1 | /* |
2 | * Copyright 2019 Google LLC. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/tessellate/GrPathTessellateOp.h" |
9 | |
10 | #include "src/gpu/GrEagerVertexAllocator.h" |
11 | #include "src/gpu/GrGpu.h" |
12 | #include "src/gpu/GrOpFlushState.h" |
13 | #include "src/gpu/GrTriangulator.h" |
14 | #include "src/gpu/tessellate/GrFillPathShader.h" |
15 | #include "src/gpu/tessellate/GrMiddleOutPolygonTriangulator.h" |
16 | #include "src/gpu/tessellate/GrMidpointContourParser.h" |
17 | #include "src/gpu/tessellate/GrResolveLevelCounter.h" |
18 | #include "src/gpu/tessellate/GrStencilPathShader.h" |
19 | #include "src/gpu/tessellate/GrTessellationPathRenderer.h" |
20 | |
21 | constexpr static float kLinearizationIntolerance = |
22 | GrTessellationPathRenderer::kLinearizationIntolerance; |
23 | |
24 | constexpr static int kMaxResolveLevel = GrTessellationPathRenderer::kMaxResolveLevel; |
25 | |
26 | using OpFlags = GrTessellationPathRenderer::OpFlags; |
27 | |
28 | GrPathTessellateOp::FixedFunctionFlags GrPathTessellateOp::fixedFunctionFlags() const { |
29 | auto flags = FixedFunctionFlags::kUsesStencil; |
30 | if (GrAAType::kNone != fAAType) { |
31 | flags |= FixedFunctionFlags::kUsesHWAA; |
32 | } |
33 | return flags; |
34 | } |
35 | |
36 | void GrPathTessellateOp::onPrePrepare(GrRecordingContext*, |
37 | const GrSurfaceProxyView* writeView, |
38 | GrAppliedClip*, |
39 | const GrXferProcessor::DstProxyView&) { |
40 | } |
41 | |
42 | void GrPathTessellateOp::onPrepare(GrOpFlushState* flushState) { |
43 | int numVerbs = fPath.countVerbs(); |
44 | if (numVerbs <= 0) { |
45 | return; |
46 | } |
47 | |
48 | // First check if the path is large and/or simple enough that we can actually triangulate the |
49 | // inner polygon(s) on the CPU. This is our fastest approach. It allows us to stencil only the |
50 | // curves, and then fill the internal polygons directly to the final render target, thus drawing |
51 | // the majority of pixels in a single render pass. |
52 | SkScalar scales[2]; |
53 | SkAssertResult(fViewMatrix.getMinMaxScales(scales)); // Will fail if perspective. |
54 | const SkRect& bounds = fPath.getBounds(); |
55 | float gpuFragmentWork = bounds.height() * scales[0] * bounds.width() * scales[1]; |
56 | float cpuTessellationWork = (float)numVerbs * SkNextLog2(numVerbs); // N log N. |
57 | if (cpuTessellationWork * 500 + (256 * 256) < gpuFragmentWork) { // Don't try below 256x256. |
58 | int numCountedCubics; |
59 | // This will fail if the inner triangles do not form a simple polygon (e.g., self |
60 | // intersection, double winding). |
61 | if (this->prepareNonOverlappingInnerTriangles(flushState, &numCountedCubics)) { |
62 | if (!numCountedCubics) { |
63 | return; |
64 | } |
65 | // Always use indirect draws for cubics instead of tessellation here. Our goal in this |
66 | // mode is to maximize GPU performance, and the middle-out topology used by our indirect |
67 | // draws is easier on the rasterizer than a tessellated fan. There also seems to be a |
68 | // small amount of fixed tessellation overhead that this avoids. |
69 | GrResolveLevelCounter resolveLevelCounter; |
70 | resolveLevelCounter.reset(fPath, fViewMatrix, kLinearizationIntolerance); |
71 | this->prepareIndirectOuterCubics(flushState, resolveLevelCounter); |
72 | return; |
73 | } |
74 | } |
75 | |
76 | // When there are only a few verbs, it seems to always be fastest to make a single indirect draw |
77 | // that contains both the inner triangles and the outer cubics, instead of using hardware |
78 | // tessellation. Also take this path if tessellation is not supported. |
79 | bool drawTrianglesAsIndirectCubicDraw = (numVerbs < 50); |
80 | if (drawTrianglesAsIndirectCubicDraw || (fOpFlags & OpFlags::kDisableHWTessellation)) { |
81 | // Prepare outer cubics with indirect draws. |
82 | GrResolveLevelCounter resolveLevelCounter; |
83 | this->prepareMiddleOutTrianglesAndCubics(flushState, &resolveLevelCounter, |
84 | drawTrianglesAsIndirectCubicDraw); |
85 | return; |
86 | } |
87 | |
88 | // The caller should have sent Flags::kDisableHWTessellation if it was not supported. |
89 | SkASSERT(flushState->caps().shaderCaps()->tessellationSupport()); |
90 | |
91 | // Next see if we can split up the inner triangles and outer cubics into two draw calls. This |
92 | // allows for a more efficient inner triangle topology that can reduce the rasterizer load by a |
93 | // large margin on complex paths, but also causes greater CPU overhead due to the extra shader |
94 | // switches and draw calls. |
95 | // NOTE: Raster-edge work is 1-dimensional, so we sum height and width instead of multiplying. |
96 | float rasterEdgeWork = (bounds.height() + bounds.width()) * scales[1] * fPath.countVerbs(); |
97 | if (rasterEdgeWork > 300 * 300) { |
98 | this->prepareMiddleOutTrianglesAndCubics(flushState); |
99 | return; |
100 | } |
101 | |
102 | // Fastest CPU approach: emit one cubic wedge per verb, fanning out from the center. |
103 | this->prepareTessellatedCubicWedges(flushState); |
104 | } |
105 | |
106 | bool GrPathTessellateOp::prepareNonOverlappingInnerTriangles(GrMeshDrawOp::Target* target, |
107 | int* numCountedCurves) { |
108 | SkASSERT(!fTriangleBuffer); |
109 | SkASSERT(!fDoStencilTriangleBuffer); |
110 | SkASSERT(!fDoFillTriangleBuffer); |
111 | |
112 | using GrTriangulator::Mode; |
113 | |
114 | GrEagerDynamicVertexAllocator vertexAlloc(target, &fTriangleBuffer, &fBaseTriangleVertex); |
115 | fTriangleVertexCount = GrTriangulator::PathToTriangles(fPath, 0, SkRect::MakeEmpty(), |
116 | &vertexAlloc, Mode::kSimpleInnerPolygons, |
117 | numCountedCurves); |
118 | if (fTriangleVertexCount == 0) { |
119 | // Mode::kSimpleInnerPolygons causes PathToTriangles to fail if the inner polygon(s) are not |
120 | // simple. |
121 | return false; |
122 | } |
123 | if (((OpFlags::kStencilOnly | OpFlags::kWireframe) & fOpFlags) || |
124 | GrAAType::kCoverage == fAAType || |
125 | (target->appliedClip() && target->appliedClip()->hasStencilClip())) { |
126 | // If we have certain flags, mixed samples, or a stencil clip then we unfortunately |
127 | // can't fill the inner polygon directly. Indicate that these triangles need to be |
128 | // stencilled. |
129 | fDoStencilTriangleBuffer = true; |
130 | } |
131 | if (!(OpFlags::kStencilOnly & fOpFlags)) { |
132 | fDoFillTriangleBuffer = true; |
133 | } |
134 | return true; |
135 | } |
136 | |
137 | void GrPathTessellateOp::prepareMiddleOutTrianglesAndCubics( |
138 | GrMeshDrawOp::Target* target, GrResolveLevelCounter* resolveLevelCounter, |
139 | bool drawTrianglesAsIndirectCubicDraw) { |
140 | SkASSERT(!fTriangleBuffer); |
141 | SkASSERT(!fDoStencilTriangleBuffer); |
142 | SkASSERT(!fDoFillTriangleBuffer); |
143 | SkASSERT(!fCubicBuffer); |
144 | SkASSERT(!fStencilCubicsShader); |
145 | SkASSERT(!fIndirectDrawBuffer); |
146 | |
147 | // No initial moveTo, plus an implicit close at the end; n-2 triangles fill an n-gon. |
148 | int maxInnerTriangles = fPath.countVerbs() - 1; |
149 | int maxCubics = fPath.countVerbs(); |
150 | |
151 | SkPoint* vertexData; |
152 | int vertexAdvancePerTriangle; |
153 | if (drawTrianglesAsIndirectCubicDraw) { |
154 | // Allocate the triangles as 4-point instances at the beginning of the cubic buffer. |
155 | SkASSERT(resolveLevelCounter); |
156 | vertexAdvancePerTriangle = 4; |
157 | int baseTriangleInstance; |
158 | vertexData = static_cast<SkPoint*>(target->makeVertexSpace( |
159 | sizeof(SkPoint) * 4, maxInnerTriangles + maxCubics, &fCubicBuffer, |
160 | &baseTriangleInstance)); |
161 | fBaseCubicVertex = baseTriangleInstance * 4; |
162 | } else { |
163 | // Allocate the triangles as normal 3-point instances in the triangle buffer. |
164 | vertexAdvancePerTriangle = 3; |
165 | vertexData = static_cast<SkPoint*>(target->makeVertexSpace( |
166 | sizeof(SkPoint), maxInnerTriangles * 3, &fTriangleBuffer, &fBaseTriangleVertex)); |
167 | } |
168 | if (!vertexData) { |
169 | return; |
170 | } |
171 | |
172 | GrVectorXform xform(fViewMatrix); |
173 | GrMiddleOutPolygonTriangulator middleOut(vertexData, vertexAdvancePerTriangle, |
174 | fPath.countVerbs()); |
175 | if (resolveLevelCounter) { |
176 | resolveLevelCounter->reset(); |
177 | } |
178 | int numCountedCurves = 0; |
179 | for (auto [verb, pts, w] : SkPathPriv::Iterate(fPath)) { |
180 | switch (verb) { |
181 | case SkPathVerb::kMove: |
182 | middleOut.closeAndMove(pts[0]); |
183 | break; |
184 | case SkPathVerb::kLine: |
185 | middleOut.pushVertex(pts[1]); |
186 | break; |
187 | case SkPathVerb::kQuad: |
188 | middleOut.pushVertex(pts[2]); |
189 | if (resolveLevelCounter) { |
190 | // Quadratics get converted to cubics before rendering. |
191 | resolveLevelCounter->countCubic(GrWangsFormula::quadratic_log2( |
192 | kLinearizationIntolerance, pts, xform)); |
193 | break; |
194 | } |
195 | ++numCountedCurves; |
196 | break; |
197 | case SkPathVerb::kCubic: |
198 | middleOut.pushVertex(pts[3]); |
199 | if (resolveLevelCounter) { |
200 | resolveLevelCounter->countCubic(GrWangsFormula::cubic_log2( |
201 | kLinearizationIntolerance, pts, xform)); |
202 | break; |
203 | } |
204 | ++numCountedCurves; |
205 | break; |
206 | case SkPathVerb::kClose: |
207 | middleOut.close(); |
208 | break; |
209 | case SkPathVerb::kConic: |
210 | SkUNREACHABLE; |
211 | } |
212 | } |
213 | int triangleCount = middleOut.close(); |
214 | SkASSERT(triangleCount <= maxInnerTriangles); |
215 | |
216 | if (drawTrianglesAsIndirectCubicDraw) { |
217 | SkASSERT(resolveLevelCounter); |
218 | int totalInstanceCount = triangleCount + resolveLevelCounter->totalCubicInstanceCount(); |
219 | SkASSERT(vertexAdvancePerTriangle == 4); |
220 | target->putBackVertices(maxInnerTriangles + maxCubics - totalInstanceCount, |
221 | sizeof(SkPoint) * 4); |
222 | if (totalInstanceCount) { |
223 | this->prepareIndirectOuterCubicsAndTriangles(target, *resolveLevelCounter, vertexData, |
224 | triangleCount); |
225 | } |
226 | } else { |
227 | SkASSERT(vertexAdvancePerTriangle == 3); |
228 | target->putBackVertices(maxInnerTriangles - triangleCount, sizeof(SkPoint) * 3); |
229 | fTriangleVertexCount = triangleCount * 3; |
230 | if (fTriangleVertexCount) { |
231 | fDoStencilTriangleBuffer = true; |
232 | } |
233 | if (resolveLevelCounter) { |
234 | this->prepareIndirectOuterCubics(target, *resolveLevelCounter); |
235 | } else { |
236 | this->prepareTessellatedOuterCubics(target, numCountedCurves); |
237 | } |
238 | } |
239 | } |
240 | |
241 | static SkPoint lerp(const SkPoint& a, const SkPoint& b, float T) { |
242 | SkASSERT(1 != T); // The below does not guarantee lerp(a, b, 1) === b. |
243 | return (b - a) * T + a; |
244 | } |
245 | |
246 | static void line2cubic(const SkPoint& p0, const SkPoint& p1, SkPoint* out) { |
247 | out[0] = p0; |
248 | out[1] = lerp(p0, p1, 1/3.f); |
249 | out[2] = lerp(p0, p1, 2/3.f); |
250 | out[3] = p1; |
251 | } |
252 | |
253 | static void quad2cubic(const SkPoint pts[], SkPoint* out) { |
254 | out[0] = pts[0]; |
255 | out[1] = lerp(pts[0], pts[1], 2/3.f); |
256 | out[2] = lerp(pts[1], pts[2], 1/3.f); |
257 | out[3] = pts[2]; |
258 | } |
259 | |
260 | void GrPathTessellateOp::prepareIndirectOuterCubics( |
261 | GrMeshDrawOp::Target* target, const GrResolveLevelCounter& resolveLevelCounter) { |
262 | SkASSERT(resolveLevelCounter.totalCubicInstanceCount() >= 0); |
263 | if (resolveLevelCounter.totalCubicInstanceCount() == 0) { |
264 | return; |
265 | } |
266 | // Allocate a buffer to store the cubic data. |
267 | SkPoint* cubicData; |
268 | int baseInstance; |
269 | cubicData = static_cast<SkPoint*>(target->makeVertexSpace( |
270 | sizeof(SkPoint) * 4, resolveLevelCounter.totalCubicInstanceCount(), &fCubicBuffer, |
271 | &baseInstance)); |
272 | if (!cubicData) { |
273 | return; |
274 | } |
275 | fBaseCubicVertex = baseInstance * 4; |
276 | this->prepareIndirectOuterCubicsAndTriangles(target, resolveLevelCounter, cubicData, |
277 | /*numTrianglesAtBeginningOfData=*/0); |
278 | } |
279 | |
280 | void GrPathTessellateOp::prepareIndirectOuterCubicsAndTriangles( |
281 | GrMeshDrawOp::Target* target, const GrResolveLevelCounter& resolveLevelCounter, |
282 | SkPoint* cubicData, int numTrianglesAtBeginningOfData) { |
283 | SkASSERT(target->caps().drawInstancedSupport()); |
284 | SkASSERT(numTrianglesAtBeginningOfData + resolveLevelCounter.totalCubicInstanceCount() > 0); |
285 | SkASSERT(!fStencilCubicsShader); |
286 | SkASSERT(cubicData); |
287 | |
288 | fIndirectIndexBuffer = GrMiddleOutCubicShader::FindOrMakeMiddleOutIndexBuffer( |
289 | target->resourceProvider()); |
290 | if (!fIndirectIndexBuffer) { |
291 | return; |
292 | } |
293 | |
294 | // Here we treat fCubicBuffer as an instance buffer. It should have been prepared with the base |
295 | // vertex on an instance boundary in order to accommodate this. |
296 | SkASSERT(fBaseCubicVertex % 4 == 0); |
297 | int baseInstance = fBaseCubicVertex >> 2; |
298 | |
299 | // Start preparing the indirect draw buffer. |
300 | fIndirectDrawCount = resolveLevelCounter.totalCubicIndirectDrawCount(); |
301 | if (numTrianglesAtBeginningOfData) { |
302 | ++fIndirectDrawCount; // Add an indirect draw for the triangles at the beginning. |
303 | } |
304 | |
305 | // Allocate space for the GrDrawIndexedIndirectCommand structs. |
306 | GrDrawIndexedIndirectCommand* indirectData = target->makeDrawIndexedIndirectSpace( |
307 | fIndirectDrawCount, &fIndirectDrawBuffer, &fIndirectDrawOffset); |
308 | if (!indirectData) { |
309 | SkASSERT(!fIndirectDrawBuffer); |
310 | return; |
311 | } |
312 | |
313 | // Fill out the GrDrawIndexedIndirectCommand structs and determine the starting instance data |
314 | // location at each resolve level. |
315 | SkPoint* instanceLocations[kMaxResolveLevel + 1]; |
316 | int indirectIdx = 0; |
317 | int runningInstanceCount = 0; |
318 | if (numTrianglesAtBeginningOfData) { |
319 | // The caller has already packed "triangleInstanceCount" triangles into 4-point instances |
320 | // at the beginning of the instance buffer. Add a special-case indirect draw here that will |
321 | // emit the triangles [P0, P1, P2] from these 4-point instances. |
322 | indirectData[0] = GrMiddleOutCubicShader::MakeDrawTrianglesIndirectCmd( |
323 | numTrianglesAtBeginningOfData, baseInstance); |
324 | indirectIdx = 1; |
325 | runningInstanceCount = numTrianglesAtBeginningOfData; |
326 | } |
327 | for (int resolveLevel = 1; resolveLevel <= kMaxResolveLevel; ++resolveLevel) { |
328 | int instanceCountAtCurrLevel = resolveLevelCounter[resolveLevel]; |
329 | if (!instanceCountAtCurrLevel) { |
330 | SkDEBUGCODE(instanceLocations[resolveLevel] = nullptr;) |
331 | continue; |
332 | } |
333 | instanceLocations[resolveLevel] = cubicData + runningInstanceCount * 4; |
334 | indirectData[indirectIdx++] = GrMiddleOutCubicShader::MakeDrawCubicsIndirectCmd( |
335 | resolveLevel, instanceCountAtCurrLevel, baseInstance + runningInstanceCount); |
336 | runningInstanceCount += instanceCountAtCurrLevel; |
337 | } |
338 | |
339 | #ifdef SK_DEBUG |
340 | SkASSERT(indirectIdx == fIndirectDrawCount); |
341 | SkASSERT(runningInstanceCount == numTrianglesAtBeginningOfData + |
342 | resolveLevelCounter.totalCubicInstanceCount()); |
343 | SkASSERT(fIndirectDrawCount > 0); |
344 | |
345 | SkPoint* endLocations[kMaxResolveLevel + 1]; |
346 | int lastResolveLevel = 0; |
347 | for (int resolveLevel = 1; resolveLevel <= kMaxResolveLevel; ++resolveLevel) { |
348 | if (!instanceLocations[resolveLevel]) { |
349 | endLocations[resolveLevel] = nullptr; |
350 | continue; |
351 | } |
352 | endLocations[lastResolveLevel] = instanceLocations[resolveLevel]; |
353 | lastResolveLevel = resolveLevel; |
354 | } |
355 | int totalInstanceCount = numTrianglesAtBeginningOfData + |
356 | resolveLevelCounter.totalCubicInstanceCount(); |
357 | endLocations[lastResolveLevel] = cubicData + totalInstanceCount * 4; |
358 | #endif |
359 | |
360 | fCubicVertexCount = numTrianglesAtBeginningOfData * 4; |
361 | |
362 | if (resolveLevelCounter.totalCubicInstanceCount()) { |
363 | GrVectorXform xform(fViewMatrix); |
364 | for (auto [verb, pts, w] : SkPathPriv::Iterate(fPath)) { |
365 | int level; |
366 | switch (verb) { |
367 | default: |
368 | continue; |
369 | case SkPathVerb::kQuad: |
370 | level = GrWangsFormula::quadratic_log2(kLinearizationIntolerance, pts, xform); |
371 | if (level == 0) { |
372 | continue; |
373 | } |
374 | level = std::min(level, kMaxResolveLevel); |
375 | quad2cubic(pts, instanceLocations[level]); |
376 | break; |
377 | case SkPathVerb::kCubic: |
378 | level = GrWangsFormula::cubic_log2(kLinearizationIntolerance, pts, xform); |
379 | if (level == 0) { |
380 | continue; |
381 | } |
382 | level = std::min(level, kMaxResolveLevel); |
383 | memcpy(instanceLocations[level], pts, sizeof(SkPoint) * 4); |
384 | break; |
385 | } |
386 | instanceLocations[level] += 4; |
387 | fCubicVertexCount += 4; |
388 | } |
389 | } |
390 | |
391 | #ifdef SK_DEBUG |
392 | for (int i = 1; i <= kMaxResolveLevel; ++i) { |
393 | SkASSERT(instanceLocations[i] == endLocations[i]); |
394 | } |
395 | SkASSERT(fCubicVertexCount == (numTrianglesAtBeginningOfData + |
396 | resolveLevelCounter.totalCubicInstanceCount()) * 4); |
397 | #endif |
398 | |
399 | fStencilCubicsShader = target->allocator()->make<GrMiddleOutCubicShader>(fViewMatrix); |
400 | } |
401 | |
402 | void GrPathTessellateOp::prepareTessellatedOuterCubics(GrMeshDrawOp::Target* target, |
403 | int numCountedCurves) { |
404 | SkASSERT(target->caps().shaderCaps()->tessellationSupport()); |
405 | SkASSERT(numCountedCurves >= 0); |
406 | SkASSERT(!fCubicBuffer); |
407 | SkASSERT(!fStencilCubicsShader); |
408 | |
409 | if (numCountedCurves == 0) { |
410 | return; |
411 | } |
412 | |
413 | auto* vertexData = static_cast<SkPoint*>(target->makeVertexSpace( |
414 | sizeof(SkPoint), numCountedCurves * 4, &fCubicBuffer, &fBaseCubicVertex)); |
415 | if (!vertexData) { |
416 | return; |
417 | } |
418 | fCubicVertexCount = 0; |
419 | |
420 | for (auto [verb, pts, w] : SkPathPriv::Iterate(fPath)) { |
421 | switch (verb) { |
422 | default: |
423 | continue; |
424 | case SkPathVerb::kQuad: |
425 | SkASSERT(fCubicVertexCount < numCountedCurves * 4); |
426 | quad2cubic(pts, vertexData + fCubicVertexCount); |
427 | break; |
428 | case SkPathVerb::kCubic: |
429 | SkASSERT(fCubicVertexCount < numCountedCurves * 4); |
430 | memcpy(vertexData + fCubicVertexCount, pts, sizeof(SkPoint) * 4); |
431 | break; |
432 | } |
433 | fCubicVertexCount += 4; |
434 | } |
435 | SkASSERT(fCubicVertexCount == numCountedCurves * 4); |
436 | |
437 | fStencilCubicsShader = target->allocator()->make<GrCubicTessellateShader>(fViewMatrix); |
438 | } |
439 | |
440 | void GrPathTessellateOp::prepareTessellatedCubicWedges(GrMeshDrawOp::Target* target) { |
441 | SkASSERT(target->caps().shaderCaps()->tessellationSupport()); |
442 | SkASSERT(!fCubicBuffer); |
443 | SkASSERT(!fStencilCubicsShader); |
444 | |
445 | // No initial moveTo, one wedge per verb, plus an implicit close at the end. |
446 | // Each wedge has 5 vertices. |
447 | int maxVertices = (fPath.countVerbs() + 1) * 5; |
448 | |
449 | GrEagerDynamicVertexAllocator vertexAlloc(target, &fCubicBuffer, &fBaseCubicVertex); |
450 | auto* vertexData = vertexAlloc.lock<SkPoint>(maxVertices); |
451 | if (!vertexData) { |
452 | return; |
453 | } |
454 | fCubicVertexCount = 0; |
455 | |
456 | GrMidpointContourParser parser(fPath); |
457 | while (parser.parseNextContour()) { |
458 | SkPoint midpoint = parser.currentMidpoint(); |
459 | SkPoint startPoint = {0, 0}; |
460 | SkPoint lastPoint = startPoint; |
461 | for (auto [verb, pts, w] : parser.currentContour()) { |
462 | switch (verb) { |
463 | case SkPathVerb::kMove: |
464 | startPoint = lastPoint = pts[0]; |
465 | continue; |
466 | case SkPathVerb::kClose: |
467 | continue; // Ignore. We can assume an implicit close at the end. |
468 | case SkPathVerb::kLine: |
469 | line2cubic(pts[0], pts[1], vertexData + fCubicVertexCount); |
470 | lastPoint = pts[1]; |
471 | break; |
472 | case SkPathVerb::kQuad: |
473 | quad2cubic(pts, vertexData + fCubicVertexCount); |
474 | lastPoint = pts[2]; |
475 | break; |
476 | case SkPathVerb::kCubic: |
477 | memcpy(vertexData + fCubicVertexCount, pts, sizeof(SkPoint) * 4); |
478 | lastPoint = pts[3]; |
479 | break; |
480 | case SkPathVerb::kConic: |
481 | SkUNREACHABLE; |
482 | } |
483 | vertexData[fCubicVertexCount + 4] = midpoint; |
484 | fCubicVertexCount += 5; |
485 | } |
486 | if (lastPoint != startPoint) { |
487 | line2cubic(lastPoint, startPoint, vertexData + fCubicVertexCount); |
488 | vertexData[fCubicVertexCount + 4] = midpoint; |
489 | fCubicVertexCount += 5; |
490 | } |
491 | } |
492 | |
493 | vertexAlloc.unlock(fCubicVertexCount); |
494 | |
495 | if (fCubicVertexCount) { |
496 | fStencilCubicsShader = target->allocator()->make<GrWedgeTessellateShader>(fViewMatrix); |
497 | } |
498 | } |
499 | |
500 | void GrPathTessellateOp::onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) { |
501 | this->drawStencilPass(flushState); |
502 | if (!(OpFlags::kStencilOnly & fOpFlags)) { |
503 | this->drawCoverPass(flushState); |
504 | } |
505 | } |
506 | |
507 | void GrPathTessellateOp::drawStencilPass(GrOpFlushState* flushState) { |
508 | // Increments clockwise triangles and decrements counterclockwise. Used for "winding" fill. |
509 | constexpr static GrUserStencilSettings kIncrDecrStencil( |
510 | GrUserStencilSettings::StaticInitSeparate< |
511 | 0x0000, 0x0000, |
512 | GrUserStencilTest::kAlwaysIfInClip, GrUserStencilTest::kAlwaysIfInClip, |
513 | 0xffff, 0xffff, |
514 | GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap, |
515 | GrUserStencilOp::kKeep, GrUserStencilOp::kKeep, |
516 | 0xffff, 0xffff>()); |
517 | |
518 | // Inverts the bottom stencil bit. Used for "even/odd" fill. |
519 | constexpr static GrUserStencilSettings kInvertStencil( |
520 | GrUserStencilSettings::StaticInit< |
521 | 0x0000, |
522 | GrUserStencilTest::kAlwaysIfInClip, |
523 | 0xffff, |
524 | GrUserStencilOp::kInvert, |
525 | GrUserStencilOp::kKeep, |
526 | 0x0001>()); |
527 | |
528 | GrPipeline::InitArgs initArgs; |
529 | if (GrAAType::kNone != fAAType) { |
530 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; |
531 | } |
532 | if (flushState->caps().wireframeSupport() && (OpFlags::kWireframe & fOpFlags)) { |
533 | initArgs.fInputFlags |= GrPipeline::InputFlags::kWireframe; |
534 | } |
535 | SkASSERT(SkPathFillType::kWinding == fPath.getFillType() || |
536 | SkPathFillType::kEvenOdd == fPath.getFillType()); |
537 | initArgs.fUserStencil = (SkPathFillType::kWinding == fPath.getFillType()) ? |
538 | &kIncrDecrStencil : &kInvertStencil; |
539 | initArgs.fCaps = &flushState->caps(); |
540 | GrPipeline pipeline(initArgs, GrDisableColorXPFactory::MakeXferProcessor(), |
541 | flushState->appliedHardClip()); |
542 | |
543 | if (fDoStencilTriangleBuffer) { |
544 | SkASSERT(fTriangleBuffer); |
545 | GrStencilTriangleShader stencilTriangleShader(fViewMatrix); |
546 | GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline, |
547 | &stencilTriangleShader); |
548 | flushState->bindPipelineAndScissorClip(programInfo, this->bounds()); |
549 | flushState->bindBuffers(nullptr, nullptr, fTriangleBuffer); |
550 | flushState->draw(fTriangleVertexCount, fBaseTriangleVertex); |
551 | } |
552 | |
553 | if (fStencilCubicsShader) { |
554 | SkASSERT(fCubicBuffer); |
555 | GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline, |
556 | fStencilCubicsShader); |
557 | flushState->bindPipelineAndScissorClip(programInfo, this->bounds()); |
558 | if (fIndirectDrawBuffer) { |
559 | SkASSERT(fIndirectIndexBuffer); |
560 | flushState->bindBuffers(fIndirectIndexBuffer, fCubicBuffer, nullptr); |
561 | flushState->drawIndexedIndirect(fIndirectDrawBuffer.get(), fIndirectDrawOffset, |
562 | fIndirectDrawCount); |
563 | } else { |
564 | flushState->bindBuffers(nullptr, nullptr, fCubicBuffer); |
565 | flushState->draw(fCubicVertexCount, fBaseCubicVertex); |
566 | if (flushState->caps().requiresManualFBBarrierAfterTessellatedStencilDraw()) { |
567 | flushState->gpu()->insertManualFramebufferBarrier(); // http://skbug.com/9739 |
568 | } |
569 | } |
570 | } |
571 | } |
572 | |
573 | void GrPathTessellateOp::drawCoverPass(GrOpFlushState* flushState) { |
574 | // Allows non-zero stencil values to pass and write a color, and resets the stencil value back |
575 | // to zero; discards immediately on stencil values of zero. |
576 | // NOTE: It's ok to not check the clip here because the previous stencil pass only wrote to |
577 | // samples already inside the clip. |
578 | constexpr static GrUserStencilSettings kTestAndResetStencil( |
579 | GrUserStencilSettings::StaticInit< |
580 | 0x0000, |
581 | GrUserStencilTest::kNotEqual, |
582 | 0xffff, |
583 | GrUserStencilOp::kZero, |
584 | GrUserStencilOp::kKeep, |
585 | 0xffff>()); |
586 | |
587 | GrPipeline::InitArgs initArgs; |
588 | if (GrAAType::kNone != fAAType) { |
589 | if (flushState->proxy()->numSamples() == 1) { |
590 | // We are mixed sampled. We need to either enable conservative raster (preferred) or |
591 | // disable MSAA in order to avoid double blend artifacts. (Even if we disable MSAA for |
592 | // the cover geometry, the stencil test is still multisampled and will still produce |
593 | // smooth results.) |
594 | SkASSERT(GrAAType::kCoverage == fAAType); |
595 | if (flushState->caps().conservativeRasterSupport()) { |
596 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; |
597 | initArgs.fInputFlags |= GrPipeline::InputFlags::kConservativeRaster; |
598 | } |
599 | } else { |
600 | // We are standard MSAA. Leave MSAA enabled for the cover geometry. |
601 | initArgs.fInputFlags |= GrPipeline::InputFlags::kHWAntialias; |
602 | } |
603 | } |
604 | initArgs.fCaps = &flushState->caps(); |
605 | initArgs.fDstProxyView = flushState->drawOpArgs().dstProxyView(); |
606 | initArgs.fWriteSwizzle = flushState->drawOpArgs().writeSwizzle(); |
607 | GrPipeline pipeline(initArgs, std::move(fProcessors), flushState->detachAppliedClip()); |
608 | |
609 | if (fDoFillTriangleBuffer) { |
610 | SkASSERT(fTriangleBuffer); |
611 | |
612 | // These are a twist on the standard red book stencil settings that allow us to fill the |
613 | // inner polygon directly to the final render target. At this point, the curves are already |
614 | // stencilled in. So if the stencil value is zero, then it means the path at our sample is |
615 | // not affected by any curves and we fill the path in directly. If the stencil value is |
616 | // nonzero, then we don't fill and instead continue the standard red book stencil process. |
617 | // |
618 | // NOTE: These settings are currently incompatible with a stencil clip. |
619 | constexpr static GrUserStencilSettings kFillOrIncrDecrStencil( |
620 | GrUserStencilSettings::StaticInitSeparate< |
621 | 0x0000, 0x0000, |
622 | GrUserStencilTest::kEqual, GrUserStencilTest::kEqual, |
623 | 0xffff, 0xffff, |
624 | GrUserStencilOp::kKeep, GrUserStencilOp::kKeep, |
625 | GrUserStencilOp::kIncWrap, GrUserStencilOp::kDecWrap, |
626 | 0xffff, 0xffff>()); |
627 | |
628 | constexpr static GrUserStencilSettings kFillOrInvertStencil( |
629 | GrUserStencilSettings::StaticInit< |
630 | 0x0000, |
631 | GrUserStencilTest::kEqual, |
632 | 0xffff, |
633 | GrUserStencilOp::kKeep, |
634 | GrUserStencilOp::kZero, |
635 | 0xffff>()); |
636 | |
637 | if (fDoStencilTriangleBuffer) { |
638 | // The path was already stencilled. Here we just need to do a cover pass. |
639 | pipeline.setUserStencil(&kTestAndResetStencil); |
640 | } else if (!fStencilCubicsShader) { |
641 | // There are no stencilled curves. We can ignore stencil and fill the path directly. |
642 | pipeline.setUserStencil(&GrUserStencilSettings::kUnused); |
643 | } else if (SkPathFillType::kWinding == fPath.getFillType()) { |
644 | // Fill in the path pixels not touched by curves, incr/decr stencil otherwise. |
645 | SkASSERT(!pipeline.hasStencilClip()); |
646 | pipeline.setUserStencil(&kFillOrIncrDecrStencil); |
647 | } else { |
648 | // Fill in the path pixels not touched by curves, invert stencil otherwise. |
649 | SkASSERT(!pipeline.hasStencilClip()); |
650 | pipeline.setUserStencil(&kFillOrInvertStencil); |
651 | } |
652 | |
653 | GrFillTriangleShader fillTriangleShader(fViewMatrix, fColor); |
654 | GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline, |
655 | &fillTriangleShader); |
656 | flushState->bindPipelineAndScissorClip(programInfo, this->bounds()); |
657 | flushState->bindTextures(fillTriangleShader, nullptr, pipeline); |
658 | flushState->bindBuffers(nullptr, nullptr, fTriangleBuffer); |
659 | flushState->draw(fTriangleVertexCount, fBaseTriangleVertex); |
660 | |
661 | if (fStencilCubicsShader) { |
662 | SkASSERT(fCubicBuffer); |
663 | |
664 | // At this point, every pixel is filled in except the ones touched by curves. Issue a |
665 | // final cover pass over the curves by drawing their convex hulls. This will fill in any |
666 | // remaining samples and reset the stencil buffer. |
667 | pipeline.setUserStencil(&kTestAndResetStencil); |
668 | GrFillCubicHullShader fillCubicHullShader(fViewMatrix, fColor); |
669 | GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline, |
670 | &fillCubicHullShader); |
671 | flushState->bindPipelineAndScissorClip(programInfo, this->bounds()); |
672 | flushState->bindTextures(fillCubicHullShader, nullptr, pipeline); |
673 | |
674 | // Here we treat fCubicBuffer as an instance buffer. It should have been prepared with |
675 | // the base vertex on an instance boundary in order to accommodate this. |
676 | SkASSERT((fCubicVertexCount % 4) == 0); |
677 | SkASSERT((fBaseCubicVertex % 4) == 0); |
678 | flushState->bindBuffers(nullptr, fCubicBuffer, nullptr); |
679 | flushState->drawInstanced(fCubicVertexCount >> 2, fBaseCubicVertex >> 2, 4, 0); |
680 | } |
681 | return; |
682 | } |
683 | |
684 | // There are no triangles to fill. Just draw a bounding box. |
685 | pipeline.setUserStencil(&kTestAndResetStencil); |
686 | GrFillBoundingBoxShader fillBoundingBoxShader(fViewMatrix, fColor, fPath.getBounds()); |
687 | GrPathShader::ProgramInfo programInfo(flushState->writeView(), &pipeline, |
688 | &fillBoundingBoxShader); |
689 | flushState->bindPipelineAndScissorClip(programInfo, this->bounds()); |
690 | flushState->bindTextures(fillBoundingBoxShader, nullptr, pipeline); |
691 | flushState->bindBuffers(nullptr, nullptr, nullptr); |
692 | flushState->draw(4, 0); |
693 | } |
694 | |