1 | /* |
2 | * Copyright 2019 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkVM_DEFINED |
9 | #define SkVM_DEFINED |
10 | |
11 | #include "include/core/SkBlendMode.h" |
12 | #include "include/core/SkColor.h" |
13 | #include "include/private/SkMacros.h" |
14 | #include "include/private/SkTArray.h" |
15 | #include "include/private/SkTHash.h" |
16 | #include "src/core/SkSpan.h" |
17 | #include "src/core/SkVM_fwd.h" |
18 | #include <vector> // std::vector |
19 | |
20 | class SkWStream; |
21 | |
22 | #if defined(SKVM_JIT_WHEN_POSSIBLE) |
23 | #if defined(__x86_64__) || defined(_M_X64) |
24 | #if defined(_WIN32) || defined(__linux) || defined(__APPLE__) |
25 | #define SKVM_JIT |
26 | #endif |
27 | #endif |
28 | #if defined(__aarch64__) |
29 | #if defined(__ANDROID__) |
30 | #define SKVM_JIT |
31 | #endif |
32 | #endif |
33 | #endif |
34 | |
35 | #if 0 |
36 | #define SKVM_LLVM |
37 | #endif |
38 | |
39 | #if 0 |
40 | #undef SKVM_JIT |
41 | #endif |
42 | |
43 | namespace skvm { |
44 | |
45 | bool fma_supported(); |
46 | |
47 | class Assembler { |
48 | public: |
49 | explicit Assembler(void* buf); |
50 | |
51 | size_t size() const; |
52 | |
53 | // Order matters... GP64, Xmm, Ymm values match 4-bit register encoding for each. |
54 | enum GP64 { |
55 | rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, |
56 | r8 , r9 , r10, r11, r12, r13, r14, r15, |
57 | }; |
58 | enum Xmm { |
59 | xmm0, xmm1, xmm2 , xmm3 , xmm4 , xmm5 , xmm6 , xmm7 , |
60 | xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, |
61 | }; |
62 | enum Ymm { |
63 | ymm0, ymm1, ymm2 , ymm3 , ymm4 , ymm5 , ymm6 , ymm7 , |
64 | ymm8, ymm9, ymm10, ymm11, ymm12, ymm13, ymm14, ymm15, |
65 | }; |
66 | |
67 | // X and V values match 5-bit encoding for each (nothing tricky). |
68 | enum X { |
69 | x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , |
70 | x8 , x9 , x10, x11, x12, x13, x14, x15, |
71 | x16, x17, x18, x19, x20, x21, x22, x23, |
72 | x24, x25, x26, x27, x28, x29, x30, xzr, sp=xzr, |
73 | }; |
74 | enum V { |
75 | v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , |
76 | v8 , v9 , v10, v11, v12, v13, v14, v15, |
77 | v16, v17, v18, v19, v20, v21, v22, v23, |
78 | v24, v25, v26, v27, v28, v29, v30, v31, |
79 | }; |
80 | |
81 | void bytes(const void*, int); |
82 | void byte(uint8_t); |
83 | void word(uint32_t); |
84 | |
85 | struct Label { |
86 | int offset = 0; |
87 | enum { NotYetSet, ARMDisp19, X86Disp32 } kind = NotYetSet; |
88 | SkSTArray<2, int> references; |
89 | }; |
90 | |
91 | // x86-64 |
92 | |
93 | void align(int mod); |
94 | |
95 | void int3(); |
96 | void vzeroupper(); |
97 | void ret(); |
98 | |
99 | // Mem represents a value at base + disp + scale*index, |
100 | // or simply at base + disp if index=rsp. |
101 | enum Scale { ONE, TWO, FOUR, EIGHT }; |
102 | struct Mem { |
103 | GP64 base; |
104 | int disp = 0; |
105 | GP64 index = rsp; |
106 | Scale scale = ONE; |
107 | }; |
108 | |
109 | struct Operand { |
110 | union { |
111 | int reg; |
112 | Mem mem; |
113 | Label* label; |
114 | }; |
115 | enum { REG, MEM, LABEL } kind; |
116 | |
117 | Operand(GP64 r) : reg (r), kind(REG ) {} |
118 | Operand(Xmm r) : reg (r), kind(REG ) {} |
119 | Operand(Ymm r) : reg (r), kind(REG ) {} |
120 | Operand(Mem m) : mem (m), kind(MEM ) {} |
121 | Operand(Label* l) : label(l), kind(LABEL) {} |
122 | }; |
123 | |
124 | void vpand (Ymm dst, Ymm x, Operand y); |
125 | void vpandn(Ymm dst, Ymm x, Operand y); |
126 | void vpor (Ymm dst, Ymm x, Operand y); |
127 | void vpxor (Ymm dst, Ymm x, Operand y); |
128 | |
129 | void vpaddd (Ymm dst, Ymm x, Operand y); |
130 | void vpsubd (Ymm dst, Ymm x, Operand y); |
131 | void vpmulld(Ymm dst, Ymm x, Operand y); |
132 | |
133 | void vpsubw (Ymm dst, Ymm x, Operand y); |
134 | void vpmullw(Ymm dst, Ymm x, Operand y); |
135 | |
136 | void vaddps(Ymm dst, Ymm x, Operand y); |
137 | void vsubps(Ymm dst, Ymm x, Operand y); |
138 | void vmulps(Ymm dst, Ymm x, Operand y); |
139 | void vdivps(Ymm dst, Ymm x, Operand y); |
140 | void vminps(Ymm dst, Ymm x, Operand y); |
141 | void vmaxps(Ymm dst, Ymm x, Operand y); |
142 | |
143 | void vsqrtps(Ymm dst, Operand x); |
144 | |
145 | void vfmadd132ps(Ymm dst, Ymm x, Operand y); |
146 | void vfmadd213ps(Ymm dst, Ymm x, Operand y); |
147 | void vfmadd231ps(Ymm dst, Ymm x, Operand y); |
148 | |
149 | void vfmsub132ps(Ymm dst, Ymm x, Operand y); |
150 | void vfmsub213ps(Ymm dst, Ymm x, Operand y); |
151 | void vfmsub231ps(Ymm dst, Ymm x, Operand y); |
152 | |
153 | void vfnmadd132ps(Ymm dst, Ymm x, Operand y); |
154 | void vfnmadd213ps(Ymm dst, Ymm x, Operand y); |
155 | void vfnmadd231ps(Ymm dst, Ymm x, Operand y); |
156 | |
157 | void vpackusdw(Ymm dst, Ymm x, Operand y); |
158 | void vpackuswb(Ymm dst, Ymm x, Operand y); |
159 | |
160 | void vpunpckldq(Ymm dst, Ymm x, Operand y); |
161 | void vpunpckhdq(Ymm dst, Ymm x, Operand y); |
162 | |
163 | void vpcmpeqd(Ymm dst, Ymm x, Operand y); |
164 | void vpcmpgtd(Ymm dst, Ymm x, Operand y); |
165 | |
166 | void vcmpps (Ymm dst, Ymm x, Operand y, int imm); |
167 | void vcmpeqps (Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,0); } |
168 | void vcmpltps (Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,1); } |
169 | void vcmpleps (Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,2); } |
170 | void vcmpneqps(Ymm dst, Ymm x, Operand y) { this->vcmpps(dst,x,y,4); } |
171 | |
172 | // Sadly, the x parameter cannot be a general Operand for these shifts. |
173 | void vpslld(Ymm dst, Ymm x, int imm); |
174 | void vpsrld(Ymm dst, Ymm x, int imm); |
175 | void vpsrad(Ymm dst, Ymm x, int imm); |
176 | void vpsrlw(Ymm dst, Ymm x, int imm); |
177 | |
178 | void vpermq (Ymm dst, Operand x, int imm); |
179 | void vperm2f128(Ymm dst, Ymm x, Operand y, int imm); |
180 | void vpermps (Ymm dst, Ymm ix, Operand src); // dst[i] = src[ix[i]] |
181 | |
182 | enum Rounding { NEAREST, FLOOR, CEIL, TRUNC, CURRENT }; |
183 | void vroundps(Ymm dst, Operand x, Rounding); |
184 | |
185 | void vmovdqa(Ymm dst, Operand x); |
186 | void vmovups(Ymm dst, Operand x); |
187 | void vmovups(Xmm dst, Operand x); |
188 | void vmovups(Operand dst, Ymm x); |
189 | void vmovups(Operand dst, Xmm x); |
190 | |
191 | void vcvtdq2ps (Ymm dst, Operand x); |
192 | void vcvttps2dq(Ymm dst, Operand x); |
193 | void vcvtps2dq (Ymm dst, Operand x); |
194 | |
195 | void vcvtps2ph(Operand dst, Ymm x, Rounding); |
196 | void vcvtph2ps(Ymm dst, Operand x); |
197 | |
198 | void vpblendvb(Ymm dst, Ymm x, Operand y, Ymm z); |
199 | |
200 | void vpshufb(Ymm dst, Ymm x, Operand y); |
201 | |
202 | void vptest(Ymm x, Operand y); |
203 | |
204 | void vbroadcastss(Ymm dst, Operand y); |
205 | |
206 | void vpmovzxwd(Ymm dst, Operand src); // dst = src, 128-bit, uint16_t -> int |
207 | void vpmovzxbd(Ymm dst, Operand src); // dst = src, 64-bit, uint8_t -> int |
208 | |
209 | void vmovq(Operand dst, Xmm src); // dst = src, 64-bit |
210 | void vmovd(Operand dst, Xmm src); // dst = src, 32-bit |
211 | void vmovd(Xmm dst, Operand src); // dst = src, 32-bit |
212 | |
213 | void vpinsrd(Xmm dst, Xmm src, Operand y, int imm); // dst = src; dst[imm] = y, 32-bit |
214 | void vpinsrw(Xmm dst, Xmm src, Operand y, int imm); // dst = src; dst[imm] = y, 16-bit |
215 | void vpinsrb(Xmm dst, Xmm src, Operand y, int imm); // dst = src; dst[imm] = y, 8-bit |
216 | |
217 | void vextracti128(Operand dst, Ymm src, int imm); // dst = src[imm], 128-bit |
218 | void vpextrd (Operand dst, Xmm src, int imm); // dst = src[imm], 32-bit |
219 | void vpextrw (Operand dst, Xmm src, int imm); // dst = src[imm], 16-bit |
220 | void vpextrb (Operand dst, Xmm src, int imm); // dst = src[imm], 8-bit |
221 | |
222 | // if (mask & 0x8000'0000) { |
223 | // dst = base[scale*ix]; |
224 | // } |
225 | // mask = 0; |
226 | void vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask); |
227 | |
228 | |
229 | void label(Label*); |
230 | |
231 | void jmp(Label*); |
232 | void je (Label*); |
233 | void jne(Label*); |
234 | void jl (Label*); |
235 | void jc (Label*); |
236 | |
237 | void add (Operand dst, int imm); |
238 | void sub (Operand dst, int imm); |
239 | void cmp (Operand dst, int imm); |
240 | void mov (Operand dst, int imm); |
241 | void movb(Operand dst, int imm); |
242 | |
243 | void add (Operand dst, GP64 x); |
244 | void sub (Operand dst, GP64 x); |
245 | void cmp (Operand dst, GP64 x); |
246 | void mov (Operand dst, GP64 x); |
247 | void movb(Operand dst, GP64 x); |
248 | |
249 | void add (GP64 dst, Operand x); |
250 | void sub (GP64 dst, Operand x); |
251 | void cmp (GP64 dst, Operand x); |
252 | void mov (GP64 dst, Operand x); |
253 | void movb(GP64 dst, Operand x); |
254 | |
255 | // Disambiguators... choice is arbitrary (but generates different code!). |
256 | void add (GP64 dst, GP64 x) { this->add (Operand(dst), x); } |
257 | void sub (GP64 dst, GP64 x) { this->sub (Operand(dst), x); } |
258 | void cmp (GP64 dst, GP64 x) { this->cmp (Operand(dst), x); } |
259 | void mov (GP64 dst, GP64 x) { this->mov (Operand(dst), x); } |
260 | void movb(GP64 dst, GP64 x) { this->movb(Operand(dst), x); } |
261 | |
262 | void movzbq(GP64 dst, Operand x); // dst = x, uint8_t -> int |
263 | void movzwq(GP64 dst, Operand x); // dst = x, uint16_t -> int |
264 | |
265 | // aarch64 |
266 | |
267 | // d = op(n,m) |
268 | using DOpNM = void(V d, V n, V m); |
269 | DOpNM and16b, orr16b, eor16b, bic16b, bsl16b, |
270 | add4s, sub4s, mul4s, |
271 | cmeq4s, cmgt4s, |
272 | sub8h, mul8h, |
273 | fadd4s, fsub4s, fmul4s, fdiv4s, fmin4s, fmax4s, |
274 | fcmeq4s, fcmgt4s, fcmge4s, |
275 | tbl; |
276 | |
277 | // TODO: there are also float ==,<,<=,>,>= instructions with an immediate 0.0f, |
278 | // and the register comparison > and >= can also compare absolute values. Interesting. |
279 | |
280 | // d += n*m |
281 | void fmla4s(V d, V n, V m); |
282 | |
283 | // d -= n*m |
284 | void fmls4s(V d, V n, V m); |
285 | |
286 | // d = op(n,imm) |
287 | using DOpNImm = void(V d, V n, int imm); |
288 | DOpNImm sli4s, |
289 | shl4s, sshr4s, ushr4s, |
290 | ushr8h; |
291 | |
292 | // d = op(n) |
293 | using DOpN = void(V d, V n); |
294 | DOpN not16b, // d = ~n |
295 | fneg4s, // d = -n |
296 | scvtf4s, // int -> float |
297 | fcvtzs4s, // truncate float -> int |
298 | fcvtns4s, // round float -> int (nearest even) |
299 | xtns2h, // u32 -> u16 |
300 | xtnh2b, // u16 -> u8 |
301 | uxtlb2h, // u8 -> u16 |
302 | uxtlh2s, // u16 -> u32 |
303 | uminv4s; // dst[0] = min(n[0],n[1],n[2],n[3]), n as unsigned |
304 | |
305 | void brk (int imm16); |
306 | void ret (X); |
307 | void add (X d, X n, int imm12); |
308 | void sub (X d, X n, int imm12); |
309 | void subs(X d, X n, int imm12); // subtract setting condition flags |
310 | |
311 | // There's another encoding for unconditional branches that can jump further, |
312 | // but this one encoded as b.al is simple to implement and should be fine. |
313 | void b (Label* l) { this->b(Condition::al, l); } |
314 | void bne(Label* l) { this->b(Condition::ne, l); } |
315 | void blt(Label* l) { this->b(Condition::lt, l); } |
316 | |
317 | // "cmp ..." is just an assembler mnemonic for "subs xzr, ..."! |
318 | void cmp(X n, int imm12) { this->subs(xzr, n, imm12); } |
319 | |
320 | // Compare and branch if zero/non-zero, as if |
321 | // cmp(t,0) |
322 | // beq/bne(l) |
323 | // but without setting condition flags. |
324 | void cbz (X t, Label* l); |
325 | void cbnz(X t, Label* l); |
326 | |
327 | void ldrq(V dst, Label*); // 128-bit PC-relative load |
328 | |
329 | void ldrq(V dst, X src, int imm12=0); // 128-bit dst = *(src+imm12*16) |
330 | void ldrs(V dst, X src, int imm12=0); // 32-bit dst = *(src+imm12*4) |
331 | void ldrb(V dst, X src, int imm12=0); // 8-bit dst = *(src+imm12) |
332 | |
333 | void strq(V src, X dst, int imm12=0); // 128-bit *(dst+imm12*16) = src |
334 | void strs(V src, X dst, int imm12=0); // 32-bit *(dst+imm12*4) = src |
335 | void strb(V src, X dst, int imm12=0); // 8-bit *(dst+imm12) = src |
336 | |
337 | void fmovs(X dst, V src); // dst = 32-bit src[0] |
338 | |
339 | private: |
340 | // TODO: can probably track two of these three? |
341 | uint8_t* fCode; |
342 | uint8_t* fCurr; |
343 | size_t fSize; |
344 | |
345 | // x86-64 |
346 | enum W { W0, W1 }; // Are the lanes 64-bit (W1) or default (W0)? Intel Vol 2A 2.3.5.5 |
347 | enum L { L128, L256 }; // Is this a 128- or 256-bit operation? Intel Vol 2A 2.3.6.2 |
348 | |
349 | // Helpers for vector instructions. |
350 | void op(int prefix, int map, int opcode, int dst, int x, Operand y, W,L); |
351 | void op(int p, int m, int o, Ymm d, Ymm x, Operand y, W w=W0) { op(p,m,o, d,x,y,w,L256); } |
352 | void op(int p, int m, int o, Ymm d, Operand y, W w=W0) { op(p,m,o, d,0,y,w,L256); } |
353 | void op(int p, int m, int o, Xmm d, Xmm x, Operand y, W w=W0) { op(p,m,o, d,x,y,w,L128); } |
354 | void op(int p, int m, int o, Xmm d, Operand y, W w=W0) { op(p,m,o, d,0,y,w,L128); } |
355 | |
356 | // Helpers for GP64 instructions. |
357 | void op(int opcode, Operand dst, GP64 x); |
358 | void op(int opcode, int opcode_ext, Operand dst, int imm); |
359 | |
360 | void jump(uint8_t condition, Label*); |
361 | int disp32(Label*); |
362 | void imm_byte_after_operand(const Operand&, int byte); |
363 | |
364 | // aarch64 |
365 | |
366 | // Opcode for 3-arguments ops is split between hi and lo: |
367 | // [11 bits hi] [5 bits m] [6 bits lo] [5 bits n] [5 bits d] |
368 | void op(uint32_t hi, V m, uint32_t lo, V n, V d); |
369 | |
370 | // 0,1,2-argument ops, with or without an immediate: |
371 | // [ 22 bits op ] [5 bits n] [5 bits d] |
372 | // Any immediate falls in the middle somewhere overlapping with either op, n, or both. |
373 | void op(uint32_t op22, V n, V d, int imm=0); |
374 | void op(uint32_t op22, X n, V d, int imm=0) { this->op(op22,(V)n, d,imm); } |
375 | void op(uint32_t op22, V n, X d, int imm=0) { this->op(op22, n,(V)d,imm); } |
376 | void op(uint32_t op22, X n, X d, int imm=0) { this->op(op22,(V)n,(V)d,imm); } |
377 | void op(uint32_t op22, int imm=0) { this->op(op22,(V)0,(V)0,imm); } |
378 | // (1-argument ops don't seem to have a consistent convention of passing as n or d.) |
379 | |
380 | |
381 | // Order matters... value is 4-bit encoding for condition code. |
382 | enum class Condition { eq,ne,cs,cc,mi,pl,vs,vc,hi,ls,ge,lt,gt,le,al }; |
383 | void b(Condition, Label*); |
384 | int disp19(Label*); |
385 | }; |
386 | |
387 | // Order matters a little: Ops <=store128 are treated as having side effects. |
388 | #define SKVM_OPS(M) \ |
389 | M(assert_true) \ |
390 | M(store8) M(store16) M(store32) M(store64) M(store128) \ |
391 | M(index) \ |
392 | M(load8) M(load16) M(load32) M(load64) M(load128) \ |
393 | M(gather8) M(gather16) M(gather32) \ |
394 | M(uniform8) M(uniform16) M(uniform32) \ |
395 | M(splat) \ |
396 | M(add_f32) M(add_i32) \ |
397 | M(sub_f32) M(sub_i32) \ |
398 | M(mul_f32) M(mul_i32) \ |
399 | M(div_f32) \ |
400 | M(min_f32) \ |
401 | M(max_f32) \ |
402 | M(fma_f32) M(fms_f32) M(fnma_f32) \ |
403 | M(sqrt_f32) \ |
404 | M(shl_i32) M(shr_i32) M(sra_i32) \ |
405 | M(ceil) M(floor) \ |
406 | M(trunc) M(round) M(to_half) M(from_half) \ |
407 | M(to_f32) \ |
408 | M( eq_f32) M( eq_i32) \ |
409 | M(neq_f32) \ |
410 | M( gt_f32) M( gt_i32) \ |
411 | M(gte_f32) \ |
412 | M(bit_and) \ |
413 | M(bit_or) \ |
414 | M(bit_xor) \ |
415 | M(bit_clear) \ |
416 | M(select) M(pack) \ |
417 | // End of SKVM_OPS |
418 | |
419 | enum class Op : int { |
420 | #define M(op) op, |
421 | SKVM_OPS(M) |
422 | #undef M |
423 | }; |
424 | |
425 | static inline bool has_side_effect(Op op) { |
426 | return op <= Op::store128; |
427 | } |
428 | static inline bool is_always_varying(Op op) { |
429 | return op <= Op::gather32 && op != Op::assert_true; |
430 | } |
431 | |
432 | using Val = int; |
433 | // We reserve an impossibe Val ID as a sentinel |
434 | // NA meaning none, n/a, null, nil, etc. |
435 | static const Val NA = -1; |
436 | |
437 | struct Arg { int ix; }; |
438 | |
439 | struct I32 { |
440 | Builder* builder = nullptr; |
441 | Val id = NA; |
442 | explicit operator bool() const { return id != NA; } |
443 | Builder* operator->() const { return builder; } |
444 | }; |
445 | |
446 | struct F32 { |
447 | Builder* builder = nullptr; |
448 | Val id = NA; |
449 | explicit operator bool() const { return id != NA; } |
450 | Builder* operator->() const { return builder; } |
451 | }; |
452 | |
453 | // Some operations make sense with immediate arguments, |
454 | // so we use I32a and F32a to receive them transparently. |
455 | // |
456 | // We omit overloads that may indicate a bug or performance issue. |
457 | // In general it does not make sense to pass immediates to unary operations, |
458 | // and even sometimes not for binary operations, e.g. |
459 | // |
460 | // div(x,y) -- normal every day divide |
461 | // div(3.0f,y) -- yep, makes sense |
462 | // div(x,3.0f) -- omitted as a reminder you probably want mul(x, 1/3.0f). |
463 | // |
464 | // You can of course always splat() to override these opinions. |
465 | struct I32a { |
466 | I32a(I32 v) : SkDEBUGCODE(builder(v.builder),) id(v.id) {} |
467 | I32a(int v) : imm(v) {} |
468 | |
469 | SkDEBUGCODE(Builder* builder = nullptr;) |
470 | Val id = NA; |
471 | int imm = 0; |
472 | }; |
473 | |
474 | struct F32a { |
475 | F32a(F32 v) : SkDEBUGCODE(builder(v.builder),) id(v.id) {} |
476 | F32a(float v) : imm(v) {} |
477 | |
478 | SkDEBUGCODE(Builder* builder = nullptr;) |
479 | Val id = NA; |
480 | float imm = 0; |
481 | }; |
482 | |
483 | struct Color { |
484 | skvm::F32 r,g,b,a; |
485 | explicit operator bool() const { return r && g && b && a; } |
486 | Builder* operator->() const { return a.operator->(); } |
487 | }; |
488 | |
489 | struct HSLA { |
490 | skvm::F32 h,s,l,a; |
491 | explicit operator bool() const { return h && s && l && a; } |
492 | Builder* operator->() const { return a.operator->(); } |
493 | }; |
494 | |
495 | struct Coord { |
496 | F32 x,y; |
497 | explicit operator bool() const { return x && y; } |
498 | Builder* operator->() const { return x.operator->(); } |
499 | }; |
500 | |
501 | struct Uniform { |
502 | Arg ptr; |
503 | int offset; |
504 | }; |
505 | struct Uniforms { |
506 | Arg base; |
507 | std::vector<int> buf; |
508 | |
509 | explicit Uniforms(int init) : base(Arg{0}), buf(init) {} |
510 | |
511 | Uniform push(int val) { |
512 | buf.push_back(val); |
513 | return {base, (int)( sizeof(int)*(buf.size() - 1) )}; |
514 | } |
515 | |
516 | Uniform pushF(float val) { |
517 | int bits; |
518 | memcpy(&bits, &val, sizeof(int)); |
519 | return this->push(bits); |
520 | } |
521 | |
522 | Uniform pushPtr(const void* ptr) { |
523 | // Jam the pointer into 1 or 2 ints. |
524 | int ints[sizeof(ptr) / sizeof(int)]; |
525 | memcpy(ints, &ptr, sizeof(ptr)); |
526 | for (int bits : ints) { |
527 | buf.push_back(bits); |
528 | } |
529 | return {base, (int)( sizeof(int)*(buf.size() - SK_ARRAY_COUNT(ints)) )}; |
530 | } |
531 | }; |
532 | |
533 | struct PixelFormat { |
534 | enum { UNORM, FLOAT} encoding; |
535 | int r_bits, g_bits, b_bits, a_bits, |
536 | r_shift, g_shift, b_shift, a_shift; |
537 | }; |
538 | bool SkColorType_to_PixelFormat(SkColorType, PixelFormat*); |
539 | |
540 | SK_BEGIN_REQUIRE_DENSE |
541 | struct Instruction { |
542 | Op op; // v* = op(x,y,z,imm), where * == index of this Instruction. |
543 | Val x,y,z; // Enough arguments for mad(). |
544 | int immy,immz; // Immediate bit pattern, shift count, argument index, etc. |
545 | }; |
546 | SK_END_REQUIRE_DENSE |
547 | |
548 | bool operator==(const Instruction&, const Instruction&); |
549 | struct InstructionHash { |
550 | uint32_t operator()(const Instruction&, uint32_t seed=0) const; |
551 | }; |
552 | |
553 | struct OptimizedInstruction { |
554 | Op op; |
555 | Val x,y,z; |
556 | int immy,immz; |
557 | |
558 | Val death; |
559 | bool can_hoist; |
560 | }; |
561 | |
562 | class Builder { |
563 | public: |
564 | |
565 | Program done(const char* debug_name = nullptr) const; |
566 | |
567 | // Mostly for debugging, tests, etc. |
568 | std::vector<Instruction> program() const { return fProgram; } |
569 | std::vector<OptimizedInstruction> optimize() const; |
570 | |
571 | // Declare an argument with given stride (use stride=0 for uniforms). |
572 | // TODO: different types for varying and uniforms? |
573 | Arg arg(int stride); |
574 | |
575 | // Convenience arg() wrappers for most common strides, sizeof(T) and 0. |
576 | template <typename T> |
577 | Arg varying() { return this->arg(sizeof(T)); } |
578 | Arg uniform() { return this->arg(0); } |
579 | |
580 | // TODO: allow uniform (i.e. Arg) offsets to store* and load*? |
581 | // TODO: sign extension (signed types) for <32-bit loads? |
582 | // TODO: unsigned integer operations where relevant (just comparisons?)? |
583 | |
584 | // Assert cond is true, printing debug when not. |
585 | void assert_true(I32 cond, I32 debug); |
586 | void assert_true(I32 cond, F32 debug) { assert_true(cond, bit_cast(debug)); } |
587 | void assert_true(I32 cond) { assert_true(cond, cond); } |
588 | |
589 | // Store {8,16,32,64,128}-bit varying. |
590 | void store8 (Arg ptr, I32 val); |
591 | void store16 (Arg ptr, I32 val); |
592 | void store32 (Arg ptr, I32 val); |
593 | void storeF (Arg ptr, F32 val) { store32(ptr, bit_cast(val)); } |
594 | void store64 (Arg ptr, I32 lo, I32 hi); // *ptr = lo|(hi<<32) |
595 | void store128(Arg ptr, I32 lo, I32 hi, int lane); // 64-bit lane 0-1 at ptr = lo|(hi<<32). |
596 | |
597 | // Returns varying {n, n-1, n-2, ..., 1}, where n is the argument to Program::eval(). |
598 | I32 index(); |
599 | |
600 | // Load {8,16,32,64,128}-bit varying. |
601 | I32 load8 (Arg ptr); |
602 | I32 load16 (Arg ptr); |
603 | I32 load32 (Arg ptr); |
604 | F32 loadF (Arg ptr) { return bit_cast(load32(ptr)); } |
605 | I32 load64 (Arg ptr, int lane); // Load 32-bit lane 0-1 of 64-bit value. |
606 | I32 load128(Arg ptr, int lane); // Load 32-bit lane 0-3 of 128-bit value. |
607 | |
608 | // Load u8,u16,i32 uniform with byte-count offset. |
609 | I32 uniform8 (Arg ptr, int offset); |
610 | I32 uniform16(Arg ptr, int offset); |
611 | I32 uniform32(Arg ptr, int offset); |
612 | F32 uniformF (Arg ptr, int offset) { return this->bit_cast(this->uniform32(ptr,offset)); } |
613 | |
614 | // Load this color as a uniform, premultiplied and converted to dst SkColorSpace. |
615 | Color uniformPremul(SkColor4f, SkColorSpace* src, |
616 | Uniforms*, SkColorSpace* dst); |
617 | |
618 | // Gather u8,u16,i32 with varying element-count index from *(ptr + byte-count offset). |
619 | I32 gather8 (Arg ptr, int offset, I32 index); |
620 | I32 gather16(Arg ptr, int offset, I32 index); |
621 | I32 gather32(Arg ptr, int offset, I32 index); |
622 | F32 gatherF (Arg ptr, int offset, I32 index) { |
623 | return bit_cast(gather32(ptr, offset, index)); |
624 | } |
625 | |
626 | // Convenience methods for working with skvm::Uniform(s). |
627 | I32 uniform8 (Uniform u) { return this->uniform8 (u.ptr, u.offset); } |
628 | I32 uniform16(Uniform u) { return this->uniform16(u.ptr, u.offset); } |
629 | I32 uniform32(Uniform u) { return this->uniform32(u.ptr, u.offset); } |
630 | F32 uniformF (Uniform u) { return this->uniformF (u.ptr, u.offset); } |
631 | I32 gather8 (Uniform u, I32 index) { return this->gather8 (u.ptr, u.offset, index); } |
632 | I32 gather16 (Uniform u, I32 index) { return this->gather16 (u.ptr, u.offset, index); } |
633 | I32 gather32 (Uniform u, I32 index) { return this->gather32 (u.ptr, u.offset, index); } |
634 | F32 gatherF (Uniform u, I32 index) { return this->gatherF (u.ptr, u.offset, index); } |
635 | |
636 | // Load an immediate constant. |
637 | I32 splat(int n); |
638 | I32 splat(unsigned u) { return splat((int)u); } |
639 | F32 splat(float f); |
640 | |
641 | // float math, comparisons, etc. |
642 | F32 add(F32, F32); F32 add(F32a x, F32a y) { return add(_(x), _(y)); } |
643 | F32 sub(F32, F32); F32 sub(F32a x, F32a y) { return sub(_(x), _(y)); } |
644 | F32 mul(F32, F32); F32 mul(F32a x, F32a y) { return mul(_(x), _(y)); } |
645 | F32 div(F32, F32); F32 div(F32a x, F32 y) { return div(_(x), y ); } |
646 | F32 min(F32, F32); F32 min(F32a x, F32a y) { return min(_(x), _(y)); } |
647 | F32 max(F32, F32); F32 max(F32a x, F32a y) { return max(_(x), _(y)); } |
648 | |
649 | F32 mad(F32 x, F32 y, F32 z) { return add(mul(x,y), z); } |
650 | F32 mad(F32a x, F32a y, F32a z) { return mad(_(x), _(y), _(z)); } |
651 | |
652 | F32 sqrt(F32); |
653 | F32 approx_log2(F32); |
654 | F32 approx_pow2(F32); |
655 | F32 approx_log (F32 x) { return mul(0.69314718f, approx_log2(x)); } |
656 | F32 approx_exp (F32 x) { return approx_pow2(mul(x, 1.4426950408889634074f)); } |
657 | |
658 | F32 approx_powf(F32 base, F32 exp); |
659 | F32 approx_powf(F32a base, F32a exp) { return approx_powf(_(base), _(exp)); } |
660 | |
661 | F32 approx_sin(F32 radians); |
662 | F32 approx_cos(F32 radians) { return approx_sin(add(radians, SK_ScalarPI/2)); } |
663 | F32 approx_tan(F32 radians); |
664 | |
665 | F32 approx_asin(F32 x); |
666 | F32 approx_acos(F32 x) { return sub(SK_ScalarPI/2, approx_asin(x)); } |
667 | F32 approx_atan(F32 x); |
668 | F32 approx_atan2(F32 y, F32 x); |
669 | |
670 | F32 lerp(F32 lo, F32 hi, F32 t); |
671 | F32 lerp(F32a lo, F32a hi, F32a t) { return lerp(_(lo), _(hi), _(t)); } |
672 | |
673 | F32 clamp(F32 x, F32 lo, F32 hi) { return max(lo, min(x, hi)); } |
674 | F32 clamp(F32a x, F32a lo, F32a hi) { return clamp(_(x), _(lo), _(hi)); } |
675 | F32 clamp01(F32 x) { return clamp(x, 0.0f, 1.0f); } |
676 | |
677 | F32 abs(F32 x) { return bit_cast(bit_and(bit_cast(x), 0x7fff'ffff)); } |
678 | F32 fract(F32 x) { return sub(x, floor(x)); } |
679 | F32 ceil(F32); |
680 | F32 floor(F32); |
681 | I32 is_NaN (F32 x) { return neq(x,x); } |
682 | I32 is_finite(F32 x) { return lt(bit_and(bit_cast(x), 0x7f80'0000), 0x7f80'0000); } |
683 | |
684 | I32 trunc(F32 x); |
685 | I32 round(F32 x); // Round to int using current rounding mode (as if lrintf()). |
686 | I32 bit_cast(F32 x) { return {x.builder, x.id}; } |
687 | |
688 | I32 to_half(F32 x); |
689 | F32 from_half(I32 x); |
690 | |
691 | F32 norm(F32 x, F32 y) { |
692 | return sqrt(add(mul(x,x), |
693 | mul(y,y))); |
694 | } |
695 | F32 norm(F32a x, F32a y) { return norm(_(x), _(y)); } |
696 | |
697 | I32 eq(F32, F32); I32 eq(F32a x, F32a y) { return eq(_(x), _(y)); } |
698 | I32 neq(F32, F32); I32 neq(F32a x, F32a y) { return neq(_(x), _(y)); } |
699 | I32 lt (F32, F32); I32 lt (F32a x, F32a y) { return lt (_(x), _(y)); } |
700 | I32 lte(F32, F32); I32 lte(F32a x, F32a y) { return lte(_(x), _(y)); } |
701 | I32 gt (F32, F32); I32 gt (F32a x, F32a y) { return gt (_(x), _(y)); } |
702 | I32 gte(F32, F32); I32 gte(F32a x, F32a y) { return gte(_(x), _(y)); } |
703 | |
704 | // int math, comparisons, etc. |
705 | I32 add(I32, I32); I32 add(I32a x, I32a y) { return add(_(x), _(y)); } |
706 | I32 sub(I32, I32); I32 sub(I32a x, I32a y) { return sub(_(x), _(y)); } |
707 | I32 mul(I32, I32); I32 mul(I32a x, I32a y) { return mul(_(x), _(y)); } |
708 | |
709 | I32 shl(I32 x, int bits); |
710 | I32 shr(I32 x, int bits); |
711 | I32 sra(I32 x, int bits); |
712 | |
713 | I32 eq (I32 x, I32 y); I32 eq(I32a x, I32a y) { return eq(_(x), _(y)); } |
714 | I32 neq(I32 x, I32 y); I32 neq(I32a x, I32a y) { return neq(_(x), _(y)); } |
715 | I32 lt (I32 x, I32 y); I32 lt (I32a x, I32a y) { return lt (_(x), _(y)); } |
716 | I32 lte(I32 x, I32 y); I32 lte(I32a x, I32a y) { return lte(_(x), _(y)); } |
717 | I32 gt (I32 x, I32 y); I32 gt (I32a x, I32a y) { return gt (_(x), _(y)); } |
718 | I32 gte(I32 x, I32 y); I32 gte(I32a x, I32a y) { return gte(_(x), _(y)); } |
719 | |
720 | F32 to_f32(I32 x); |
721 | F32 bit_cast(I32 x) { return {x.builder, x.id}; } |
722 | |
723 | // Bitwise operations. |
724 | I32 bit_and (I32, I32); I32 bit_and (I32a x, I32a y) { return bit_and (_(x), _(y)); } |
725 | I32 bit_or (I32, I32); I32 bit_or (I32a x, I32a y) { return bit_or (_(x), _(y)); } |
726 | I32 bit_xor (I32, I32); I32 bit_xor (I32a x, I32a y) { return bit_xor (_(x), _(y)); } |
727 | I32 bit_clear(I32, I32); I32 bit_clear(I32a x, I32a y) { return bit_clear(_(x), _(y)); } |
728 | |
729 | I32 min(I32 x, I32 y) { return select(lte(x,y), x, y); } |
730 | I32 max(I32 x, I32 y) { return select(gte(x,y), x, y); } |
731 | |
732 | I32 min(I32a x, I32a y) { return min(_(x), _(y)); } |
733 | I32 max(I32a x, I32a y) { return max(_(x), _(y)); } |
734 | |
735 | I32 select(I32 cond, I32 t, I32 f); // cond ? t : f |
736 | F32 select(I32 cond, F32 t, F32 f) { |
737 | return bit_cast(select(cond, bit_cast(t) |
738 | , bit_cast(f))); |
739 | } |
740 | |
741 | I32 select(I32a cond, I32a t, I32a f) { return select(_(cond), _(t), _(f)); } |
742 | F32 select(I32a cond, F32a t, F32a f) { return select(_(cond), _(t), _(f)); } |
743 | |
744 | I32 (I32 x, int bits, I32 z); // (x>>bits) & z |
745 | I32 pack (I32 x, I32 y, int bits); // x | (y << bits), assuming (x & (y << bits)) == 0 |
746 | |
747 | I32 (I32a x, int bits, I32a z) { return extract(_(x), bits, _(z)); } |
748 | I32 pack (I32a x, I32a y, int bits) { return pack (_(x), _(y), bits); } |
749 | |
750 | |
751 | // Common idioms used in several places, worth centralizing for consistency. |
752 | F32 from_unorm(int bits, I32); // E.g. from_unorm(8, x) -> x * (1/255.0f) |
753 | I32 to_unorm(int bits, F32); // E.g. to_unorm(8, x) -> round(x * 255) |
754 | |
755 | Color load(PixelFormat, Arg ptr); |
756 | bool store(PixelFormat, Arg ptr, Color); |
757 | Color gather(PixelFormat, Arg ptr, int offset, I32 index); |
758 | Color gather(PixelFormat f, Uniform u, I32 index) { |
759 | return gather(f, u.ptr, u.offset, index); |
760 | } |
761 | |
762 | void premul(F32* r, F32* g, F32* b, F32 a); |
763 | void unpremul(F32* r, F32* g, F32* b, F32 a); |
764 | |
765 | Color premul(Color c) { this->premul(&c.r, &c.g, &c.b, c.a); return c; } |
766 | Color unpremul(Color c) { this->unpremul(&c.r, &c.g, &c.b, c.a); return c; } |
767 | Color lerp(Color lo, Color hi, F32 t); |
768 | Color blend(SkBlendMode, Color src, Color dst); |
769 | |
770 | HSLA to_hsla(Color); |
771 | Color to_rgba(HSLA); |
772 | |
773 | void dump(SkWStream* = nullptr) const; |
774 | void dot (SkWStream* = nullptr) const; |
775 | |
776 | uint64_t hash() const; |
777 | |
778 | Val push(Instruction); |
779 | private: |
780 | Val push(Op op, Val x, Val y=NA, Val z=NA, int immy=0, int immz=0) { |
781 | return this->push(Instruction{op, x,y,z, immy,immz}); |
782 | } |
783 | |
784 | I32 _(I32a x) { |
785 | if (x.id != NA) { |
786 | SkASSERT(x.builder == this); |
787 | return {this, x.id}; |
788 | } |
789 | return splat(x.imm); |
790 | } |
791 | |
792 | F32 _(F32a x) { |
793 | if (x.id != NA) { |
794 | SkASSERT(x.builder == this); |
795 | return {this, x.id}; |
796 | } |
797 | return splat(x.imm); |
798 | } |
799 | |
800 | bool allImm() const; |
801 | |
802 | template <typename T, typename... Rest> |
803 | bool allImm(Val, T* imm, Rest...) const; |
804 | |
805 | template <typename T> |
806 | bool isImm(Val id, T want) const { |
807 | T imm = 0; |
808 | return this->allImm(id, &imm) && imm == want; |
809 | } |
810 | |
811 | SkTHashMap<Instruction, Val, InstructionHash> fIndex; |
812 | std::vector<Instruction> fProgram; |
813 | std::vector<int> fStrides; |
814 | }; |
815 | |
816 | template <typename... Fs> |
817 | void dump_instructions(const std::vector<Instruction>& instructions, |
818 | SkWStream* o = nullptr, |
819 | Fs... fs); |
820 | |
821 | // Optimization passes and data structures normally used by Builder::optimize(), |
822 | // extracted here so they can be unit tested. |
823 | std::vector<Instruction> eliminate_dead_code(std::vector<Instruction>); |
824 | std::vector<Instruction> schedule (std::vector<Instruction>); |
825 | std::vector<OptimizedInstruction> finalize (std::vector<Instruction>); |
826 | |
827 | class Usage { |
828 | public: |
829 | Usage(const std::vector<Instruction>&); |
830 | |
831 | // Return a sorted span of Vals which use result of Instruction id. |
832 | SkSpan<const Val> operator[](Val id) const; |
833 | |
834 | private: |
835 | std::vector<int> fIndex; |
836 | std::vector<Val> fTable; |
837 | }; |
838 | |
839 | using Reg = int; |
840 | |
841 | // d = op(x, y/imm, z/imm) |
842 | struct InterpreterInstruction { |
843 | Op op; |
844 | Reg d,x; |
845 | union { Reg y; int immy; }; |
846 | union { Reg z; int immz; }; |
847 | }; |
848 | |
849 | class Program { |
850 | public: |
851 | Program(const std::vector<OptimizedInstruction>& instructions, |
852 | const std::vector<int>& strides, |
853 | const char* debug_name); |
854 | |
855 | Program(); |
856 | ~Program(); |
857 | |
858 | Program(Program&&); |
859 | Program& operator=(Program&&); |
860 | |
861 | Program(const Program&) = delete; |
862 | Program& operator=(const Program&) = delete; |
863 | |
864 | void eval(int n, void* args[]) const; |
865 | |
866 | template <typename... T> |
867 | void eval(int n, T*... arg) const { |
868 | SkASSERT(sizeof...(arg) == this->nargs()); |
869 | // This nullptr isn't important except that it makes args[] non-empty if you pass none. |
870 | void* args[] = { (void*)arg..., nullptr }; |
871 | this->eval(n, args); |
872 | } |
873 | |
874 | std::vector<InterpreterInstruction> instructions() const; |
875 | int nargs() const; |
876 | int nregs() const; |
877 | int loop () const; |
878 | bool empty() const; |
879 | |
880 | bool hasJIT() const; // Has this Program been JITted? |
881 | void dropJIT(); // If hasJIT(), drop it, forcing interpreter fallback. |
882 | |
883 | void dump(SkWStream* = nullptr) const; |
884 | |
885 | private: |
886 | void setupInterpreter(const std::vector<OptimizedInstruction>&); |
887 | void setupJIT (const std::vector<OptimizedInstruction>&, const char* debug_name); |
888 | void setupLLVM (const std::vector<OptimizedInstruction>&, const char* debug_name); |
889 | |
890 | bool jit(const std::vector<OptimizedInstruction>&, |
891 | int* stack_hint, uint32_t* registers_used, |
892 | Assembler*) const; |
893 | |
894 | void waitForLLVM() const; |
895 | |
896 | struct Impl; |
897 | std::unique_ptr<Impl> fImpl; |
898 | }; |
899 | |
900 | // TODO: control flow |
901 | // TODO: 64-bit values? |
902 | |
903 | static inline I32 operator+(I32 x, I32a y) { return x->add(x,y); } |
904 | static inline I32 operator+(int x, I32 y) { return y->add(x,y); } |
905 | |
906 | static inline I32 operator-(I32 x, I32a y) { return x->sub(x,y); } |
907 | static inline I32 operator-(int x, I32 y) { return y->sub(x,y); } |
908 | |
909 | static inline I32 operator*(I32 x, I32a y) { return x->mul(x,y); } |
910 | static inline I32 operator*(int x, I32 y) { return y->mul(x,y); } |
911 | |
912 | static inline I32 min(I32 x, I32a y) { return x->min(x,y); } |
913 | static inline I32 min(int x, I32 y) { return y->min(x,y); } |
914 | |
915 | static inline I32 max(I32 x, I32a y) { return x->max(x,y); } |
916 | static inline I32 max(int x, I32 y) { return y->max(x,y); } |
917 | |
918 | static inline I32 operator==(I32 x, I32 y) { return x->eq(x,y); } |
919 | static inline I32 operator==(I32 x, int y) { return x->eq(x,y); } |
920 | static inline I32 operator==(int x, I32 y) { return y->eq(x,y); } |
921 | |
922 | static inline I32 operator!=(I32 x, I32 y) { return x->neq(x,y); } |
923 | static inline I32 operator!=(I32 x, int y) { return x->neq(x,y); } |
924 | static inline I32 operator!=(int x, I32 y) { return y->neq(x,y); } |
925 | |
926 | static inline I32 operator< (I32 x, I32a y) { return x->lt(x,y); } |
927 | static inline I32 operator< (int x, I32 y) { return y->lt(x,y); } |
928 | |
929 | static inline I32 operator<=(I32 x, I32a y) { return x->lte(x,y); } |
930 | static inline I32 operator<=(int x, I32 y) { return y->lte(x,y); } |
931 | |
932 | static inline I32 operator> (I32 x, I32a y) { return x->gt(x,y); } |
933 | static inline I32 operator> (int x, I32 y) { return y->gt(x,y); } |
934 | |
935 | static inline I32 operator>=(I32 x, I32a y) { return x->gte(x,y); } |
936 | static inline I32 operator>=(int x, I32 y) { return y->gte(x,y); } |
937 | |
938 | |
939 | static inline F32 operator+(F32 x, F32a y) { return x->add(x,y); } |
940 | static inline F32 operator+(float x, F32 y) { return y->add(x,y); } |
941 | |
942 | static inline F32 operator-(F32 x, F32a y) { return x->sub(x,y); } |
943 | static inline F32 operator-(float x, F32 y) { return y->sub(x,y); } |
944 | |
945 | static inline F32 operator*(F32 x, F32a y) { return x->mul(x,y); } |
946 | static inline F32 operator*(float x, F32 y) { return y->mul(x,y); } |
947 | |
948 | static inline F32 operator/(F32 x, F32 y) { return x->div(x,y); } |
949 | static inline F32 operator/(float x, F32 y) { return y->div(x,y); } |
950 | |
951 | static inline F32 min(F32 x, F32a y) { return x->min(x,y); } |
952 | static inline F32 min(float x, F32 y) { return y->min(x,y); } |
953 | |
954 | static inline F32 max(F32 x, F32a y) { return x->max(x,y); } |
955 | static inline F32 max(float x, F32 y) { return y->max(x,y); } |
956 | |
957 | static inline I32 operator==(F32 x, F32 y) { return x->eq(x,y); } |
958 | static inline I32 operator==(F32 x, float y) { return x->eq(x,y); } |
959 | static inline I32 operator==(float x, F32 y) { return y->eq(x,y); } |
960 | |
961 | static inline I32 operator!=(F32 x, F32 y) { return x->neq(x,y); } |
962 | static inline I32 operator!=(F32 x, float y) { return x->neq(x,y); } |
963 | static inline I32 operator!=(float x, F32 y) { return y->neq(x,y); } |
964 | |
965 | static inline I32 operator< (F32 x, F32a y) { return x->lt(x,y); } |
966 | static inline I32 operator< (float x, F32 y) { return y->lt(x,y); } |
967 | |
968 | static inline I32 operator<=(F32 x, F32a y) { return x->lte(x,y); } |
969 | static inline I32 operator<=(float x, F32 y) { return y->lte(x,y); } |
970 | |
971 | static inline I32 operator> (F32 x, F32a y) { return x->gt(x,y); } |
972 | static inline I32 operator> (float x, F32 y) { return y->gt(x,y); } |
973 | |
974 | static inline I32 operator>=(F32 x, F32a y) { return x->gte(x,y); } |
975 | static inline I32 operator>=(float x, F32 y) { return y->gte(x,y); } |
976 | |
977 | |
978 | static inline I32& operator+=(I32& x, I32a y) { return (x = x + y); } |
979 | static inline I32& operator-=(I32& x, I32a y) { return (x = x - y); } |
980 | static inline I32& operator*=(I32& x, I32a y) { return (x = x * y); } |
981 | |
982 | static inline F32& operator+=(F32& x, F32a y) { return (x = x + y); } |
983 | static inline F32& operator-=(F32& x, F32a y) { return (x = x - y); } |
984 | static inline F32& operator*=(F32& x, F32a y) { return (x = x * y); } |
985 | |
986 | static inline void assert_true(I32 cond, I32 debug) { cond->assert_true(cond,debug); } |
987 | static inline void assert_true(I32 cond, F32 debug) { cond->assert_true(cond,debug); } |
988 | static inline void assert_true(I32 cond) { cond->assert_true(cond); } |
989 | |
990 | static inline void store8 (Arg ptr, I32 val) { val->store8 (ptr, val); } |
991 | static inline void store16 (Arg ptr, I32 val) { val->store16 (ptr, val); } |
992 | static inline void store32 (Arg ptr, I32 val) { val->store32 (ptr, val); } |
993 | static inline void storeF (Arg ptr, F32 val) { val->storeF (ptr, val); } |
994 | static inline void store64 (Arg ptr, I32 lo, I32 hi) { lo ->store64 (ptr, lo,hi); } |
995 | static inline void store128(Arg ptr, I32 lo, I32 hi, int ix) { lo ->store128(ptr, lo,hi, ix); } |
996 | |
997 | static inline I32 gather8 (Arg ptr, int off, I32 ix) { return ix->gather8 (ptr, off, ix); } |
998 | static inline I32 gather16(Arg ptr, int off, I32 ix) { return ix->gather16(ptr, off, ix); } |
999 | static inline I32 gather32(Arg ptr, int off, I32 ix) { return ix->gather32(ptr, off, ix); } |
1000 | static inline F32 gatherF (Arg ptr, int off, I32 ix) { return ix->gatherF (ptr, off, ix); } |
1001 | |
1002 | static inline I32 gather8 (Uniform u, I32 ix) { return ix->gather8 (u, ix); } |
1003 | static inline I32 gather16(Uniform u, I32 ix) { return ix->gather16(u, ix); } |
1004 | static inline I32 gather32(Uniform u, I32 ix) { return ix->gather32(u, ix); } |
1005 | static inline F32 gatherF (Uniform u, I32 ix) { return ix->gatherF (u, ix); } |
1006 | |
1007 | static inline F32 sqrt(F32 x) { return x-> sqrt(x); } |
1008 | static inline F32 approx_log2(F32 x) { return x->approx_log2(x); } |
1009 | static inline F32 approx_pow2(F32 x) { return x->approx_pow2(x); } |
1010 | static inline F32 approx_log (F32 x) { return x->approx_log (x); } |
1011 | static inline F32 approx_exp (F32 x) { return x->approx_exp (x); } |
1012 | |
1013 | static inline F32 approx_powf(F32 base, F32a exp) { return base->approx_powf(base, exp); } |
1014 | static inline F32 approx_powf(float base, F32 exp) { return exp->approx_powf(base, exp); } |
1015 | |
1016 | static inline F32 approx_sin(F32 radians) { return radians->approx_sin(radians); } |
1017 | static inline F32 approx_cos(F32 radians) { return radians->approx_cos(radians); } |
1018 | static inline F32 approx_tan(F32 radians) { return radians->approx_tan(radians); } |
1019 | |
1020 | static inline F32 approx_asin(F32 x) { return x->approx_asin(x); } |
1021 | static inline F32 approx_acos(F32 x) { return x->approx_acos(x); } |
1022 | static inline F32 approx_atan(F32 x) { return x->approx_atan(x); } |
1023 | static inline F32 approx_atan2(F32 y, F32 x) { return x->approx_atan2(y, x); } |
1024 | |
1025 | static inline F32 clamp01(F32 x) { return x-> clamp01(x); } |
1026 | static inline F32 abs(F32 x) { return x-> abs(x); } |
1027 | static inline F32 ceil(F32 x) { return x-> ceil(x); } |
1028 | static inline F32 fract(F32 x) { return x-> fract(x); } |
1029 | static inline F32 floor(F32 x) { return x-> floor(x); } |
1030 | static inline I32 is_NaN(F32 x) { return x-> is_NaN(x); } |
1031 | static inline I32 is_finite(F32 x) { return x->is_finite(x); } |
1032 | |
1033 | static inline I32 trunc(F32 x) { return x-> trunc(x); } |
1034 | static inline I32 round(F32 x) { return x-> round(x); } |
1035 | static inline I32 bit_cast(F32 x) { return x-> bit_cast(x); } |
1036 | static inline F32 bit_cast(I32 x) { return x-> bit_cast(x); } |
1037 | static inline F32 to_f32(I32 x) { return x-> to_f32(x); } |
1038 | static inline I32 to_half(F32 x) { return x-> to_half(x); } |
1039 | static inline F32 from_half(I32 x) { return x->from_half(x); } |
1040 | |
1041 | static inline F32 lerp(F32 lo, F32a hi, F32a t) { return lo->lerp(lo,hi,t); } |
1042 | static inline F32 lerp(float lo, F32 hi, F32a t) { return hi->lerp(lo,hi,t); } |
1043 | static inline F32 lerp(float lo, float hi, F32 t) { return t->lerp(lo,hi,t); } |
1044 | |
1045 | static inline F32 clamp(F32 x, F32a lo, F32a hi) { return x->clamp(x,lo,hi); } |
1046 | static inline F32 clamp(float x, F32 lo, F32a hi) { return lo->clamp(x,lo,hi); } |
1047 | static inline F32 clamp(float x, float lo, F32 hi) { return hi->clamp(x,lo,hi); } |
1048 | |
1049 | static inline F32 norm(F32 x, F32a y) { return x->norm(x,y); } |
1050 | static inline F32 norm(float x, F32 y) { return y->norm(x,y); } |
1051 | |
1052 | static inline I32 operator<<(I32 x, int bits) { return x->shl(x, bits); } |
1053 | static inline I32 shl(I32 x, int bits) { return x->shl(x, bits); } |
1054 | static inline I32 shr(I32 x, int bits) { return x->shr(x, bits); } |
1055 | static inline I32 sra(I32 x, int bits) { return x->sra(x, bits); } |
1056 | |
1057 | static inline I32 operator&(I32 x, I32a y) { return x->bit_and(x,y); } |
1058 | static inline I32 operator&(int x, I32 y) { return y->bit_and(x,y); } |
1059 | |
1060 | static inline I32 operator|(I32 x, I32a y) { return x->bit_or (x,y); } |
1061 | static inline I32 operator|(int x, I32 y) { return y->bit_or (x,y); } |
1062 | |
1063 | static inline I32 operator^(I32 x, I32a y) { return x->bit_xor(x,y); } |
1064 | static inline I32 operator^(int x, I32 y) { return y->bit_xor(x,y); } |
1065 | |
1066 | static inline I32& operator&=(I32& x, I32a y) { return (x = x & y); } |
1067 | static inline I32& operator|=(I32& x, I32a y) { return (x = x | y); } |
1068 | static inline I32& operator^=(I32& x, I32a y) { return (x = x ^ y); } |
1069 | |
1070 | static inline I32 select(I32 cond, I32a t, I32a f) { return cond->select(cond,t,f); } |
1071 | static inline F32 select(I32 cond, F32a t, F32a f) { return cond->select(cond,t,f); } |
1072 | |
1073 | static inline I32 (I32 x, int bits, I32a z) { return x->extract(x,bits,z); } |
1074 | static inline I32 (int x, int bits, I32 z) { return z->extract(x,bits,z); } |
1075 | static inline I32 pack (I32 x, I32a y, int bits) { return x->pack (x,y,bits); } |
1076 | static inline I32 pack (int x, I32 y, int bits) { return y->pack (x,y,bits); } |
1077 | |
1078 | static inline I32 operator~(I32 x) { return ~0^x; } |
1079 | static inline I32 operator-(I32 x) { return 0-x; } |
1080 | static inline F32 operator-(F32 x) { return 0-x; } |
1081 | |
1082 | static inline F32 from_unorm(int bits, I32 x) { return x->from_unorm(bits,x); } |
1083 | static inline I32 to_unorm(int bits, F32 x) { return x-> to_unorm(bits,x); } |
1084 | |
1085 | static inline bool store(PixelFormat f, Arg p, Color c) { return c->store(f,p,c); } |
1086 | static inline Color gather(PixelFormat f, Arg p, int off, I32 ix) { |
1087 | return ix->gather(f,p,off,ix); |
1088 | } |
1089 | static inline Color gather(PixelFormat f, Uniform u, I32 ix) { |
1090 | return ix->gather(f,u,ix); |
1091 | } |
1092 | |
1093 | static inline void premul(F32* r, F32* g, F32* b, F32 a) { a-> premul(r,g,b,a); } |
1094 | static inline void unpremul(F32* r, F32* g, F32* b, F32 a) { a->unpremul(r,g,b,a); } |
1095 | |
1096 | static inline Color premul(Color c) { return c-> premul(c); } |
1097 | static inline Color unpremul(Color c) { return c->unpremul(c); } |
1098 | |
1099 | static inline Color lerp(Color lo, Color hi, F32 t) { return t->lerp(lo,hi,t); } |
1100 | |
1101 | static inline Color blend(SkBlendMode m, Color s, Color d) { return s->blend(m,s,d); } |
1102 | |
1103 | static inline HSLA to_hsla(Color c) { return c->to_hsla(c); } |
1104 | static inline Color to_rgba(HSLA c) { return c->to_rgba(c); } |
1105 | |
1106 | // Evaluate polynomials: ax^n + bx^(n-1) + ... for n >= 1 |
1107 | template <typename... Rest> |
1108 | static inline F32 poly(F32 x, F32a a, F32a b, Rest... rest) { |
1109 | if constexpr (sizeof...(rest) == 0) { |
1110 | return x*a+b; |
1111 | } else { |
1112 | return poly(x, x*a+b, rest...); |
1113 | } |
1114 | } |
1115 | } // namespace skvm |
1116 | |
1117 | #endif//SkVM_DEFINED |
1118 | |