| 1 | /* |
| 2 | * Copyright 2012 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | #ifndef SkPathOpsTypes_DEFINED |
| 8 | #define SkPathOpsTypes_DEFINED |
| 9 | |
| 10 | #include <float.h> // for FLT_EPSILON |
| 11 | |
| 12 | #include "include/core/SkPath.h" |
| 13 | #include "include/core/SkScalar.h" |
| 14 | #include "include/pathops/SkPathOps.h" |
| 15 | #include "include/private/SkFloatingPoint.h" |
| 16 | #include "include/private/SkSafe_math.h" |
| 17 | #include "src/pathops/SkPathOpsDebug.h" |
| 18 | |
| 19 | enum SkPathOpsMask { |
| 20 | kWinding_PathOpsMask = -1, |
| 21 | kNo_PathOpsMask = 0, |
| 22 | kEvenOdd_PathOpsMask = 1 |
| 23 | }; |
| 24 | |
| 25 | class SkArenaAlloc; |
| 26 | class SkOpCoincidence; |
| 27 | class SkOpContour; |
| 28 | class SkOpContourHead; |
| 29 | class SkIntersections; |
| 30 | class SkIntersectionHelper; |
| 31 | |
| 32 | enum class SkOpPhase : char { |
| 33 | kNoChange, |
| 34 | kIntersecting, |
| 35 | kWalking, |
| 36 | kFixWinding, |
| 37 | }; |
| 38 | |
| 39 | class SkOpGlobalState { |
| 40 | public: |
| 41 | SkOpGlobalState(SkOpContourHead* head, |
| 42 | SkArenaAlloc* allocator SkDEBUGPARAMS(bool debugSkipAssert) |
| 43 | SkDEBUGPARAMS(const char* testName)); |
| 44 | |
| 45 | enum { |
| 46 | kMaxWindingTries = 10 |
| 47 | }; |
| 48 | |
| 49 | bool allocatedOpSpan() const { |
| 50 | return fAllocatedOpSpan; |
| 51 | } |
| 52 | |
| 53 | SkArenaAlloc* allocator() { |
| 54 | return fAllocator; |
| 55 | } |
| 56 | |
| 57 | void bumpNested() { |
| 58 | ++fNested; |
| 59 | } |
| 60 | |
| 61 | void clearNested() { |
| 62 | fNested = 0; |
| 63 | } |
| 64 | |
| 65 | SkOpCoincidence* coincidence() { |
| 66 | return fCoincidence; |
| 67 | } |
| 68 | |
| 69 | SkOpContourHead* contourHead() { |
| 70 | return fContourHead; |
| 71 | } |
| 72 | |
| 73 | #ifdef SK_DEBUG |
| 74 | const class SkOpAngle* debugAngle(int id) const; |
| 75 | const SkOpCoincidence* debugCoincidence() const; |
| 76 | SkOpContour* debugContour(int id) const; |
| 77 | const class SkOpPtT* debugPtT(int id) const; |
| 78 | #endif |
| 79 | |
| 80 | static bool DebugRunFail(); |
| 81 | |
| 82 | #ifdef SK_DEBUG |
| 83 | const class SkOpSegment* debugSegment(int id) const; |
| 84 | bool debugSkipAssert() const { return fDebugSkipAssert; } |
| 85 | const class SkOpSpanBase* debugSpan(int id) const; |
| 86 | const char* debugTestName() const { return fDebugTestName; } |
| 87 | #endif |
| 88 | |
| 89 | #if DEBUG_T_SECT_LOOP_COUNT |
| 90 | void debugAddLoopCount(SkIntersections* , const SkIntersectionHelper& , |
| 91 | const SkIntersectionHelper& ); |
| 92 | void debugDoYourWorst(SkOpGlobalState* ); |
| 93 | void debugLoopReport(); |
| 94 | void debugResetLoopCounts(); |
| 95 | #endif |
| 96 | |
| 97 | #if DEBUG_COINCIDENCE |
| 98 | void debugSetCheckHealth(bool check) { fDebugCheckHealth = check; } |
| 99 | bool debugCheckHealth() const { return fDebugCheckHealth; } |
| 100 | #endif |
| 101 | |
| 102 | #if DEBUG_VALIDATE || DEBUG_COIN |
| 103 | void debugSetPhase(const char* funcName DEBUG_COIN_DECLARE_PARAMS()) const; |
| 104 | #endif |
| 105 | |
| 106 | #if DEBUG_COIN |
| 107 | void debugAddToCoinChangedDict(); |
| 108 | void debugAddToGlobalCoinDicts(); |
| 109 | SkPathOpsDebug::CoinDict* debugCoinChangedDict() { return &fCoinChangedDict; } |
| 110 | const SkPathOpsDebug::CoinDictEntry& debugCoinDictEntry() const { return fCoinDictEntry; } |
| 111 | |
| 112 | static void DumpCoinDict(); |
| 113 | #endif |
| 114 | |
| 115 | |
| 116 | int nested() const { |
| 117 | return fNested; |
| 118 | } |
| 119 | |
| 120 | #ifdef SK_DEBUG |
| 121 | int nextAngleID() { |
| 122 | return ++fAngleID; |
| 123 | } |
| 124 | |
| 125 | int nextCoinID() { |
| 126 | return ++fCoinID; |
| 127 | } |
| 128 | |
| 129 | int nextContourID() { |
| 130 | return ++fContourID; |
| 131 | } |
| 132 | |
| 133 | int nextPtTID() { |
| 134 | return ++fPtTID; |
| 135 | } |
| 136 | |
| 137 | int nextSegmentID() { |
| 138 | return ++fSegmentID; |
| 139 | } |
| 140 | |
| 141 | int nextSpanID() { |
| 142 | return ++fSpanID; |
| 143 | } |
| 144 | #endif |
| 145 | |
| 146 | SkOpPhase phase() const { |
| 147 | return fPhase; |
| 148 | } |
| 149 | |
| 150 | void resetAllocatedOpSpan() { |
| 151 | fAllocatedOpSpan = false; |
| 152 | } |
| 153 | |
| 154 | void setAllocatedOpSpan() { |
| 155 | fAllocatedOpSpan = true; |
| 156 | } |
| 157 | |
| 158 | void setCoincidence(SkOpCoincidence* coincidence) { |
| 159 | fCoincidence = coincidence; |
| 160 | } |
| 161 | |
| 162 | void setContourHead(SkOpContourHead* contourHead) { |
| 163 | fContourHead = contourHead; |
| 164 | } |
| 165 | |
| 166 | void setPhase(SkOpPhase phase) { |
| 167 | if (SkOpPhase::kNoChange == phase) { |
| 168 | return; |
| 169 | } |
| 170 | SkASSERT(fPhase != phase); |
| 171 | fPhase = phase; |
| 172 | } |
| 173 | |
| 174 | // called in very rare cases where angles are sorted incorrectly -- signfies op will fail |
| 175 | void setWindingFailed() { |
| 176 | fWindingFailed = true; |
| 177 | } |
| 178 | |
| 179 | bool windingFailed() const { |
| 180 | return fWindingFailed; |
| 181 | } |
| 182 | |
| 183 | private: |
| 184 | SkArenaAlloc* fAllocator; |
| 185 | SkOpCoincidence* fCoincidence; |
| 186 | SkOpContourHead* fContourHead; |
| 187 | int fNested; |
| 188 | bool fAllocatedOpSpan; |
| 189 | bool fWindingFailed; |
| 190 | SkOpPhase fPhase; |
| 191 | #ifdef SK_DEBUG |
| 192 | const char* fDebugTestName; |
| 193 | void* fDebugReporter; |
| 194 | int fAngleID; |
| 195 | int fCoinID; |
| 196 | int fContourID; |
| 197 | int fPtTID; |
| 198 | int fSegmentID; |
| 199 | int fSpanID; |
| 200 | bool fDebugSkipAssert; |
| 201 | #endif |
| 202 | #if DEBUG_T_SECT_LOOP_COUNT |
| 203 | int fDebugLoopCount[3]; |
| 204 | SkPath::Verb fDebugWorstVerb[6]; |
| 205 | SkPoint fDebugWorstPts[24]; |
| 206 | float fDebugWorstWeight[6]; |
| 207 | #endif |
| 208 | #if DEBUG_COIN |
| 209 | SkPathOpsDebug::CoinDict fCoinChangedDict; |
| 210 | SkPathOpsDebug::CoinDict fCoinVisitedDict; |
| 211 | SkPathOpsDebug::CoinDictEntry fCoinDictEntry; |
| 212 | const char* fPreviousFuncName; |
| 213 | #endif |
| 214 | #if DEBUG_COINCIDENCE |
| 215 | bool fDebugCheckHealth; |
| 216 | #endif |
| 217 | }; |
| 218 | |
| 219 | #ifdef SK_DEBUG |
| 220 | #if DEBUG_COINCIDENCE |
| 221 | #define SkOPASSERT(cond) SkASSERT((this->globalState() && \ |
| 222 | (this->globalState()->debugCheckHealth() || \ |
| 223 | this->globalState()->debugSkipAssert())) || (cond)) |
| 224 | #else |
| 225 | #define SkOPASSERT(cond) SkASSERT((this->globalState() && \ |
| 226 | this->globalState()->debugSkipAssert()) || (cond)) |
| 227 | #endif |
| 228 | #define SkOPOBJASSERT(obj, cond) SkASSERT((obj->globalState() && \ |
| 229 | obj->globalState()->debugSkipAssert()) || (cond)) |
| 230 | #else |
| 231 | #define SkOPASSERT(cond) |
| 232 | #define SkOPOBJASSERT(obj, cond) |
| 233 | #endif |
| 234 | |
| 235 | // Use Almost Equal when comparing coordinates. Use epsilon to compare T values. |
| 236 | bool AlmostEqualUlps(float a, float b); |
| 237 | inline bool AlmostEqualUlps(double a, double b) { |
| 238 | return AlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 239 | } |
| 240 | |
| 241 | bool AlmostEqualUlpsNoNormalCheck(float a, float b); |
| 242 | inline bool AlmostEqualUlpsNoNormalCheck(double a, double b) { |
| 243 | return AlmostEqualUlpsNoNormalCheck(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 244 | } |
| 245 | |
| 246 | bool AlmostEqualUlps_Pin(float a, float b); |
| 247 | inline bool AlmostEqualUlps_Pin(double a, double b) { |
| 248 | return AlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 249 | } |
| 250 | |
| 251 | // Use Almost Dequal when comparing should not special case denormalized values. |
| 252 | bool AlmostDequalUlps(float a, float b); |
| 253 | bool AlmostDequalUlps(double a, double b); |
| 254 | |
| 255 | bool NotAlmostEqualUlps(float a, float b); |
| 256 | inline bool NotAlmostEqualUlps(double a, double b) { |
| 257 | return NotAlmostEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 258 | } |
| 259 | |
| 260 | bool NotAlmostEqualUlps_Pin(float a, float b); |
| 261 | inline bool NotAlmostEqualUlps_Pin(double a, double b) { |
| 262 | return NotAlmostEqualUlps_Pin(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 263 | } |
| 264 | |
| 265 | bool NotAlmostDequalUlps(float a, float b); |
| 266 | inline bool NotAlmostDequalUlps(double a, double b) { |
| 267 | return NotAlmostDequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 268 | } |
| 269 | |
| 270 | // Use Almost Bequal when comparing coordinates in conjunction with between. |
| 271 | bool AlmostBequalUlps(float a, float b); |
| 272 | inline bool AlmostBequalUlps(double a, double b) { |
| 273 | return AlmostBequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 274 | } |
| 275 | |
| 276 | bool AlmostPequalUlps(float a, float b); |
| 277 | inline bool AlmostPequalUlps(double a, double b) { |
| 278 | return AlmostPequalUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 279 | } |
| 280 | |
| 281 | bool RoughlyEqualUlps(float a, float b); |
| 282 | inline bool RoughlyEqualUlps(double a, double b) { |
| 283 | return RoughlyEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 284 | } |
| 285 | |
| 286 | bool AlmostLessUlps(float a, float b); |
| 287 | inline bool AlmostLessUlps(double a, double b) { |
| 288 | return AlmostLessUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 289 | } |
| 290 | |
| 291 | bool AlmostLessOrEqualUlps(float a, float b); |
| 292 | inline bool AlmostLessOrEqualUlps(double a, double b) { |
| 293 | return AlmostLessOrEqualUlps(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 294 | } |
| 295 | |
| 296 | bool AlmostBetweenUlps(float a, float b, float c); |
| 297 | inline bool AlmostBetweenUlps(double a, double b, double c) { |
| 298 | return AlmostBetweenUlps(SkDoubleToScalar(a), SkDoubleToScalar(b), SkDoubleToScalar(c)); |
| 299 | } |
| 300 | |
| 301 | int UlpsDistance(float a, float b); |
| 302 | inline int UlpsDistance(double a, double b) { |
| 303 | return UlpsDistance(SkDoubleToScalar(a), SkDoubleToScalar(b)); |
| 304 | } |
| 305 | |
| 306 | // FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23) |
| 307 | // DBL_EPSILON == 2.22045e-16 |
| 308 | const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON; |
| 309 | const double FLT_EPSILON_HALF = FLT_EPSILON / 2; |
| 310 | const double FLT_EPSILON_DOUBLE = FLT_EPSILON * 2; |
| 311 | const double FLT_EPSILON_ORDERABLE_ERR = FLT_EPSILON * 16; |
| 312 | const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON; |
| 313 | // Use a compile-time constant for FLT_EPSILON_SQRT to avoid initializers. |
| 314 | // A 17 digit constant guarantees exact results. |
| 315 | const double FLT_EPSILON_SQRT = 0.00034526697709225118; // sqrt(FLT_EPSILON); |
| 316 | const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON; |
| 317 | const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error |
| 318 | const double DBL_EPSILON_SUBDIVIDE_ERR = DBL_EPSILON * 16; |
| 319 | const double ROUGH_EPSILON = FLT_EPSILON * 64; |
| 320 | const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256; |
| 321 | const double WAY_ROUGH_EPSILON = FLT_EPSILON * 2048; |
| 322 | const double BUMP_EPSILON = FLT_EPSILON * 4096; |
| 323 | |
| 324 | const SkScalar INVERSE_NUMBER_RANGE = FLT_EPSILON_ORDERABLE_ERR; |
| 325 | |
| 326 | inline bool zero_or_one(double x) { |
| 327 | return x == 0 || x == 1; |
| 328 | } |
| 329 | |
| 330 | inline bool approximately_zero(double x) { |
| 331 | return fabs(x) < FLT_EPSILON; |
| 332 | } |
| 333 | |
| 334 | inline bool precisely_zero(double x) { |
| 335 | return fabs(x) < DBL_EPSILON_ERR; |
| 336 | } |
| 337 | |
| 338 | inline bool precisely_subdivide_zero(double x) { |
| 339 | return fabs(x) < DBL_EPSILON_SUBDIVIDE_ERR; |
| 340 | } |
| 341 | |
| 342 | inline bool approximately_zero(float x) { |
| 343 | return fabs(x) < FLT_EPSILON; |
| 344 | } |
| 345 | |
| 346 | inline bool approximately_zero_cubed(double x) { |
| 347 | return fabs(x) < FLT_EPSILON_CUBED; |
| 348 | } |
| 349 | |
| 350 | inline bool approximately_zero_half(double x) { |
| 351 | return fabs(x) < FLT_EPSILON_HALF; |
| 352 | } |
| 353 | |
| 354 | inline bool approximately_zero_double(double x) { |
| 355 | return fabs(x) < FLT_EPSILON_DOUBLE; |
| 356 | } |
| 357 | |
| 358 | inline bool approximately_zero_orderable(double x) { |
| 359 | return fabs(x) < FLT_EPSILON_ORDERABLE_ERR; |
| 360 | } |
| 361 | |
| 362 | inline bool approximately_zero_squared(double x) { |
| 363 | return fabs(x) < FLT_EPSILON_SQUARED; |
| 364 | } |
| 365 | |
| 366 | inline bool approximately_zero_sqrt(double x) { |
| 367 | return fabs(x) < FLT_EPSILON_SQRT; |
| 368 | } |
| 369 | |
| 370 | inline bool roughly_zero(double x) { |
| 371 | return fabs(x) < ROUGH_EPSILON; |
| 372 | } |
| 373 | |
| 374 | inline bool approximately_zero_inverse(double x) { |
| 375 | return fabs(x) > FLT_EPSILON_INVERSE; |
| 376 | } |
| 377 | |
| 378 | inline bool approximately_zero_when_compared_to(double x, double y) { |
| 379 | return x == 0 || fabs(x) < fabs(y * FLT_EPSILON); |
| 380 | } |
| 381 | |
| 382 | inline bool precisely_zero_when_compared_to(double x, double y) { |
| 383 | return x == 0 || fabs(x) < fabs(y * DBL_EPSILON); |
| 384 | } |
| 385 | |
| 386 | inline bool roughly_zero_when_compared_to(double x, double y) { |
| 387 | return x == 0 || fabs(x) < fabs(y * ROUGH_EPSILON); |
| 388 | } |
| 389 | |
| 390 | // Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use |
| 391 | // AlmostEqualUlps instead. |
| 392 | inline bool approximately_equal(double x, double y) { |
| 393 | return approximately_zero(x - y); |
| 394 | } |
| 395 | |
| 396 | inline bool precisely_equal(double x, double y) { |
| 397 | return precisely_zero(x - y); |
| 398 | } |
| 399 | |
| 400 | inline bool precisely_subdivide_equal(double x, double y) { |
| 401 | return precisely_subdivide_zero(x - y); |
| 402 | } |
| 403 | |
| 404 | inline bool approximately_equal_half(double x, double y) { |
| 405 | return approximately_zero_half(x - y); |
| 406 | } |
| 407 | |
| 408 | inline bool approximately_equal_double(double x, double y) { |
| 409 | return approximately_zero_double(x - y); |
| 410 | } |
| 411 | |
| 412 | inline bool approximately_equal_orderable(double x, double y) { |
| 413 | return approximately_zero_orderable(x - y); |
| 414 | } |
| 415 | |
| 416 | inline bool approximately_equal_squared(double x, double y) { |
| 417 | return approximately_equal(x, y); |
| 418 | } |
| 419 | |
| 420 | inline bool approximately_greater(double x, double y) { |
| 421 | return x - FLT_EPSILON >= y; |
| 422 | } |
| 423 | |
| 424 | inline bool approximately_greater_double(double x, double y) { |
| 425 | return x - FLT_EPSILON_DOUBLE >= y; |
| 426 | } |
| 427 | |
| 428 | inline bool approximately_greater_orderable(double x, double y) { |
| 429 | return x - FLT_EPSILON_ORDERABLE_ERR >= y; |
| 430 | } |
| 431 | |
| 432 | inline bool approximately_greater_or_equal(double x, double y) { |
| 433 | return x + FLT_EPSILON > y; |
| 434 | } |
| 435 | |
| 436 | inline bool approximately_greater_or_equal_double(double x, double y) { |
| 437 | return x + FLT_EPSILON_DOUBLE > y; |
| 438 | } |
| 439 | |
| 440 | inline bool approximately_greater_or_equal_orderable(double x, double y) { |
| 441 | return x + FLT_EPSILON_ORDERABLE_ERR > y; |
| 442 | } |
| 443 | |
| 444 | inline bool approximately_lesser(double x, double y) { |
| 445 | return x + FLT_EPSILON <= y; |
| 446 | } |
| 447 | |
| 448 | inline bool approximately_lesser_double(double x, double y) { |
| 449 | return x + FLT_EPSILON_DOUBLE <= y; |
| 450 | } |
| 451 | |
| 452 | inline bool approximately_lesser_orderable(double x, double y) { |
| 453 | return x + FLT_EPSILON_ORDERABLE_ERR <= y; |
| 454 | } |
| 455 | |
| 456 | inline bool approximately_lesser_or_equal(double x, double y) { |
| 457 | return x - FLT_EPSILON < y; |
| 458 | } |
| 459 | |
| 460 | inline bool approximately_lesser_or_equal_double(double x, double y) { |
| 461 | return x - FLT_EPSILON_DOUBLE < y; |
| 462 | } |
| 463 | |
| 464 | inline bool approximately_lesser_or_equal_orderable(double x, double y) { |
| 465 | return x - FLT_EPSILON_ORDERABLE_ERR < y; |
| 466 | } |
| 467 | |
| 468 | inline bool approximately_greater_than_one(double x) { |
| 469 | return x > 1 - FLT_EPSILON; |
| 470 | } |
| 471 | |
| 472 | inline bool precisely_greater_than_one(double x) { |
| 473 | return x > 1 - DBL_EPSILON_ERR; |
| 474 | } |
| 475 | |
| 476 | inline bool approximately_less_than_zero(double x) { |
| 477 | return x < FLT_EPSILON; |
| 478 | } |
| 479 | |
| 480 | inline bool precisely_less_than_zero(double x) { |
| 481 | return x < DBL_EPSILON_ERR; |
| 482 | } |
| 483 | |
| 484 | inline bool approximately_negative(double x) { |
| 485 | return x < FLT_EPSILON; |
| 486 | } |
| 487 | |
| 488 | inline bool approximately_negative_orderable(double x) { |
| 489 | return x < FLT_EPSILON_ORDERABLE_ERR; |
| 490 | } |
| 491 | |
| 492 | inline bool precisely_negative(double x) { |
| 493 | return x < DBL_EPSILON_ERR; |
| 494 | } |
| 495 | |
| 496 | inline bool approximately_one_or_less(double x) { |
| 497 | return x < 1 + FLT_EPSILON; |
| 498 | } |
| 499 | |
| 500 | inline bool approximately_one_or_less_double(double x) { |
| 501 | return x < 1 + FLT_EPSILON_DOUBLE; |
| 502 | } |
| 503 | |
| 504 | inline bool approximately_positive(double x) { |
| 505 | return x > -FLT_EPSILON; |
| 506 | } |
| 507 | |
| 508 | inline bool approximately_positive_squared(double x) { |
| 509 | return x > -(FLT_EPSILON_SQUARED); |
| 510 | } |
| 511 | |
| 512 | inline bool approximately_zero_or_more(double x) { |
| 513 | return x > -FLT_EPSILON; |
| 514 | } |
| 515 | |
| 516 | inline bool approximately_zero_or_more_double(double x) { |
| 517 | return x > -FLT_EPSILON_DOUBLE; |
| 518 | } |
| 519 | |
| 520 | inline bool approximately_between_orderable(double a, double b, double c) { |
| 521 | return a <= c |
| 522 | ? approximately_negative_orderable(a - b) && approximately_negative_orderable(b - c) |
| 523 | : approximately_negative_orderable(b - a) && approximately_negative_orderable(c - b); |
| 524 | } |
| 525 | |
| 526 | inline bool approximately_between(double a, double b, double c) { |
| 527 | return a <= c ? approximately_negative(a - b) && approximately_negative(b - c) |
| 528 | : approximately_negative(b - a) && approximately_negative(c - b); |
| 529 | } |
| 530 | |
| 531 | inline bool precisely_between(double a, double b, double c) { |
| 532 | return a <= c ? precisely_negative(a - b) && precisely_negative(b - c) |
| 533 | : precisely_negative(b - a) && precisely_negative(c - b); |
| 534 | } |
| 535 | |
| 536 | // returns true if (a <= b <= c) || (a >= b >= c) |
| 537 | inline bool between(double a, double b, double c) { |
| 538 | SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0) |
| 539 | || (precisely_zero(a) && precisely_zero(b) && precisely_zero(c))); |
| 540 | return (a - b) * (c - b) <= 0; |
| 541 | } |
| 542 | |
| 543 | inline bool roughly_equal(double x, double y) { |
| 544 | return fabs(x - y) < ROUGH_EPSILON; |
| 545 | } |
| 546 | |
| 547 | inline bool roughly_negative(double x) { |
| 548 | return x < ROUGH_EPSILON; |
| 549 | } |
| 550 | |
| 551 | inline bool roughly_between(double a, double b, double c) { |
| 552 | return a <= c ? roughly_negative(a - b) && roughly_negative(b - c) |
| 553 | : roughly_negative(b - a) && roughly_negative(c - b); |
| 554 | } |
| 555 | |
| 556 | inline bool more_roughly_equal(double x, double y) { |
| 557 | return fabs(x - y) < MORE_ROUGH_EPSILON; |
| 558 | } |
| 559 | |
| 560 | struct SkDPoint; |
| 561 | struct SkDVector; |
| 562 | struct SkDLine; |
| 563 | struct SkDQuad; |
| 564 | struct SkDConic; |
| 565 | struct SkDCubic; |
| 566 | struct SkDRect; |
| 567 | |
| 568 | inline SkPath::Verb SkPathOpsPointsToVerb(int points) { |
| 569 | int verb = (1 << points) >> 1; |
| 570 | #ifdef SK_DEBUG |
| 571 | switch (points) { |
| 572 | case 0: SkASSERT(SkPath::kMove_Verb == verb); break; |
| 573 | case 1: SkASSERT(SkPath::kLine_Verb == verb); break; |
| 574 | case 2: SkASSERT(SkPath::kQuad_Verb == verb); break; |
| 575 | case 3: SkASSERT(SkPath::kCubic_Verb == verb); break; |
| 576 | default: SkDEBUGFAIL("should not be here" ); |
| 577 | } |
| 578 | #endif |
| 579 | return (SkPath::Verb)verb; |
| 580 | } |
| 581 | |
| 582 | inline int SkPathOpsVerbToPoints(SkPath::Verb verb) { |
| 583 | int points = (int) verb - (((int) verb + 1) >> 2); |
| 584 | #ifdef SK_DEBUG |
| 585 | switch (verb) { |
| 586 | case SkPath::kLine_Verb: SkASSERT(1 == points); break; |
| 587 | case SkPath::kQuad_Verb: SkASSERT(2 == points); break; |
| 588 | case SkPath::kConic_Verb: SkASSERT(2 == points); break; |
| 589 | case SkPath::kCubic_Verb: SkASSERT(3 == points); break; |
| 590 | default: SkDEBUGFAIL("should not get here" ); |
| 591 | } |
| 592 | #endif |
| 593 | return points; |
| 594 | } |
| 595 | |
| 596 | inline double SkDInterp(double A, double B, double t) { |
| 597 | return A + (B - A) * t; |
| 598 | } |
| 599 | |
| 600 | double SkDCubeRoot(double x); |
| 601 | |
| 602 | /* Returns -1 if negative, 0 if zero, 1 if positive |
| 603 | */ |
| 604 | inline int SkDSign(double x) { |
| 605 | return (x > 0) - (x < 0); |
| 606 | } |
| 607 | |
| 608 | /* Returns 0 if negative, 1 if zero, 2 if positive |
| 609 | */ |
| 610 | inline int SKDSide(double x) { |
| 611 | return (x > 0) + (x >= 0); |
| 612 | } |
| 613 | |
| 614 | /* Returns 1 if negative, 2 if zero, 4 if positive |
| 615 | */ |
| 616 | inline int SkDSideBit(double x) { |
| 617 | return 1 << SKDSide(x); |
| 618 | } |
| 619 | |
| 620 | inline double SkPinT(double t) { |
| 621 | return precisely_less_than_zero(t) ? 0 : precisely_greater_than_one(t) ? 1 : t; |
| 622 | } |
| 623 | |
| 624 | #endif |
| 625 | |