257 | fRec = Rec::Make(nullptr, len); |
| 258 | } |
| 259 | |
| 260 | SkString::SkString(const char text[]) { |
| 261 | size_t len = text ? strlen(text) : 0; |
| 262 | |
| 263 | fRec = Rec::Make(text, len); |
| 264 | } |
| 265 | |
| 266 | SkString::SkString(const char text[], size_t len) { |
| 267 | fRec = Rec::Make(text, len); |
| 268 | } |
| 269 | |
| 270 | SkString::SkString(const SkString& src) : fRec(src.validate().fRec) {} |
| 271 | |
| 272 | SkString::SkString(SkString&& src) : fRec(std::move(src.validate().fRec)) { |
| 273 | src.fRec.reset(const_cast<Rec*>(&gEmptyRec)); |
| 274 | } |
| 275 | |
| 276 | SkString::SkString(const std::string& src) { |
| 277 | fRec = Rec::Make(src.c_str(), src.size()); |
| 278 | } |
| 279 | |
| 280 | SkString::~SkString() { |
| 281 | this->validate(); |
| 282 | } |
| 283 | |
| 284 | bool SkString::equals(const SkString& src) const { |
| 285 | return fRec == src.fRec || this->equals(src.c_str(), src.size()); |
| 286 | } |
| 287 | |
| 288 | bool SkString::equals(const char text[]) const { |
| 289 | return this->equals(text, text ? strlen(text) : 0); |
| 290 | } |
| 291 | |
| 292 | bool SkString::equals(const char text[], size_t len) const { |
| 293 | SkASSERT(len == 0 || text != nullptr); |
| 294 | |
| 295 | return fRec->fLength == len && !sk_careful_memcmp(fRec->data(), text, len); |
| 296 | } |
| 297 | |
| 298 | SkString& SkString::operator=(const SkString& src) { |
| 299 | this->validate(); |
| 300 | fRec = src.fRec; // sk_sp<Rec>::operator=(const sk_sp<Ref>&) checks for self-assignment. |
| 301 | return *this; |
| 302 | } |
| 303 | |
| 304 | SkString& SkString::operator=(SkString&& src) { |
| 305 | this->validate(); |
| 306 | |
| 307 | if (fRec != src.fRec) { |
| 308 | this->swap(src); |
| 309 | } |
| 310 | return *this; |
| 311 | } |
| 312 | |
| 313 | SkString& SkString::operator=(const char text[]) { |
| 314 | this->validate(); |
| 315 | return *this = SkString(text); |
| 316 | } |
| 317 | |
| 318 | void SkString::reset() { |
| 319 | this->validate(); |
| 320 | fRec.reset(const_cast<Rec*>(&gEmptyRec)); |
| 321 | } |
| 322 | |
| 323 | char* SkString::writable_str() { |
| 324 | this->validate(); |
| 325 | |
| 326 | if (fRec->fLength) { |
| 327 | if (!fRec->unique()) { |
| 328 | fRec = Rec::Make(fRec->data(), fRec->fLength); |
| 329 | } |
| 330 | } |
| 331 | return fRec->data(); |
| 332 | } |
| 333 | |
| 334 | void SkString::resize(size_t len) { |
| 335 | len = trim_size_t_to_u32(len); |
| 336 | if (0 == len) { |
| 337 | this->reset(); |
| 338 | } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) { |
| 339 | // Use less of the buffer we have without allocating a smaller one. |
| 340 | char* p = this->writable_str(); |
| 341 | p[len] = '\0'; |
| 342 | fRec->fLength = SkToU32(len); |
| 343 | } else { |
| 344 | SkString newString(len); |
| 345 | char* dest = newString.writable_str(); |
| 346 | int copyLen = std::min<uint32_t>(len, this->size()); |
| 347 | memcpy(dest, this->c_str(), copyLen); |
| 348 | dest[copyLen] = '\0'; |
| 349 | this->swap(newString); |
| 350 | } |
| 351 | } |
| 352 | |
| 353 | void SkString::set(const char text[]) { |
| 354 | this->set(text, text ? strlen(text) : 0); |
| 355 | } |
| 356 | |
| 357 | void SkString::set(const char text[], size_t len) { |
| 358 | len = trim_size_t_to_u32(len); |
| 359 | if (0 == len) { |
| 360 | this->reset(); |
| 361 | } else if (fRec->unique() && ((len >> 2) <= (fRec->fLength >> 2))) { |
| 362 | // Use less of the buffer we have without allocating a smaller one. |
| 363 | char* p = this->writable_str(); |
| 364 | if (text) { |
| 365 | memcpy(p, text, len); |
| 366 | } |
| 367 | p[len] = '\0'; |
| 368 | fRec->fLength = SkToU32(len); |
| 369 | } else { |
| 370 | SkString tmp(text, len); |
| 371 | this->swap(tmp); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | void SkString::insert(size_t offset, const char text[]) { |
| 376 | this->insert(offset, text, text ? strlen(text) : 0); |
| 377 | } |
| 378 | |
| 379 | void SkString::insert(size_t offset, const char text[], size_t len) { |
| 380 | if (len) { |
| 381 | size_t length = fRec->fLength; |
| 382 | if (offset > length) { |
| 383 | offset = length; |
| 384 | } |
| 385 | |
| 386 | // Check if length + len exceeds 32bits, we trim len |
| 387 | len = check_add32(length, len); |
| 388 | if (0 == len) { |
| 389 | return; |
| 390 | } |
| 391 | |
| 392 | /* If we're the only owner, and we have room in our allocation for the insert, |
| 393 | do it in place, rather than allocating a new buffer. |
| 394 | |
| 395 | To know we have room, compare the allocated sizes |
| 396 | beforeAlloc = SkAlign4(length + 1) |
| 397 | afterAlloc = SkAligh4(length + 1 + len) |
| 398 | but SkAlign4(x) is (x + 3) >> 2 << 2 |
| 399 | which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 |
| 400 | and we can then eliminate the +1+3 since that doesn't affec the answer |
| 401 | */ |
| 402 | if (fRec->unique() && (length >> 2) == ((length + len) >> 2)) { |
| 403 | char* dst = this->writable_str(); |
| 404 | |
| 405 | if (offset < length) { |
| 406 | memmove(dst + offset + len, dst + offset, length - offset); |
| 407 | } |
| 408 | memcpy(dst + offset, text, len); |
| 409 | |
| 410 | dst[length + len] = 0; |
| 411 | fRec->fLength = SkToU32(length + len); |
| 412 | } else { |
| 413 | /* Seems we should use realloc here, since that is safe if it fails |
| 414 | (we have the original data), and might be faster than alloc/copy/free. |
| 415 | */ |
| 416 | SkString tmp(fRec->fLength + len); |
| 417 | char* dst = tmp.writable_str(); |
| 418 | |
| 419 | if (offset > 0) { |
| 420 | memcpy(dst, fRec->data(), offset); |
| 421 | } |
| 422 | memcpy(dst + offset, text, len); |
| 423 | if (offset < fRec->fLength) { |
| 424 | memcpy(dst + offset + len, fRec->data() + offset, |
| 425 | fRec->fLength - offset); |
| 426 | } |
| 427 | |
| 428 | this->swap(tmp); |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | void SkString::insertUnichar(size_t offset, SkUnichar uni) { |
| 434 | char buffer[SkUTF::kMaxBytesInUTF8Sequence]; |
| 435 | size_t len = SkUTF::ToUTF8(uni, buffer); |
| 436 | |
| 437 | if (len) { |
| 438 | this->insert(offset, buffer, len); |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | void SkString::insertS32(size_t offset, int32_t dec) { |
| 443 | char buffer[kSkStrAppendS32_MaxSize]; |
| 444 | char* stop = SkStrAppendS32(buffer, dec); |
| 445 | this->insert(offset, buffer, stop - buffer); |
| 446 | } |
| 447 | |
| 448 | void SkString::insertS64(size_t offset, int64_t dec, int minDigits) { |
| 449 | char buffer[kSkStrAppendS64_MaxSize]; |
| 450 | char* stop = SkStrAppendS64(buffer, dec, minDigits); |
| 451 | this->insert(offset, buffer, stop - buffer); |
| 452 | } |
| 453 | |
| 454 | void SkString::insertU32(size_t offset, uint32_t dec) { |
| 455 | char buffer[kSkStrAppendU32_MaxSize]; |
| 456 | char* stop = SkStrAppendU32(buffer, dec); |
| 457 | this->insert(offset, buffer, stop - buffer); |
| 458 | } |
| 459 | |
| 460 | void SkString::insertU64(size_t offset, uint64_t dec, int minDigits) { |
| 461 | char buffer[kSkStrAppendU64_MaxSize]; |
| 462 | char* stop = SkStrAppendU64(buffer, dec, minDigits); |
| 463 | this->insert(offset, buffer, stop - buffer); |
| 464 | } |
| 465 | |
| 466 | void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { |
| 467 | minDigits = SkTPin(minDigits, 0, 8); |
| 468 | |
| 469 | char buffer[8]; |
| 470 | char* p = buffer + sizeof(buffer); |
| 471 | |
| 472 | do { |
| 473 | *--p = SkHexadecimalDigits::gUpper[hex & 0xF]; |
| 474 | hex >>= 4; |
| 475 | minDigits -= 1; |
| 476 | } while (hex != 0); |
| 477 | |
| 478 | while (--minDigits >= 0) { |
| 479 | *--p = '0'; |
| 480 | } |
| 481 | |
| 482 | SkASSERT(p >= buffer); |
| 483 | this->insert(offset, p, buffer + sizeof(buffer) - p); |
| 484 | } |
| 485 | |
| 486 | void SkString::insertScalar(size_t offset, SkScalar value) { |
| 487 | char buffer[kSkStrAppendScalar_MaxSize]; |
| 488 | char* stop = SkStrAppendScalar(buffer, value); |
| 489 | this->insert(offset, buffer, stop - buffer); |
| 490 | } |
| 491 | |
| 492 | /////////////////////////////////////////////////////////////////////////////// |
| 493 | |
| 494 | void SkString::printf(const char format[], ...) { |
| 495 | va_list args; |
| 496 | va_start(args, format); |
| 497 | this->printVAList(format, args); |
| 498 | va_end(args); |
| 499 | } |
| 500 | |
| 501 | void SkString::printVAList(const char format[], va_list args) { |
| 502 | char stackBuffer[kBufferSize]; |
| 503 | StringBuffer result = apply_format_string(format, args, stackBuffer, this); |
| 504 | |
| 505 | if (result.fText == stackBuffer) { |
| 506 | this->set(result.fText, result.fLength); |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | void SkString::appendf(const char format[], ...) { |
| 511 | va_list args; |
| 512 | va_start(args, format); |
| 513 | this->appendVAList(format, args); |
| 514 | va_end(args); |
| 515 | } |
| 516 | |
| 517 | void SkString::appendVAList(const char format[], va_list args) { |
| 518 | if (this->isEmpty()) { |
| 519 | this->printVAList(format, args); |
| 520 | return; |
| 521 | } |
| 522 | |
| 523 | SkString overflow; |
| 524 | char stackBuffer[kBufferSize]; |
| 525 | StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow); |
| 526 | |
| 527 | this->append(result.fText, result.fLength); |
| 528 | } |
| 529 | |
| 530 | void SkString::prependf(const char format[], ...) { |
| 531 | va_list args; |
| 532 | va_start(args, format); |
| 533 | this->prependVAList(format, args); |
| 534 | va_end(args); |
| 535 | } |
| 536 | |
| 537 | void SkString::prependVAList(const char format[], va_list args) { |
| 538 | if (this->isEmpty()) { |
| 539 | this->printVAList(format, args); |
| 540 | return; |
| 541 | } |
| 542 | |
| 543 | SkString overflow; |
| 544 | char stackBuffer[kBufferSize]; |
| 545 | StringBuffer result = apply_format_string(format, args, stackBuffer, &overflow); |
| 546 | |
| 547 | this->prepend(result.fText, result.fLength); |
| 548 | } |
| 549 | |
| 550 | /////////////////////////////////////////////////////////////////////////////// |
| 551 | |
| 552 | void SkString::remove(size_t offset, size_t length) { |
| 553 | size_t size = this->size(); |
| 554 | |
| 555 | if (offset < size) { |
| 556 | if (length > size - offset) { |
| 557 | length = size - offset; |
| 558 | } |
| 559 | SkASSERT(length <= size); |
| 560 | SkASSERT(offset <= size - length); |
| 561 | if (length > 0) { |
| 562 | SkString tmp(size - length); |
| 563 | char* dst = tmp.writable_str(); |
| 564 | const char* src = this->c_str(); |
| 565 | |
| 566 | if (offset) { |
| 567 | memcpy(dst, src, offset); |
| 568 | } |
| 569 | size_t tail = size - (offset + length); |
| 570 | if (tail) { |
| 571 | memcpy(dst + offset, src + (offset + length), tail); |
| 572 | } |
| 573 | SkASSERT(dst[tmp.size()] == 0); |
| 574 | this->swap(tmp); |
| 575 | } |
| 576 | } |
| 577 | } |
| 578 | |
| 579 | void SkString::swap(SkString& other) { |
| 580 | this->validate(); |
| 581 | other.validate(); |
| 582 | |
| 583 | using std::swap; |
| 584 | swap(fRec, other.fRec); |
| 585 | } |
| 586 | |
| 587 | /////////////////////////////////////////////////////////////////////////////// |
| 588 | |
| 589 | SkString SkStringPrintf(const char* format, ...) { |
| 590 | SkString formattedOutput; |
| 591 | va_list args; |
| 592 | va_start(args, format); |
| 593 | formattedOutput.printVAList(format, args); |
| 594 | va_end(args); |
| 595 | return formattedOutput; |
| 596 | } |
| 597 | |
| 598 | void SkStrSplit(const char* str, const char* delimiters, SkStrSplitMode splitMode, |
| 599 | SkTArray<SkString>* out) { |
| 600 | if (splitMode == kCoalesce_SkStrSplitMode) { |
| 601 | // Skip any delimiters. |
| 602 | str += strspn(str, delimiters); |
| 603 | } |
| 604 | if (!*str) { |
| 605 | return; |
| 606 | } |
| 607 | |
| 608 | while (true) { |
| 609 | // Find a token. |
| 610 | const size_t len = strcspn(str, delimiters); |
| 611 | if (splitMode == kStrict_SkStrSplitMode || len > 0) { |
| 612 | out->push_back().set(str, len); |
| 613 | str += len; |
| 614 | } |
| 615 | |
| 616 | if (!*str) { |
| 617 | return; |
| 618 | } |
| 619 | if (splitMode == kCoalesce_SkStrSplitMode) { |
| 620 | // Skip any delimiters. |
| 621 | str += strspn(str, delimiters); |
| 622 | } else { |
| 623 | // Skip one delimiter. |
| 624 | str += 1; |
| 625 | } |
| 626 | } |
| 627 | } |
| 628 | |