1 | /* |
2 | * Copyright 2020 Google LLC |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/GrBlockAllocator.h" |
9 | |
10 | #ifdef SK_DEBUG |
11 | #include <vector> |
12 | #endif |
13 | |
14 | GrBlockAllocator::GrBlockAllocator(GrowthPolicy policy, size_t blockIncrementBytes, |
15 | size_t additionalPreallocBytes) |
16 | : fTail(&fHead) |
17 | // Round up to the nearest max-aligned value, and then divide so that fBlockSizeIncrement |
18 | // can effectively fit higher byte counts in its 16 bits of storage |
19 | , fBlockIncrement(SkTo<uint16_t>(GrAlignTo(blockIncrementBytes, kAddressAlign) |
20 | / kAddressAlign)) |
21 | , fGrowthPolicy(static_cast<uint64_t>(policy)) |
22 | , fN0((policy == GrowthPolicy::kLinear || policy == GrowthPolicy::kExponential) ? 1 : 0) |
23 | , fN1(1) |
24 | // The head block always fills remaining space from GrBlockAllocator's size, because it's |
25 | // inline, but can take over the specified number of bytes immediately after it. |
26 | , fHead(nullptr, additionalPreallocBytes + BaseHeadBlockSize()) { |
27 | SkASSERT(fBlockIncrement >= 1); |
28 | SkASSERT(additionalPreallocBytes <= kMaxAllocationSize); |
29 | } |
30 | |
31 | GrBlockAllocator::Block::Block(Block* prev, int allocationSize) |
32 | : fNext(nullptr) |
33 | , fPrev(prev) |
34 | , fSize(allocationSize) |
35 | , fCursor(kDataStart) |
36 | , fMetadata(0) |
37 | , fAllocatorMetadata(0) { |
38 | SkASSERT(allocationSize >= (int) sizeof(Block)); |
39 | SkDEBUGCODE(fSentinel = kAssignedMarker;) |
40 | } |
41 | |
42 | GrBlockAllocator::Block::~Block() { |
43 | SkASSERT(fSentinel == kAssignedMarker); |
44 | SkDEBUGCODE(fSentinel = kFreedMarker;) // FWIW |
45 | } |
46 | |
47 | size_t GrBlockAllocator::totalSize() const { |
48 | // Use size_t since the sum across all blocks could exceed 'int', even though each block won't |
49 | size_t size = offsetof(GrBlockAllocator, fHead) + this->scratchBlockSize(); |
50 | for (const Block* b : this->blocks()) { |
51 | size += b->fSize; |
52 | } |
53 | SkASSERT(size >= this->preallocSize()); |
54 | return size; |
55 | } |
56 | |
57 | size_t GrBlockAllocator::totalUsableSpace() const { |
58 | size_t size = this->scratchBlockSize(); |
59 | if (size > 0) { |
60 | size -= kDataStart; // scratchBlockSize reports total block size, not usable size |
61 | } |
62 | for (const Block* b : this->blocks()) { |
63 | size += (b->fSize - kDataStart); |
64 | } |
65 | SkASSERT(size >= this->preallocUsableSpace()); |
66 | return size; |
67 | } |
68 | |
69 | size_t GrBlockAllocator::totalSpaceInUse() const { |
70 | size_t size = 0; |
71 | for (const Block* b : this->blocks()) { |
72 | size += (b->fCursor - kDataStart); |
73 | } |
74 | SkASSERT(size <= this->totalUsableSpace()); |
75 | return size; |
76 | } |
77 | |
78 | GrBlockAllocator::Block* GrBlockAllocator::findOwningBlock(const void* p) { |
79 | // When in doubt, search in reverse to find an overlapping block. |
80 | uintptr_t ptr = reinterpret_cast<uintptr_t>(p); |
81 | for (Block* b : this->rblocks()) { |
82 | uintptr_t lowerBound = reinterpret_cast<uintptr_t>(b) + kDataStart; |
83 | uintptr_t upperBound = reinterpret_cast<uintptr_t>(b) + b->fSize; |
84 | if (lowerBound <= ptr && ptr < upperBound) { |
85 | SkASSERT(b->fSentinel == kAssignedMarker); |
86 | return b; |
87 | } |
88 | } |
89 | return nullptr; |
90 | } |
91 | |
92 | void GrBlockAllocator::releaseBlock(Block* block) { |
93 | if (block == &fHead) { |
94 | // Reset the cursor of the head block so that it can be reused if it becomes the new tail |
95 | block->fCursor = kDataStart; |
96 | block->fMetadata = 0; |
97 | // Unlike in reset(), we don't set the head's next block to null because there are |
98 | // potentially heap-allocated blocks that are still connected to it. |
99 | } else { |
100 | SkASSERT(block->fPrev); |
101 | block->fPrev->fNext = block->fNext; |
102 | if (block->fNext) { |
103 | SkASSERT(fTail != block); |
104 | block->fNext->fPrev = block->fPrev; |
105 | } else { |
106 | SkASSERT(fTail == block); |
107 | fTail = block->fPrev; |
108 | } |
109 | |
110 | // The released block becomes the new scratch block (if it's bigger), or delete it |
111 | if (this->scratchBlockSize() < block->fSize) { |
112 | SkASSERT(block != fHead.fPrev); // shouldn't already be the scratch block |
113 | if (fHead.fPrev) { |
114 | delete fHead.fPrev; |
115 | } |
116 | block->markAsScratch(); |
117 | fHead.fPrev = block; |
118 | } else { |
119 | delete block; |
120 | } |
121 | } |
122 | |
123 | // Decrement growth policy (opposite of addBlock()'s increment operations) |
124 | GrowthPolicy gp = static_cast<GrowthPolicy>(fGrowthPolicy); |
125 | if (fN0 > 0 && (fN1 > 1 || gp == GrowthPolicy::kFibonacci)) { |
126 | SkASSERT(gp != GrowthPolicy::kFixed); // fixed never needs undoing, fN0 always is 0 |
127 | if (gp == GrowthPolicy::kLinear) { |
128 | fN1 = fN1 - fN0; |
129 | } else if (gp == GrowthPolicy::kFibonacci) { |
130 | // Subtract n0 from n1 to get the prior 2 terms in the fibonacci sequence |
131 | int temp = fN1 - fN0; // yields prior fN0 |
132 | fN1 = fN1 - temp; // yields prior fN1 |
133 | fN0 = temp; |
134 | } else { |
135 | SkASSERT(gp == GrowthPolicy::kExponential); |
136 | // Divide by 2 to undo the 2N update from addBlock |
137 | fN1 = fN1 >> 1; |
138 | fN0 = fN1; |
139 | } |
140 | } |
141 | |
142 | SkASSERT(fN1 >= 1 && fN0 >= 0); |
143 | } |
144 | |
145 | void GrBlockAllocator::stealHeapBlocks(GrBlockAllocator* other) { |
146 | Block* toSteal = other->fHead.fNext; |
147 | if (toSteal) { |
148 | // The other's next block connects back to this allocator's current tail, and its new tail |
149 | // becomes the end of other's block linked list. |
150 | SkASSERT(other->fTail != &other->fHead); |
151 | toSteal->fPrev = fTail; |
152 | fTail->fNext = toSteal; |
153 | fTail = other->fTail; |
154 | // The other allocator becomes just its inline head block |
155 | other->fTail = &other->fHead; |
156 | other->fHead.fNext = nullptr; |
157 | } // else no block to steal |
158 | } |
159 | |
160 | void GrBlockAllocator::reset() { |
161 | for (Block* b : this->rblocks()) { |
162 | if (b == &fHead) { |
163 | // Reset metadata and cursor, tail points to the head block again |
164 | fTail = b; |
165 | b->fNext = nullptr; |
166 | b->fCursor = kDataStart; |
167 | b->fMetadata = 0; |
168 | // For reset(), but NOT releaseBlock(), the head allocatorMetadata and scratch block |
169 | // are reset/destroyed. |
170 | b->fAllocatorMetadata = 0; |
171 | this->resetScratchSpace(); |
172 | } else { |
173 | delete b; |
174 | } |
175 | } |
176 | SkASSERT(fTail == &fHead && fHead.fNext == nullptr && fHead.fPrev == nullptr && |
177 | fHead.metadata() == 0 && fHead.fCursor == kDataStart); |
178 | |
179 | GrowthPolicy gp = static_cast<GrowthPolicy>(fGrowthPolicy); |
180 | fN0 = (gp == GrowthPolicy::kLinear || gp == GrowthPolicy::kExponential) ? 1 : 0; |
181 | fN1 = 1; |
182 | } |
183 | |
184 | void GrBlockAllocator::resetScratchSpace() { |
185 | if (fHead.fPrev) { |
186 | delete fHead.fPrev; |
187 | fHead.fPrev = nullptr; |
188 | } |
189 | } |
190 | |
191 | void GrBlockAllocator::addBlock(int minimumSize, int maxSize) { |
192 | SkASSERT(minimumSize > (int) sizeof(Block) && minimumSize <= maxSize); |
193 | |
194 | // Max positive value for uint:23 storage (decltype(fN0) picks up uint64_t, not uint:23). |
195 | static constexpr int kMaxN = (1 << 23) - 1; |
196 | static_assert(2 * kMaxN <= std::numeric_limits<int32_t>::max()); // Growth policy won't overflow |
197 | |
198 | auto alignAllocSize = [](int size) { |
199 | // Round to a nice boundary since the block isn't maxing out: |
200 | // if allocSize > 32K, aligns on 4K boundary otherwise aligns on max_align_t, to play |
201 | // nicely with jeMalloc (from SkArenaAlloc). |
202 | int mask = size > (1 << 15) ? ((1 << 12) - 1) : (kAddressAlign - 1); |
203 | return (size + mask) & ~mask; |
204 | }; |
205 | |
206 | int allocSize; |
207 | void* mem = nullptr; |
208 | if (this->scratchBlockSize() >= minimumSize) { |
209 | // Activate the scratch block instead of making a new block |
210 | SkASSERT(fHead.fPrev->isScratch()); |
211 | allocSize = fHead.fPrev->fSize; |
212 | mem = fHead.fPrev; |
213 | fHead.fPrev = nullptr; |
214 | } else if (minimumSize < maxSize) { |
215 | // Calculate the 'next' size per growth policy sequence |
216 | GrowthPolicy gp = static_cast<GrowthPolicy>(fGrowthPolicy); |
217 | int nextN1 = fN0 + fN1; |
218 | int nextN0; |
219 | if (gp == GrowthPolicy::kFixed || gp == GrowthPolicy::kLinear) { |
220 | nextN0 = fN0; |
221 | } else if (gp == GrowthPolicy::kFibonacci) { |
222 | nextN0 = fN1; |
223 | } else { |
224 | SkASSERT(gp == GrowthPolicy::kExponential); |
225 | nextN0 = nextN1; |
226 | } |
227 | fN0 = std::min(kMaxN, nextN0); |
228 | fN1 = std::min(kMaxN, nextN1); |
229 | |
230 | // However, must guard against overflow here, since all the size-based asserts prevented |
231 | // alignment/addition overflows, while multiplication requires 2x bits instead of x+1. |
232 | int sizeIncrement = fBlockIncrement * kAddressAlign; |
233 | if (maxSize / sizeIncrement < nextN1) { |
234 | // The growth policy would overflow, so use the max. We've already confirmed that |
235 | // maxSize will be sufficient for the requested minimumSize |
236 | allocSize = maxSize; |
237 | } else { |
238 | allocSize = std::min(alignAllocSize(std::max(minimumSize, sizeIncrement * nextN1)), |
239 | maxSize); |
240 | } |
241 | } else { |
242 | SkASSERT(minimumSize == maxSize); |
243 | // Still align on a nice boundary, no max clamping since that would just undo the alignment |
244 | allocSize = alignAllocSize(minimumSize); |
245 | } |
246 | |
247 | // Create new block and append to the linked list of blocks in this allocator |
248 | if (!mem) { |
249 | mem = operator new(allocSize); |
250 | } |
251 | fTail->fNext = new (mem) Block(fTail, allocSize); |
252 | fTail = fTail->fNext; |
253 | } |
254 | |
255 | #ifdef SK_DEBUG |
256 | void GrBlockAllocator::validate() const { |
257 | std::vector<const Block*> blocks; |
258 | const Block* prev = nullptr; |
259 | for (const Block* block : this->blocks()) { |
260 | blocks.push_back(block); |
261 | |
262 | SkASSERT(kAssignedMarker == block->fSentinel); |
263 | if (block == &fHead) { |
264 | // The head blocks' fPrev may be non-null if it holds a scratch block, but that's not |
265 | // considered part of the linked list |
266 | SkASSERT(!prev && (!fHead.fPrev || fHead.fPrev->isScratch())); |
267 | } else { |
268 | SkASSERT(prev == block->fPrev); |
269 | } |
270 | if (prev) { |
271 | SkASSERT(prev->fNext == block); |
272 | } |
273 | |
274 | SkASSERT(block->fSize >= (int) sizeof(Block)); |
275 | SkASSERT(block->fCursor >= kDataStart); |
276 | SkASSERT(block->fCursor <= block->fSize); |
277 | |
278 | prev = block; |
279 | } |
280 | SkASSERT(prev == fTail); |
281 | SkASSERT(blocks.size() > 0); |
282 | SkASSERT(blocks[0] == &fHead); |
283 | |
284 | // Confirm reverse iteration matches forward iteration |
285 | size_t j = blocks.size(); |
286 | for (const Block* b : this->rblocks()) { |
287 | SkASSERT(b == blocks[j - 1]); |
288 | j--; |
289 | } |
290 | SkASSERT(j == 0); |
291 | } |
292 | #endif |
293 | |