| 1 | /* |
| 2 | * Copyright 2020 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef GrWangsFormula_DEFINED |
| 9 | #define GrWangsFormula_DEFINED |
| 10 | |
| 11 | #include "include/core/SkPoint.h" |
| 12 | #include "include/private/SkNx.h" |
| 13 | #include "src/gpu/tessellate/GrVectorXform.h" |
| 14 | |
| 15 | // Wang's formulas for cubics and quadratics (1985) give us the minimum number of evenly spaced (in |
| 16 | // the parametric sense) line segments that a curve must be chopped into in order to guarantee all |
| 17 | // lines stay within a distance of "1/intolerance" pixels from the true curve. |
| 18 | namespace GrWangsFormula { |
| 19 | |
| 20 | SK_ALWAYS_INLINE static float length(const Sk2f& n) { |
| 21 | Sk2f nn = n*n; |
| 22 | return std::sqrt(nn[0] + nn[1]); |
| 23 | } |
| 24 | |
| 25 | // Constant term for the quatratic formula. |
| 26 | constexpr float quadratic_k(float intolerance) { |
| 27 | return .25f * intolerance; |
| 28 | } |
| 29 | |
| 30 | // Returns the minimum number of evenly spaced (in the parametric sense) line segments that the |
| 31 | // quadratic must be chopped into in order to guarantee all lines stay within a distance of |
| 32 | // "1/intolerance" pixels from the true curve. |
| 33 | SK_ALWAYS_INLINE static float quadratic(float intolerance, const SkPoint pts[]) { |
| 34 | Sk2f p0 = Sk2f::Load(pts); |
| 35 | Sk2f p1 = Sk2f::Load(pts + 1); |
| 36 | Sk2f p2 = Sk2f::Load(pts + 2); |
| 37 | float k = quadratic_k(intolerance); |
| 38 | return SkScalarSqrt(k * length(p0 - p1*2 + p2)); |
| 39 | } |
| 40 | |
| 41 | // Constant term for the cubic formula. |
| 42 | constexpr float cubic_k(float intolerance) { |
| 43 | return .75f * intolerance; |
| 44 | } |
| 45 | |
| 46 | // Returns the minimum number of evenly spaced (in the parametric sense) line segments that the |
| 47 | // cubic must be chopped into in order to guarantee all lines stay within a distance of |
| 48 | // "1/intolerance" pixels from the true curve. |
| 49 | SK_ALWAYS_INLINE static float cubic(float intolerance, const SkPoint pts[]) { |
| 50 | Sk2f p0 = Sk2f::Load(pts); |
| 51 | Sk2f p1 = Sk2f::Load(pts + 1); |
| 52 | Sk2f p2 = Sk2f::Load(pts + 2); |
| 53 | Sk2f p3 = Sk2f::Load(pts + 3); |
| 54 | float k = cubic_k(intolerance); |
| 55 | return SkScalarSqrt(k * length(Sk2f::Max((p0 - p1*2 + p2).abs(), |
| 56 | (p1 - p2*2 + p3).abs()))); |
| 57 | } |
| 58 | |
| 59 | // Returns the maximum number of line segments a cubic with the given device-space bounding box size |
| 60 | // would ever need to be divided into. This is simply a special case of the cubic formula where we |
| 61 | // maximize its value by placing control points on specific corners of the bounding box. |
| 62 | SK_ALWAYS_INLINE static float worst_case_cubic(float intolerance, float devWidth, float devHeight) { |
| 63 | float k = cubic_k(intolerance); |
| 64 | return SkScalarSqrt(2*k * SkVector::Length(devWidth, devHeight)); |
| 65 | } |
| 66 | |
| 67 | // Returns the log2 of the provided value, were that value to be rounded up to the next power of 2. |
| 68 | // Returns 0 if value <= 0: |
| 69 | // Never returns a negative number, even if value is NaN. |
| 70 | // |
| 71 | // nextlog2((-inf..1]) -> 0 |
| 72 | // nextlog2((1..2]) -> 1 |
| 73 | // nextlog2((2..4]) -> 2 |
| 74 | // nextlog2((4..8]) -> 3 |
| 75 | // ... |
| 76 | SK_ALWAYS_INLINE static int nextlog2(float value) { |
| 77 | uint32_t bits; |
| 78 | memcpy(&bits, &value, 4); |
| 79 | bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2. |
| 80 | int exp = ((int32_t)bits >> 23) - 127; |
| 81 | return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0. |
| 82 | } |
| 83 | |
| 84 | SK_ALWAYS_INLINE static int ceil_log2_sqrt_sqrt(float f) { |
| 85 | return (nextlog2(f) + 3) >> 2; // i.e., "ceil(log2(sqrt(sqrt(f)))) |
| 86 | } |
| 87 | |
| 88 | // Returns the minimum log2 number of evenly spaced (in the parametric sense) line segments that the |
| 89 | // transformed quadratic must be chopped into in order to guarantee all lines stay within a distance |
| 90 | // of "1/intolerance" pixels from the true curve. |
| 91 | SK_ALWAYS_INLINE static int quadratic_log2(float intolerance, const SkPoint pts[], |
| 92 | const GrVectorXform& vectorXform = GrVectorXform()) { |
| 93 | Sk2f p0 = Sk2f::Load(pts); |
| 94 | Sk2f p1 = Sk2f::Load(pts + 1); |
| 95 | Sk2f p2 = Sk2f::Load(pts + 2); |
| 96 | Sk2f v = p0 + p1*-2 + p2; |
| 97 | v = vectorXform(v); |
| 98 | Sk2f vv = v*v; |
| 99 | float k = quadratic_k(intolerance); |
| 100 | float f = k*k * (vv[0] + vv[1]); |
| 101 | return ceil_log2_sqrt_sqrt(f); |
| 102 | } |
| 103 | |
| 104 | // Returns the minimum log2 number of evenly spaced (in the parametric sense) line segments that the |
| 105 | // transformed cubic must be chopped into in order to guarantee all lines stay within a distance of |
| 106 | // "1/intolerance" pixels from the true curve. |
| 107 | SK_ALWAYS_INLINE static int cubic_log2(float intolerance, const SkPoint pts[], |
| 108 | const GrVectorXform& vectorXform = GrVectorXform()) { |
| 109 | Sk4f p01 = Sk4f::Load(pts); |
| 110 | Sk4f p12 = Sk4f::Load(pts + 1); |
| 111 | Sk4f p23 = Sk4f::Load(pts + 2); |
| 112 | Sk4f v = p01 + p12*-2 + p23; |
| 113 | v = vectorXform(v); |
| 114 | Sk4f vv = v*v; |
| 115 | vv = Sk4f::Max(vv, SkNx_shuffle<2,3,0,1>(vv)); |
| 116 | float k = cubic_k(intolerance); |
| 117 | float f = k*k * (vv[0] + vv[1]); |
| 118 | return ceil_log2_sqrt_sqrt(f); |
| 119 | } |
| 120 | |
| 121 | // Returns the maximum log2 number of line segments a cubic with the given device-space bounding box |
| 122 | // size would ever need to be divided into. |
| 123 | SK_ALWAYS_INLINE static int worst_case_cubic_log2(float intolerance, float devWidth, |
| 124 | float devHeight) { |
| 125 | float k = cubic_k(intolerance); |
| 126 | return ceil_log2_sqrt_sqrt(4*k*k * (devWidth * devWidth + devHeight * devHeight)); |
| 127 | } |
| 128 | |
| 129 | } // namespace GrWangsFormula |
| 130 | |
| 131 | #endif |
| 132 | |