| 1 | /* |
| 2 | * Copyright 2020 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef GrMiddleOutPolygonTriangulator_DEFINED |
| 9 | #define GrMiddleOutPolygonTriangulator_DEFINED |
| 10 | |
| 11 | #include "include/core/SkPoint.h" |
| 12 | #include "include/private/SkTemplates.h" |
| 13 | #include "src/core/SkMathPriv.h" |
| 14 | |
| 15 | // This class emits a polygon triangulation with a "middle-out" topology. Conceptually, middle-out |
| 16 | // emits one large triangle with vertices on both endpoints and a middle point, then recurses on |
| 17 | // both sides of the new triangle. i.e.: |
| 18 | // |
| 19 | // void emit_middle_out_triangulation(int startIdx, int endIdx) { |
| 20 | // if (startIdx + 1 == endIdx) { |
| 21 | // return; |
| 22 | // } |
| 23 | // int middleIdx = startIdx + SkNextPow2(endIdx - startIdx) / 2; |
| 24 | // |
| 25 | // // Recurse on the left half. |
| 26 | // emit_middle_out_triangulation(startIdx, middleIdx); |
| 27 | // |
| 28 | // // Emit a large triangle with vertices on both endpoints and a middle point. |
| 29 | // emit_triangle(vertices[startIdx], vertices[middleIdx], vertices[endIdx - 1]); |
| 30 | // |
| 31 | // // Recurse on the right half. |
| 32 | // emit_middle_out_triangulation(middleIdx, endIdx); |
| 33 | // } |
| 34 | // |
| 35 | // Middle-out produces drastically less work for the rasterizer as compared a linear triangle strip |
| 36 | // or fan. |
| 37 | // |
| 38 | // This class is designed to not know or store all the vertices in the polygon at once. The caller |
| 39 | // pushes each vertex in linear order (perhaps while parsing a path), then rather than relying on |
| 40 | // recursion, we manipulate an O(log N) stack to determine the correct middle-out triangulation. |
| 41 | class GrMiddleOutPolygonTriangulator { |
| 42 | public: |
| 43 | GrMiddleOutPolygonTriangulator(SkPoint* vertexData, int perTriangleVertexAdvance, |
| 44 | int maxPushVertexCalls) |
| 45 | : fVertexData(vertexData) |
| 46 | , fPerTriangleVertexAdvance(perTriangleVertexAdvance) { |
| 47 | // Determine the deepest our stack can ever go. |
| 48 | int maxStackDepth = SkNextLog2(maxPushVertexCalls) + 1; |
| 49 | if (maxStackDepth > kStackPreallocCount) { |
| 50 | fVertexStack.reset(maxStackDepth); |
| 51 | } |
| 52 | SkDEBUGCODE(fStackAllocCount = maxStackDepth;) |
| 53 | // The stack will always contain a starting point. This is an implicit moveTo(0, 0) |
| 54 | // initially, but will be overridden if moveTo() gets called before adding geometry. |
| 55 | fVertexStack[0] = {0, {0, 0}}; |
| 56 | fTop = fVertexStack; |
| 57 | } |
| 58 | |
| 59 | void pushVertex(const SkPoint& pt) { |
| 60 | if (pt == fVertexStack[0].fPoint) { |
| 61 | this->close(); |
| 62 | return; |
| 63 | } |
| 64 | // This new vertex we are about to add is one vertex away from the top of the stack. |
| 65 | // i.e., it is guaranteed to be the next vertex in the polygon after the one stored in fTop. |
| 66 | int vertexIdxDelta = 1; |
| 67 | // Our topology wants triangles that have the same vertexIdxDelta on both sides: |
| 68 | // e.g., a run of 9 points should be triangulated as: |
| 69 | // |
| 70 | // [0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8] // vertexIdxDelta == 1 |
| 71 | // [0, 2, 4], [4, 6, 8] // vertexIdxDelta == 2 |
| 72 | // [0, 4, 8] // vertexIdxDelta == 4 |
| 73 | // |
| 74 | // Emit as many new triangles as we can with equal-delta sides and pop their vertices off |
| 75 | // the stack before pushing this new vertex. |
| 76 | // |
| 77 | // (This is a stack-based implementation of the recursive example method from the class |
| 78 | // comment.) |
| 79 | while (vertexIdxDelta == fTop->fVertexIdxDelta) { |
| 80 | this->popTopTriangle(pt); |
| 81 | vertexIdxDelta *= 2; |
| 82 | } |
| 83 | this->pushVertex(vertexIdxDelta, pt); |
| 84 | } |
| 85 | |
| 86 | int close() { |
| 87 | if (fTop == fVertexStack) { // The stack only contains one point (the starting point). |
| 88 | return fTotalClosedTriangleCount; |
| 89 | } |
| 90 | // We will count vertices by walking the stack backwards. |
| 91 | int finalVertexCount = 1; |
| 92 | // Add an implicit line back to the starting point, then triangulate the rest of the |
| 93 | // polygon. Since we simply have to finish now, we aren't picky anymore about making the |
| 94 | // vertexIdxDeltas match. |
| 95 | const SkPoint& p0 = fVertexStack[0].fPoint; |
| 96 | SkASSERT(fTop->fPoint != p0); // We should have detected and handled this case earlier. |
| 97 | while (fTop - 1 > fVertexStack) { |
| 98 | finalVertexCount += fTop->fVertexIdxDelta; |
| 99 | this->popTopTriangle(p0); |
| 100 | } |
| 101 | SkASSERT(fTop == fVertexStack + 1); |
| 102 | finalVertexCount += fTop->fVertexIdxDelta; |
| 103 | SkASSERT(fVertexStack[0].fVertexIdxDelta == 0); |
| 104 | fTop = fVertexStack; |
| 105 | int numTriangles = finalVertexCount - 2; |
| 106 | SkASSERT(numTriangles >= 0); |
| 107 | fTotalClosedTriangleCount += numTriangles; |
| 108 | return fTotalClosedTriangleCount; |
| 109 | } |
| 110 | |
| 111 | void closeAndMove(const SkPoint& startPt) { |
| 112 | this->close(); |
| 113 | SkASSERT(fTop == fVertexStack); // The stack should only contain a starting point now. |
| 114 | fTop->fPoint = startPt; // Modify the starting point. |
| 115 | SkASSERT(fTop->fVertexIdxDelta == 0); // Ensure we are in the initial stack state. |
| 116 | } |
| 117 | |
| 118 | private: |
| 119 | struct StackVertex { |
| 120 | // How many polygon vertices away is this vertex from the previous vertex on the stack? |
| 121 | // i.e., the ith stack element's vertex index in the original polygon is: |
| 122 | // |
| 123 | // fVertexStack[i].fVertexIdxDelta + fVertexStack[i - 1].fVertexIdxDelta + ... + |
| 124 | // fVertexStack[1].fVertexIdxDelta. |
| 125 | // |
| 126 | // NOTE: fVertexStack[0].fVertexIdxDelta always == 0. |
| 127 | int fVertexIdxDelta; |
| 128 | SkPoint fPoint; |
| 129 | }; |
| 130 | |
| 131 | void pushVertex(int vertexIdxDelta, const SkPoint& point) { |
| 132 | ++fTop; |
| 133 | // We should never push deeper than fStackAllocCount. |
| 134 | SkASSERT(fTop < fVertexStack + fStackAllocCount); |
| 135 | fTop->fVertexIdxDelta = vertexIdxDelta; |
| 136 | fTop->fPoint = point; |
| 137 | } |
| 138 | |
| 139 | void popTopTriangle(const SkPoint& lastPt) { |
| 140 | SkASSERT(fTop > fVertexStack); // We should never pop the starting point. |
| 141 | --fTop; |
| 142 | fVertexData[0] = fTop[0].fPoint; |
| 143 | fVertexData[1] = fTop[1].fPoint; |
| 144 | fVertexData[2] = lastPt; |
| 145 | fVertexData += fPerTriangleVertexAdvance; |
| 146 | } |
| 147 | |
| 148 | constexpr static int kStackPreallocCount = 32; |
| 149 | SkAutoSTMalloc<kStackPreallocCount, StackVertex> fVertexStack; |
| 150 | SkDEBUGCODE(int fStackAllocCount;) |
| 151 | StackVertex* fTop; |
| 152 | SkPoint* fVertexData; |
| 153 | int fPerTriangleVertexAdvance; |
| 154 | int fTotalClosedTriangleCount = 0; |
| 155 | }; |
| 156 | |
| 157 | #endif |
| 158 | |