1 | /* |
2 | * Copyright 2020 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef GrMiddleOutPolygonTriangulator_DEFINED |
9 | #define GrMiddleOutPolygonTriangulator_DEFINED |
10 | |
11 | #include "include/core/SkPoint.h" |
12 | #include "include/private/SkTemplates.h" |
13 | #include "src/core/SkMathPriv.h" |
14 | |
15 | // This class emits a polygon triangulation with a "middle-out" topology. Conceptually, middle-out |
16 | // emits one large triangle with vertices on both endpoints and a middle point, then recurses on |
17 | // both sides of the new triangle. i.e.: |
18 | // |
19 | // void emit_middle_out_triangulation(int startIdx, int endIdx) { |
20 | // if (startIdx + 1 == endIdx) { |
21 | // return; |
22 | // } |
23 | // int middleIdx = startIdx + SkNextPow2(endIdx - startIdx) / 2; |
24 | // |
25 | // // Recurse on the left half. |
26 | // emit_middle_out_triangulation(startIdx, middleIdx); |
27 | // |
28 | // // Emit a large triangle with vertices on both endpoints and a middle point. |
29 | // emit_triangle(vertices[startIdx], vertices[middleIdx], vertices[endIdx - 1]); |
30 | // |
31 | // // Recurse on the right half. |
32 | // emit_middle_out_triangulation(middleIdx, endIdx); |
33 | // } |
34 | // |
35 | // Middle-out produces drastically less work for the rasterizer as compared a linear triangle strip |
36 | // or fan. |
37 | // |
38 | // This class is designed to not know or store all the vertices in the polygon at once. The caller |
39 | // pushes each vertex in linear order (perhaps while parsing a path), then rather than relying on |
40 | // recursion, we manipulate an O(log N) stack to determine the correct middle-out triangulation. |
41 | class GrMiddleOutPolygonTriangulator { |
42 | public: |
43 | GrMiddleOutPolygonTriangulator(SkPoint* vertexData, int perTriangleVertexAdvance, |
44 | int maxPushVertexCalls) |
45 | : fVertexData(vertexData) |
46 | , fPerTriangleVertexAdvance(perTriangleVertexAdvance) { |
47 | // Determine the deepest our stack can ever go. |
48 | int maxStackDepth = SkNextLog2(maxPushVertexCalls) + 1; |
49 | if (maxStackDepth > kStackPreallocCount) { |
50 | fVertexStack.reset(maxStackDepth); |
51 | } |
52 | SkDEBUGCODE(fStackAllocCount = maxStackDepth;) |
53 | // The stack will always contain a starting point. This is an implicit moveTo(0, 0) |
54 | // initially, but will be overridden if moveTo() gets called before adding geometry. |
55 | fVertexStack[0] = {0, {0, 0}}; |
56 | fTop = fVertexStack; |
57 | } |
58 | |
59 | void pushVertex(const SkPoint& pt) { |
60 | if (pt == fVertexStack[0].fPoint) { |
61 | this->close(); |
62 | return; |
63 | } |
64 | // This new vertex we are about to add is one vertex away from the top of the stack. |
65 | // i.e., it is guaranteed to be the next vertex in the polygon after the one stored in fTop. |
66 | int vertexIdxDelta = 1; |
67 | // Our topology wants triangles that have the same vertexIdxDelta on both sides: |
68 | // e.g., a run of 9 points should be triangulated as: |
69 | // |
70 | // [0, 1, 2], [2, 3, 4], [4, 5, 6], [6, 7, 8] // vertexIdxDelta == 1 |
71 | // [0, 2, 4], [4, 6, 8] // vertexIdxDelta == 2 |
72 | // [0, 4, 8] // vertexIdxDelta == 4 |
73 | // |
74 | // Emit as many new triangles as we can with equal-delta sides and pop their vertices off |
75 | // the stack before pushing this new vertex. |
76 | // |
77 | // (This is a stack-based implementation of the recursive example method from the class |
78 | // comment.) |
79 | while (vertexIdxDelta == fTop->fVertexIdxDelta) { |
80 | this->popTopTriangle(pt); |
81 | vertexIdxDelta *= 2; |
82 | } |
83 | this->pushVertex(vertexIdxDelta, pt); |
84 | } |
85 | |
86 | int close() { |
87 | if (fTop == fVertexStack) { // The stack only contains one point (the starting point). |
88 | return fTotalClosedTriangleCount; |
89 | } |
90 | // We will count vertices by walking the stack backwards. |
91 | int finalVertexCount = 1; |
92 | // Add an implicit line back to the starting point, then triangulate the rest of the |
93 | // polygon. Since we simply have to finish now, we aren't picky anymore about making the |
94 | // vertexIdxDeltas match. |
95 | const SkPoint& p0 = fVertexStack[0].fPoint; |
96 | SkASSERT(fTop->fPoint != p0); // We should have detected and handled this case earlier. |
97 | while (fTop - 1 > fVertexStack) { |
98 | finalVertexCount += fTop->fVertexIdxDelta; |
99 | this->popTopTriangle(p0); |
100 | } |
101 | SkASSERT(fTop == fVertexStack + 1); |
102 | finalVertexCount += fTop->fVertexIdxDelta; |
103 | SkASSERT(fVertexStack[0].fVertexIdxDelta == 0); |
104 | fTop = fVertexStack; |
105 | int numTriangles = finalVertexCount - 2; |
106 | SkASSERT(numTriangles >= 0); |
107 | fTotalClosedTriangleCount += numTriangles; |
108 | return fTotalClosedTriangleCount; |
109 | } |
110 | |
111 | void closeAndMove(const SkPoint& startPt) { |
112 | this->close(); |
113 | SkASSERT(fTop == fVertexStack); // The stack should only contain a starting point now. |
114 | fTop->fPoint = startPt; // Modify the starting point. |
115 | SkASSERT(fTop->fVertexIdxDelta == 0); // Ensure we are in the initial stack state. |
116 | } |
117 | |
118 | private: |
119 | struct StackVertex { |
120 | // How many polygon vertices away is this vertex from the previous vertex on the stack? |
121 | // i.e., the ith stack element's vertex index in the original polygon is: |
122 | // |
123 | // fVertexStack[i].fVertexIdxDelta + fVertexStack[i - 1].fVertexIdxDelta + ... + |
124 | // fVertexStack[1].fVertexIdxDelta. |
125 | // |
126 | // NOTE: fVertexStack[0].fVertexIdxDelta always == 0. |
127 | int fVertexIdxDelta; |
128 | SkPoint fPoint; |
129 | }; |
130 | |
131 | void pushVertex(int vertexIdxDelta, const SkPoint& point) { |
132 | ++fTop; |
133 | // We should never push deeper than fStackAllocCount. |
134 | SkASSERT(fTop < fVertexStack + fStackAllocCount); |
135 | fTop->fVertexIdxDelta = vertexIdxDelta; |
136 | fTop->fPoint = point; |
137 | } |
138 | |
139 | void popTopTriangle(const SkPoint& lastPt) { |
140 | SkASSERT(fTop > fVertexStack); // We should never pop the starting point. |
141 | --fTop; |
142 | fVertexData[0] = fTop[0].fPoint; |
143 | fVertexData[1] = fTop[1].fPoint; |
144 | fVertexData[2] = lastPt; |
145 | fVertexData += fPerTriangleVertexAdvance; |
146 | } |
147 | |
148 | constexpr static int kStackPreallocCount = 32; |
149 | SkAutoSTMalloc<kStackPreallocCount, StackVertex> fVertexStack; |
150 | SkDEBUGCODE(int fStackAllocCount;) |
151 | StackVertex* fTop; |
152 | SkPoint* fVertexData; |
153 | int fPerTriangleVertexAdvance; |
154 | int fTotalClosedTriangleCount = 0; |
155 | }; |
156 | |
157 | #endif |
158 | |