1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkBlitRow_opts_DEFINED |
9 | #define SkBlitRow_opts_DEFINED |
10 | |
11 | #include "include/private/SkColorData.h" |
12 | #include "include/private/SkVx.h" |
13 | #include "src/core/SkMSAN.h" |
14 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX |
15 | #include <immintrin.h> |
16 | |
17 | static inline __m512i SkPMSrcOver_SKX(const __m512i& src, const __m512i& dst) { |
18 | // Detailed explanations in SkPMSrcOver_AVX2 |
19 | // b = s + (d*(256-srcA)) >> 8 |
20 | |
21 | // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel. |
22 | const uint8_t _ = -1; // fills a literal 0 byte. |
23 | const uint8_t mask[64] = { 3, _,3, _, 7, _,7, _, 11,_,11,_, 15,_,15,_, |
24 | 19,_,19,_, 23,_,23,_, 27,_,27,_, 31,_,31,_, |
25 | 35,_,35,_, 39,_,39,_, 43,_,43,_, 47,_,47,_, |
26 | 51,_,51,_, 55,_,55,_, 59,_,59,_, 63,_,63,_ }; |
27 | __m512i srcA_x2 = _mm512_shuffle_epi8(src, _mm512_loadu_si512(mask)); |
28 | __m512i scale_x2 = _mm512_sub_epi16(_mm512_set1_epi16(256), |
29 | srcA_x2); |
30 | |
31 | // Scale red and blue, leaving results in the low byte of each 16-bit lane. |
32 | __m512i rb = _mm512_and_si512(_mm512_set1_epi32(0x00ff00ff), dst); |
33 | rb = _mm512_mullo_epi16(rb, scale_x2); |
34 | rb = _mm512_srli_epi16(rb, 8); |
35 | |
36 | // Scale green and alpha, leaving results in the high byte, masking off the low bits. |
37 | __m512i ga = _mm512_srli_epi16(dst, 8); |
38 | ga = _mm512_mullo_epi16(ga, scale_x2); |
39 | ga = _mm512_andnot_si512(_mm512_set1_epi32(0x00ff00ff), ga); |
40 | |
41 | return _mm512_add_epi32(src, _mm512_or_si512(rb, ga)); |
42 | } |
43 | |
44 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
45 | #include <immintrin.h> |
46 | |
47 | static inline __m256i SkPMSrcOver_AVX2(const __m256i& src, const __m256i& dst) { |
48 | // Abstractly srcover is |
49 | // b = s + d*(1-srcA) |
50 | // |
51 | // In terms of unorm8 bytes, that works out to |
52 | // b = s + (d*(255-srcA) + 127) / 255 |
53 | // |
54 | // But we approximate that to within a bit with |
55 | // b = s + (d*(255-srcA) + d) / 256 |
56 | // a.k.a |
57 | // b = s + (d*(256-srcA)) >> 8 |
58 | |
59 | // The bottleneck of this math is the multiply, and we want to do it as |
60 | // narrowly as possible, here getting inputs into 16-bit lanes and |
61 | // using 16-bit multiplies. We can do twice as many multiplies at once |
62 | // as using naive 32-bit multiplies, and on top of that, the 16-bit multiplies |
63 | // are themselves a couple cycles quicker. Win-win. |
64 | |
65 | // We'll get everything in 16-bit lanes for two multiplies, one |
66 | // handling dst red and blue, the other green and alpha. (They're |
67 | // conveniently 16-bits apart, you see.) We don't need the individual |
68 | // src channels beyond alpha until the very end when we do the "s + " |
69 | // add, and we don't even need to unpack them; the adds cannot overflow. |
70 | |
71 | // Shuffle each pixel's srcA to the low byte of each 16-bit half of the pixel. |
72 | const int _ = -1; // fills a literal 0 byte. |
73 | __m256i srcA_x2 = _mm256_shuffle_epi8(src, |
74 | _mm256_setr_epi8(3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_, |
75 | 3,_,3,_, 7,_,7,_, 11,_,11,_, 15,_,15,_)); |
76 | __m256i scale_x2 = _mm256_sub_epi16(_mm256_set1_epi16(256), |
77 | srcA_x2); |
78 | |
79 | // Scale red and blue, leaving results in the low byte of each 16-bit lane. |
80 | __m256i rb = _mm256_and_si256(_mm256_set1_epi32(0x00ff00ff), dst); |
81 | rb = _mm256_mullo_epi16(rb, scale_x2); |
82 | rb = _mm256_srli_epi16 (rb, 8); |
83 | |
84 | // Scale green and alpha, leaving results in the high byte, masking off the low bits. |
85 | __m256i ga = _mm256_srli_epi16(dst, 8); |
86 | ga = _mm256_mullo_epi16(ga, scale_x2); |
87 | ga = _mm256_andnot_si256(_mm256_set1_epi32(0x00ff00ff), ga); |
88 | |
89 | return _mm256_add_epi32(src, _mm256_or_si256(rb, ga)); |
90 | } |
91 | |
92 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
93 | #include <immintrin.h> |
94 | |
95 | static inline __m128i SkPMSrcOver_SSE2(const __m128i& src, const __m128i& dst) { |
96 | auto SkAlphaMulQ_SSE2 = [](const __m128i& c, const __m128i& scale) { |
97 | const __m128i mask = _mm_set1_epi32(0xFF00FF); |
98 | __m128i s = _mm_or_si128(_mm_slli_epi32(scale, 16), scale); |
99 | |
100 | // uint32_t rb = ((c & mask) * scale) >> 8 |
101 | __m128i rb = _mm_and_si128(mask, c); |
102 | rb = _mm_mullo_epi16(rb, s); |
103 | rb = _mm_srli_epi16(rb, 8); |
104 | |
105 | // uint32_t ag = ((c >> 8) & mask) * scale |
106 | __m128i ag = _mm_srli_epi16(c, 8); |
107 | ag = _mm_mullo_epi16(ag, s); |
108 | |
109 | // (rb & mask) | (ag & ~mask) |
110 | ag = _mm_andnot_si128(mask, ag); |
111 | return _mm_or_si128(rb, ag); |
112 | }; |
113 | return _mm_add_epi32(src, |
114 | SkAlphaMulQ_SSE2(dst, _mm_sub_epi32(_mm_set1_epi32(256), |
115 | _mm_srli_epi32(src, 24)))); |
116 | } |
117 | #endif |
118 | |
119 | namespace SK_OPTS_NS { |
120 | |
121 | // Blend constant color over count src pixels, writing into dst. |
122 | inline void blit_row_color32(SkPMColor* dst, const SkPMColor* src, int count, SkPMColor color) { |
123 | constexpr int N = 4; // 8, 16 also reasonable choices |
124 | using U32 = skvx::Vec< N, uint32_t>; |
125 | using U16 = skvx::Vec<4*N, uint16_t>; |
126 | using U8 = skvx::Vec<4*N, uint8_t>; |
127 | |
128 | auto kernel = [color](U32 src) { |
129 | unsigned invA = 255 - SkGetPackedA32(color); |
130 | invA += invA >> 7; |
131 | SkASSERT(0 < invA && invA < 256); // We handle alpha == 0 or alpha == 255 specially. |
132 | |
133 | // (src * invA + (color << 8) + 128) >> 8 |
134 | // Should all fit in 16 bits. |
135 | U8 s = skvx::bit_pun<U8>(src), |
136 | a = U8(invA); |
137 | U16 c = skvx::cast<uint16_t>(skvx::bit_pun<U8>(U32(color))), |
138 | d = (mull(s,a) + (c << 8) + 128)>>8; |
139 | return skvx::bit_pun<U32>(skvx::cast<uint8_t>(d)); |
140 | }; |
141 | |
142 | while (count >= N) { |
143 | kernel(U32::Load(src)).store(dst); |
144 | src += N; |
145 | dst += N; |
146 | count -= N; |
147 | } |
148 | while (count --> 0) { |
149 | *dst++ = kernel(U32{*src++})[0]; |
150 | } |
151 | } |
152 | |
153 | #if defined(SK_ARM_HAS_NEON) |
154 | |
155 | // Return a uint8x8_t value, r, computed as r[i] = SkMulDiv255Round(x[i], y[i]), where r[i], x[i], |
156 | // y[i] are the i-th lanes of the corresponding NEON vectors. |
157 | static inline uint8x8_t SkMulDiv255Round_neon8(uint8x8_t x, uint8x8_t y) { |
158 | uint16x8_t prod = vmull_u8(x, y); |
159 | return vraddhn_u16(prod, vrshrq_n_u16(prod, 8)); |
160 | } |
161 | |
162 | // The implementations of SkPMSrcOver below perform alpha blending consistently with |
163 | // SkMulDiv255Round. They compute the color components (numbers in the interval [0, 255]) as: |
164 | // |
165 | // result_i = src_i + rint(g(src_alpha, dst_i)) |
166 | // |
167 | // where g(x, y) = ((255.0 - x) * y) / 255.0 and rint rounds to the nearest integer. |
168 | |
169 | // In this variant of SkPMSrcOver each NEON register, dst.val[i], src.val[i], contains the value |
170 | // of the same color component for 8 consecutive pixels. The result of this function follows the |
171 | // same convention. |
172 | static inline uint8x8x4_t SkPMSrcOver_neon8(uint8x8x4_t dst, uint8x8x4_t src) { |
173 | uint8x8_t nalphas = vmvn_u8(src.val[3]); |
174 | uint8x8x4_t result; |
175 | result.val[0] = vadd_u8(src.val[0], SkMulDiv255Round_neon8(nalphas, dst.val[0])); |
176 | result.val[1] = vadd_u8(src.val[1], SkMulDiv255Round_neon8(nalphas, dst.val[1])); |
177 | result.val[2] = vadd_u8(src.val[2], SkMulDiv255Round_neon8(nalphas, dst.val[2])); |
178 | result.val[3] = vadd_u8(src.val[3], SkMulDiv255Round_neon8(nalphas, dst.val[3])); |
179 | return result; |
180 | } |
181 | |
182 | // In this variant of SkPMSrcOver dst and src contain the color components of two consecutive |
183 | // pixels. The return value follows the same convention. |
184 | static inline uint8x8_t SkPMSrcOver_neon2(uint8x8_t dst, uint8x8_t src) { |
185 | const uint8x8_t alpha_indices = vcreate_u8(0x0707070703030303); |
186 | uint8x8_t nalphas = vmvn_u8(vtbl1_u8(src, alpha_indices)); |
187 | return vadd_u8(src, SkMulDiv255Round_neon8(nalphas, dst)); |
188 | } |
189 | |
190 | #endif |
191 | |
192 | /*not static*/ inline |
193 | void blit_row_s32a_opaque(SkPMColor* dst, const SkPMColor* src, int len, U8CPU alpha) { |
194 | SkASSERT(alpha == 0xFF); |
195 | sk_msan_assert_initialized(src, src+len); |
196 | #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SKX |
197 | while (len >= 64) { |
198 | // Load 64 source pixels. |
199 | auto s0 = _mm512_loadu_si512((const __m512i*)(src) + 0), |
200 | s1 = _mm512_loadu_si512((const __m512i*)(src) + 1), |
201 | s2 = _mm512_loadu_si512((const __m512i*)(src) + 2), |
202 | s3 = _mm512_loadu_si512((const __m512i*)(src) + 3); |
203 | |
204 | const auto alphaMask = _mm512_set1_epi32(0xFF000000); |
205 | |
206 | auto ORed = _mm512_or_si512(s3, _mm512_or_si512(s2, _mm512_or_si512(s1, s0))); |
207 | if (0 == _mm512_cmpneq_epi8_mask(_mm512_and_si512(ORed, alphaMask), |
208 | _mm512_setzero_si512())) { |
209 | // All 64 source pixels are transparent. Nothing to do. |
210 | src += 64; |
211 | dst += 64; |
212 | len -= 64; |
213 | continue; |
214 | } |
215 | |
216 | auto d0 = (__m512i*)(dst) + 0, |
217 | d1 = (__m512i*)(dst) + 1, |
218 | d2 = (__m512i*)(dst) + 2, |
219 | d3 = (__m512i*)(dst) + 3; |
220 | |
221 | auto ANDed = _mm512_and_si512(s3, _mm512_and_si512(s2, _mm512_and_si512(s1, s0))); |
222 | if (0 == _mm512_cmpneq_epi8_mask(_mm512_and_si512(ANDed, alphaMask), |
223 | alphaMask)) { |
224 | // All 64 source pixels are opaque. SrcOver becomes Src. |
225 | _mm512_storeu_si512(d0, s0); |
226 | _mm512_storeu_si512(d1, s1); |
227 | _mm512_storeu_si512(d2, s2); |
228 | _mm512_storeu_si512(d3, s3); |
229 | src += 64; |
230 | dst += 64; |
231 | len -= 64; |
232 | continue; |
233 | } |
234 | |
235 | // TODO: This math is wrong. |
236 | // Do SrcOver. |
237 | _mm512_storeu_si512(d0, SkPMSrcOver_SKX(s0, _mm512_loadu_si512(d0))); |
238 | _mm512_storeu_si512(d1, SkPMSrcOver_SKX(s1, _mm512_loadu_si512(d1))); |
239 | _mm512_storeu_si512(d2, SkPMSrcOver_SKX(s2, _mm512_loadu_si512(d2))); |
240 | _mm512_storeu_si512(d3, SkPMSrcOver_SKX(s3, _mm512_loadu_si512(d3))); |
241 | src += 64; |
242 | dst += 64; |
243 | len -= 64; |
244 | } |
245 | |
246 | // Require AVX2 because of AVX2 integer calculation intrinsics in SrcOver |
247 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_AVX2 |
248 | while (len >= 32) { |
249 | // Load 32 source pixels. |
250 | auto s0 = _mm256_loadu_si256((const __m256i*)(src) + 0), |
251 | s1 = _mm256_loadu_si256((const __m256i*)(src) + 1), |
252 | s2 = _mm256_loadu_si256((const __m256i*)(src) + 2), |
253 | s3 = _mm256_loadu_si256((const __m256i*)(src) + 3); |
254 | |
255 | const auto alphaMask = _mm256_set1_epi32(0xFF000000); |
256 | |
257 | auto ORed = _mm256_or_si256(s3, _mm256_or_si256(s2, _mm256_or_si256(s1, s0))); |
258 | if (_mm256_testz_si256(ORed, alphaMask)) { |
259 | // All 32 source pixels are transparent. Nothing to do. |
260 | src += 32; |
261 | dst += 32; |
262 | len -= 32; |
263 | continue; |
264 | } |
265 | |
266 | auto d0 = (__m256i*)(dst) + 0, |
267 | d1 = (__m256i*)(dst) + 1, |
268 | d2 = (__m256i*)(dst) + 2, |
269 | d3 = (__m256i*)(dst) + 3; |
270 | |
271 | auto ANDed = _mm256_and_si256(s3, _mm256_and_si256(s2, _mm256_and_si256(s1, s0))); |
272 | if (_mm256_testc_si256(ANDed, alphaMask)) { |
273 | // All 32 source pixels are opaque. SrcOver becomes Src. |
274 | _mm256_storeu_si256(d0, s0); |
275 | _mm256_storeu_si256(d1, s1); |
276 | _mm256_storeu_si256(d2, s2); |
277 | _mm256_storeu_si256(d3, s3); |
278 | src += 32; |
279 | dst += 32; |
280 | len -= 32; |
281 | continue; |
282 | } |
283 | |
284 | // TODO: This math is wrong. |
285 | // Do SrcOver. |
286 | _mm256_storeu_si256(d0, SkPMSrcOver_AVX2(s0, _mm256_loadu_si256(d0))); |
287 | _mm256_storeu_si256(d1, SkPMSrcOver_AVX2(s1, _mm256_loadu_si256(d1))); |
288 | _mm256_storeu_si256(d2, SkPMSrcOver_AVX2(s2, _mm256_loadu_si256(d2))); |
289 | _mm256_storeu_si256(d3, SkPMSrcOver_AVX2(s3, _mm256_loadu_si256(d3))); |
290 | src += 32; |
291 | dst += 32; |
292 | len -= 32; |
293 | } |
294 | |
295 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
296 | while (len >= 16) { |
297 | // Load 16 source pixels. |
298 | auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
299 | s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
300 | s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
301 | s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
302 | |
303 | const auto alphaMask = _mm_set1_epi32(0xFF000000); |
304 | |
305 | auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
306 | if (_mm_testz_si128(ORed, alphaMask)) { |
307 | // All 16 source pixels are transparent. Nothing to do. |
308 | src += 16; |
309 | dst += 16; |
310 | len -= 16; |
311 | continue; |
312 | } |
313 | |
314 | auto d0 = (__m128i*)(dst) + 0, |
315 | d1 = (__m128i*)(dst) + 1, |
316 | d2 = (__m128i*)(dst) + 2, |
317 | d3 = (__m128i*)(dst) + 3; |
318 | |
319 | auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
320 | if (_mm_testc_si128(ANDed, alphaMask)) { |
321 | // All 16 source pixels are opaque. SrcOver becomes Src. |
322 | _mm_storeu_si128(d0, s0); |
323 | _mm_storeu_si128(d1, s1); |
324 | _mm_storeu_si128(d2, s2); |
325 | _mm_storeu_si128(d3, s3); |
326 | src += 16; |
327 | dst += 16; |
328 | len -= 16; |
329 | continue; |
330 | } |
331 | |
332 | // TODO: This math is wrong. |
333 | // Do SrcOver. |
334 | _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
335 | _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
336 | _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
337 | _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
338 | src += 16; |
339 | dst += 16; |
340 | len -= 16; |
341 | } |
342 | |
343 | #elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE2 |
344 | while (len >= 16) { |
345 | // Load 16 source pixels. |
346 | auto s0 = _mm_loadu_si128((const __m128i*)(src) + 0), |
347 | s1 = _mm_loadu_si128((const __m128i*)(src) + 1), |
348 | s2 = _mm_loadu_si128((const __m128i*)(src) + 2), |
349 | s3 = _mm_loadu_si128((const __m128i*)(src) + 3); |
350 | |
351 | const auto alphaMask = _mm_set1_epi32(0xFF000000); |
352 | |
353 | auto ORed = _mm_or_si128(s3, _mm_or_si128(s2, _mm_or_si128(s1, s0))); |
354 | if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ORed, alphaMask), |
355 | _mm_setzero_si128()))) { |
356 | // All 16 source pixels are transparent. Nothing to do. |
357 | src += 16; |
358 | dst += 16; |
359 | len -= 16; |
360 | continue; |
361 | } |
362 | |
363 | auto d0 = (__m128i*)(dst) + 0, |
364 | d1 = (__m128i*)(dst) + 1, |
365 | d2 = (__m128i*)(dst) + 2, |
366 | d3 = (__m128i*)(dst) + 3; |
367 | |
368 | auto ANDed = _mm_and_si128(s3, _mm_and_si128(s2, _mm_and_si128(s1, s0))); |
369 | if (0xffff == _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(ANDed, alphaMask), |
370 | alphaMask))) { |
371 | // All 16 source pixels are opaque. SrcOver becomes Src. |
372 | _mm_storeu_si128(d0, s0); |
373 | _mm_storeu_si128(d1, s1); |
374 | _mm_storeu_si128(d2, s2); |
375 | _mm_storeu_si128(d3, s3); |
376 | src += 16; |
377 | dst += 16; |
378 | len -= 16; |
379 | continue; |
380 | } |
381 | |
382 | // TODO: This math is wrong. |
383 | // Do SrcOver. |
384 | _mm_storeu_si128(d0, SkPMSrcOver_SSE2(s0, _mm_loadu_si128(d0))); |
385 | _mm_storeu_si128(d1, SkPMSrcOver_SSE2(s1, _mm_loadu_si128(d1))); |
386 | _mm_storeu_si128(d2, SkPMSrcOver_SSE2(s2, _mm_loadu_si128(d2))); |
387 | _mm_storeu_si128(d3, SkPMSrcOver_SSE2(s3, _mm_loadu_si128(d3))); |
388 | |
389 | src += 16; |
390 | dst += 16; |
391 | len -= 16; |
392 | } |
393 | |
394 | #elif defined(SK_ARM_HAS_NEON) |
395 | // Do 8-pixels at a time. A 16-pixels at a time version of this code was also tested, but it |
396 | // underperformed on some of the platforms under test for inputs with frequent transitions of |
397 | // alpha (corresponding to changes of the conditions [~]alpha_u64 == 0 below). It may be worth |
398 | // revisiting the situation in the future. |
399 | while (len >= 8) { |
400 | // Load 8 pixels in 4 NEON registers. src_col.val[i] will contain the same color component |
401 | // for 8 consecutive pixels (e.g. src_col.val[3] will contain all alpha components of 8 |
402 | // pixels). |
403 | uint8x8x4_t src_col = vld4_u8(reinterpret_cast<const uint8_t*>(src)); |
404 | src += 8; |
405 | len -= 8; |
406 | |
407 | // We now detect 2 special cases: the first occurs when all alphas are zero (the 8 pixels |
408 | // are all transparent), the second when all alphas are fully set (they are all opaque). |
409 | uint8x8_t alphas = src_col.val[3]; |
410 | uint64_t alphas_u64 = vget_lane_u64(vreinterpret_u64_u8(alphas), 0); |
411 | if (alphas_u64 == 0) { |
412 | // All pixels transparent. |
413 | dst += 8; |
414 | continue; |
415 | } |
416 | |
417 | if (~alphas_u64 == 0) { |
418 | // All pixels opaque. |
419 | vst4_u8(reinterpret_cast<uint8_t*>(dst), src_col); |
420 | dst += 8; |
421 | continue; |
422 | } |
423 | |
424 | uint8x8x4_t dst_col = vld4_u8(reinterpret_cast<uint8_t*>(dst)); |
425 | vst4_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon8(dst_col, src_col)); |
426 | dst += 8; |
427 | } |
428 | |
429 | // Deal with leftover pixels. |
430 | for (; len >= 2; len -= 2, src += 2, dst += 2) { |
431 | uint8x8_t src2 = vld1_u8(reinterpret_cast<const uint8_t*>(src)); |
432 | uint8x8_t dst2 = vld1_u8(reinterpret_cast<const uint8_t*>(dst)); |
433 | vst1_u8(reinterpret_cast<uint8_t*>(dst), SkPMSrcOver_neon2(dst2, src2)); |
434 | } |
435 | |
436 | if (len != 0) { |
437 | uint8x8_t result = SkPMSrcOver_neon2(vcreate_u8((uint64_t)*dst), vcreate_u8((uint64_t)*src)); |
438 | vst1_lane_u32(dst, vreinterpret_u32_u8(result), 0); |
439 | } |
440 | return; |
441 | #endif |
442 | |
443 | while (len-- > 0) { |
444 | // This 0xFF000000 is not semantically necessary, but for compatibility |
445 | // with chromium:611002 we need to keep it until we figure out where |
446 | // the non-premultiplied src values (like 0x00FFFFFF) are coming from. |
447 | // TODO(mtklein): sort this out and assert *src is premul here. |
448 | if (*src & 0xFF000000) { |
449 | *dst = (*src >= 0xFF000000) ? *src : SkPMSrcOver(*src, *dst); |
450 | } |
451 | src++; |
452 | dst++; |
453 | } |
454 | } |
455 | |
456 | } // namespace SK_OPTS_NS |
457 | |
458 | #endif//SkBlitRow_opts_DEFINED |
459 | |