1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
2 | // |
3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
4 | // you may not use this file except in compliance with the License. |
5 | // You may obtain a copy of the License at |
6 | // |
7 | // http://www.apache.org/licenses/LICENSE-2.0 |
8 | // |
9 | // Unless required by applicable law or agreed to in writing, software |
10 | // distributed under the License is distributed on an "AS IS" BASIS, |
11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
12 | // See the License for the specific language governing permissions and |
13 | // limitations under the License. |
14 | |
15 | #include "ShaderCore.hpp" |
16 | |
17 | #include "Device/Renderer.hpp" |
18 | #include "Vulkan/VkDebug.hpp" |
19 | |
20 | #include <limits.h> |
21 | |
22 | namespace sw |
23 | { |
24 | Vector4s::Vector4s() |
25 | { |
26 | } |
27 | |
28 | Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) |
29 | { |
30 | this->x = Short4(x); |
31 | this->y = Short4(y); |
32 | this->z = Short4(z); |
33 | this->w = Short4(w); |
34 | } |
35 | |
36 | Vector4s::Vector4s(const Vector4s &rhs) |
37 | { |
38 | x = rhs.x; |
39 | y = rhs.y; |
40 | z = rhs.z; |
41 | w = rhs.w; |
42 | } |
43 | |
44 | Vector4s &Vector4s::operator=(const Vector4s &rhs) |
45 | { |
46 | x = rhs.x; |
47 | y = rhs.y; |
48 | z = rhs.z; |
49 | w = rhs.w; |
50 | |
51 | return *this; |
52 | } |
53 | |
54 | Short4 &Vector4s::operator[](int i) |
55 | { |
56 | switch(i) |
57 | { |
58 | case 0: return x; |
59 | case 1: return y; |
60 | case 2: return z; |
61 | case 3: return w; |
62 | } |
63 | |
64 | return x; |
65 | } |
66 | |
67 | Vector4f::Vector4f() |
68 | { |
69 | } |
70 | |
71 | Vector4f::Vector4f(float x, float y, float z, float w) |
72 | { |
73 | this->x = Float4(x); |
74 | this->y = Float4(y); |
75 | this->z = Float4(z); |
76 | this->w = Float4(w); |
77 | } |
78 | |
79 | Vector4f::Vector4f(const Vector4f &rhs) |
80 | { |
81 | x = rhs.x; |
82 | y = rhs.y; |
83 | z = rhs.z; |
84 | w = rhs.w; |
85 | } |
86 | |
87 | Vector4f &Vector4f::operator=(const Vector4f &rhs) |
88 | { |
89 | x = rhs.x; |
90 | y = rhs.y; |
91 | z = rhs.z; |
92 | w = rhs.w; |
93 | |
94 | return *this; |
95 | } |
96 | |
97 | Float4 &Vector4f::operator[](int i) |
98 | { |
99 | switch(i) |
100 | { |
101 | case 0: return x; |
102 | case 1: return y; |
103 | case 2: return z; |
104 | case 3: return w; |
105 | } |
106 | |
107 | return x; |
108 | } |
109 | |
110 | Float4 exponential2(RValue<Float4> x, bool pp) |
111 | { |
112 | // This implementation is based on 2^(i + f) = 2^i * 2^f, |
113 | // where i is the integer part of x and f is the fraction. |
114 | |
115 | // For 2^i we can put the integer part directly in the exponent of |
116 | // the IEEE-754 floating-point number. Clamp to prevent overflow |
117 | // past the representation of infinity. |
118 | Float4 x0 = x; |
119 | x0 = Min(x0, As<Float4>(Int4(0x43010000))); // 129.00000e+0f |
120 | x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF))); // -126.99999e+0f |
121 | |
122 | Int4 i = RoundInt(x0 - Float4(0.5f)); |
123 | Float4 ii = As<Float4>((i + Int4(127)) << 23); // Add single-precision bias, and shift into exponent. |
124 | |
125 | // For the fractional part use a polynomial |
126 | // which approximates 2^f in the 0 to 1 range. |
127 | Float4 f = x0 - Float4(i); |
128 | Float4 ff = As<Float4>(Int4(0x3AF61905)); // 1.8775767e-3f |
129 | ff = ff * f + As<Float4>(Int4(0x3C134806)); // 8.9893397e-3f |
130 | ff = ff * f + As<Float4>(Int4(0x3D64AA23)); // 5.5826318e-2f |
131 | ff = ff * f + As<Float4>(Int4(0x3E75EAD4)); // 2.4015361e-1f |
132 | ff = ff * f + As<Float4>(Int4(0x3F31727B)); // 6.9315308e-1f |
133 | ff = ff * f + Float4(1.0f); |
134 | |
135 | return ii * ff; |
136 | } |
137 | |
138 | Float4 logarithm2(RValue<Float4> x, bool pp) |
139 | { |
140 | Float4 x0; |
141 | Float4 x1; |
142 | Float4 x2; |
143 | Float4 x3; |
144 | |
145 | x0 = x; |
146 | |
147 | x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000)); |
148 | x1 = As<Float4>(As<UInt4>(x1) >> 8); |
149 | x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f))); |
150 | x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f); // FIXME: (x1 - 1.4960938f) * 256.0f; |
151 | x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f))); |
152 | |
153 | x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); |
154 | x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); |
155 | x2 /= x3; |
156 | |
157 | x1 += (x0 - Float4(1.0f)) * x2; |
158 | |
159 | Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000)); |
160 | return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1))); |
161 | } |
162 | |
163 | Float4 exponential(RValue<Float4> x, bool pp) |
164 | { |
165 | // FIXME: Propagate the constant |
166 | return exponential2(Float4(1.44269504f) * x, pp); // 1/ln(2) |
167 | } |
168 | |
169 | Float4 logarithm(RValue<Float4> x, bool pp) |
170 | { |
171 | // FIXME: Propagate the constant |
172 | return Float4(6.93147181e-1f) * logarithm2(x, pp); // ln(2) |
173 | } |
174 | |
175 | Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp) |
176 | { |
177 | Float4 log = logarithm2(x, pp); |
178 | log *= y; |
179 | return exponential2(log, pp); |
180 | } |
181 | |
182 | Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2) |
183 | { |
184 | Float4 rcp = Rcp_pp(x, exactAtPow2); |
185 | |
186 | if(!pp) |
187 | { |
188 | rcp = (rcp + rcp) - (x * rcp * rcp); |
189 | } |
190 | |
191 | if(finite) |
192 | { |
193 | int big = 0x7F7FFFFF; |
194 | rcp = Min(rcp, Float4((float&)big)); |
195 | } |
196 | |
197 | return rcp; |
198 | } |
199 | |
200 | Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) |
201 | { |
202 | Float4 abs = x; |
203 | |
204 | if(absolute) |
205 | { |
206 | abs = Abs(abs); |
207 | } |
208 | |
209 | Float4 rsq; |
210 | |
211 | if(!pp) |
212 | { |
213 | rsq = Float4(1.0f) / Sqrt(abs); |
214 | } |
215 | else |
216 | { |
217 | rsq = RcpSqrt_pp(abs); |
218 | |
219 | if(!pp) |
220 | { |
221 | rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f); |
222 | } |
223 | |
224 | rsq = As<Float4>(CmpNEQ(As<Int4>(abs), Int4(0x7F800000)) & As<Int4>(rsq)); |
225 | } |
226 | |
227 | return rsq; |
228 | } |
229 | |
230 | Float4 modulo(RValue<Float4> x, RValue<Float4> y) |
231 | { |
232 | return x - y * Floor(x / y); |
233 | } |
234 | |
235 | Float4 sine_pi(RValue<Float4> x, bool pp) |
236 | { |
237 | const Float4 A = Float4(-4.05284734e-1f); // -4/pi^2 |
238 | const Float4 B = Float4(1.27323954e+0f); // 4/pi |
239 | const Float4 C = Float4(7.75160950e-1f); |
240 | const Float4 D = Float4(2.24839049e-1f); |
241 | |
242 | // Parabola approximating sine |
243 | Float4 sin = x * (Abs(x) * A + B); |
244 | |
245 | // Improve precision from 0.06 to 0.001 |
246 | if(true) |
247 | { |
248 | sin = sin * (Abs(sin) * D + C); |
249 | } |
250 | |
251 | return sin; |
252 | } |
253 | |
254 | Float4 cosine_pi(RValue<Float4> x, bool pp) |
255 | { |
256 | // cos(x) = sin(x + pi/2) |
257 | Float4 y = x + Float4(1.57079632e+0f); |
258 | |
259 | // Wrap around |
260 | y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f))); |
261 | |
262 | return sine_pi(y, pp); |
263 | } |
264 | |
265 | Float4 sine(RValue<Float4> x, bool pp) |
266 | { |
267 | // Reduce to [-0.5, 0.5] range |
268 | Float4 y = x * Float4(1.59154943e-1f); // 1/2pi |
269 | y = y - Round(y); |
270 | |
271 | if(!pp) |
272 | { |
273 | // From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" |
274 | // This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: |
275 | // !pp : 17 mul, 7 add, 1 sub, 1 reciprocal |
276 | // pp : 4 mul, 2 add, 2 abs |
277 | |
278 | Float4 y2 = y * y; |
279 | Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); |
280 | Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); |
281 | Float4 c2 = (c1 * c1) - (s1 * s1); |
282 | Float4 s2 = Float4(2.0f) * s1 * c1; |
283 | return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); |
284 | } |
285 | |
286 | const Float4 A = Float4(-16.0f); |
287 | const Float4 B = Float4(8.0f); |
288 | const Float4 C = Float4(7.75160950e-1f); |
289 | const Float4 D = Float4(2.24839049e-1f); |
290 | |
291 | // Parabola approximating sine |
292 | Float4 sin = y * (Abs(y) * A + B); |
293 | |
294 | // Improve precision from 0.06 to 0.001 |
295 | if(true) |
296 | { |
297 | sin = sin * (Abs(sin) * D + C); |
298 | } |
299 | |
300 | return sin; |
301 | } |
302 | |
303 | Float4 cosine(RValue<Float4> x, bool pp) |
304 | { |
305 | // cos(x) = sin(x + pi/2) |
306 | Float4 y = x + Float4(1.57079632e+0f); |
307 | return sine(y, pp); |
308 | } |
309 | |
310 | Float4 tangent(RValue<Float4> x, bool pp) |
311 | { |
312 | return sine(x, pp) / cosine(x, pp); |
313 | } |
314 | |
315 | Float4 arccos(RValue<Float4> x, bool pp) |
316 | { |
317 | // pi/2 - arcsin(x) |
318 | return Float4(1.57079632e+0f) - arcsin(x); |
319 | } |
320 | |
321 | Float4 arcsin(RValue<Float4> x, bool pp) |
322 | { |
323 | if(false) // Simpler implementation fails even lowp precision tests |
324 | { |
325 | // x*(pi/2-sqrt(1-x*x)*pi/5) |
326 | return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x*x) * Float4(6.28318531e-1f)); |
327 | } |
328 | else |
329 | { |
330 | // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
331 | const Float4 half_pi(1.57079632f); |
332 | const Float4 a0(1.5707288f); |
333 | const Float4 a1(-0.2121144f); |
334 | const Float4 a2(0.0742610f); |
335 | const Float4 a3(-0.0187293f); |
336 | Float4 absx = Abs(x); |
337 | return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ |
338 | (As<Int4>(x) & Int4(0x80000000))); |
339 | } |
340 | } |
341 | |
342 | // Approximation of atan in [0..1] |
343 | Float4 arctan_01(Float4 x, bool pp) |
344 | { |
345 | if(pp) |
346 | { |
347 | return x * (Float4(-0.27f) * x + Float4(1.05539816f)); |
348 | } |
349 | else |
350 | { |
351 | // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
352 | const Float4 a2(-0.3333314528f); |
353 | const Float4 a4(0.1999355085f); |
354 | const Float4 a6(-0.1420889944f); |
355 | const Float4 a8(0.1065626393f); |
356 | const Float4 a10(-0.0752896400f); |
357 | const Float4 a12(0.0429096138f); |
358 | const Float4 a14(-0.0161657367f); |
359 | const Float4 a16(0.0028662257f); |
360 | Float4 x2 = x * x; |
361 | return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); |
362 | } |
363 | } |
364 | |
365 | Float4 arctan(RValue<Float4> x, bool pp) |
366 | { |
367 | Float4 absx = Abs(x); |
368 | Int4 O = CmpNLT(absx, Float4(1.0f)); |
369 | Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select |
370 | |
371 | const Float4 half_pi(1.57079632f); |
372 | Float4 theta = arctan_01(y, pp); |
373 | return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select |
374 | (As<Int4>(x) & Int4(0x80000000))); |
375 | } |
376 | |
377 | Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp) |
378 | { |
379 | const Float4 pi(3.14159265f); // pi |
380 | const Float4 minus_pi(-3.14159265f); // -pi |
381 | const Float4 half_pi(1.57079632f); // pi/2 |
382 | const Float4 quarter_pi(7.85398163e-1f); // pi/4 |
383 | |
384 | // Rotate to upper semicircle when in lower semicircle |
385 | Int4 S = CmpLT(y, Float4(0.0f)); |
386 | Float4 theta = As<Float4>(S & As<Int4>(minus_pi)); |
387 | Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x)); |
388 | Float4 y0 = Abs(y); |
389 | |
390 | // Rotate to right quadrant when in left quadrant |
391 | Int4 Q = CmpLT(x0, Float4(0.0f)); |
392 | theta += As<Float4>(Q & As<Int4>(half_pi)); |
393 | Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0))); // FIXME: Vector select |
394 | Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select |
395 | |
396 | // Mirror to first octant when in second octant |
397 | Int4 O = CmpNLT(y1, x1); |
398 | Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select |
399 | Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select |
400 | |
401 | // Approximation of atan in [0..1] |
402 | Int4 zero_x = CmpEQ(x2, Float4(0.0f)); |
403 | Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 |
404 | Float4 atan2_theta = arctan_01(y2 / x2, pp); |
405 | theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select |
406 | (inf_y & As<Int4>(quarter_pi))); |
407 | |
408 | // Recover loss of precision for tiny theta angles |
409 | Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta |
410 | return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select |
411 | } |
412 | |
413 | Float4 sineh(RValue<Float4> x, bool pp) |
414 | { |
415 | return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); |
416 | } |
417 | |
418 | Float4 cosineh(RValue<Float4> x, bool pp) |
419 | { |
420 | return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); |
421 | } |
422 | |
423 | Float4 tangenth(RValue<Float4> x, bool pp) |
424 | { |
425 | Float4 e_x = exponential(x, pp); |
426 | Float4 e_minus_x = exponential(-x, pp); |
427 | return (e_x - e_minus_x) / (e_x + e_minus_x); |
428 | } |
429 | |
430 | Float4 arccosh(RValue<Float4> x, bool pp) |
431 | { |
432 | return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); |
433 | } |
434 | |
435 | Float4 arcsinh(RValue<Float4> x, bool pp) |
436 | { |
437 | return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); |
438 | } |
439 | |
440 | Float4 arctanh(RValue<Float4> x, bool pp) |
441 | { |
442 | return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); |
443 | } |
444 | |
445 | Float4 dot2(const Vector4f &v0, const Vector4f &v1) |
446 | { |
447 | return v0.x * v1.x + v0.y * v1.y; |
448 | } |
449 | |
450 | Float4 dot3(const Vector4f &v0, const Vector4f &v1) |
451 | { |
452 | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; |
453 | } |
454 | |
455 | Float4 dot4(const Vector4f &v0, const Vector4f &v1) |
456 | { |
457 | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; |
458 | } |
459 | |
460 | void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
461 | { |
462 | Int2 tmp0 = UnpackHigh(row0, row1); |
463 | Int2 tmp1 = UnpackHigh(row2, row3); |
464 | Int2 tmp2 = UnpackLow(row0, row1); |
465 | Int2 tmp3 = UnpackLow(row2, row3); |
466 | |
467 | row0 = UnpackLow(tmp2, tmp3); |
468 | row1 = UnpackHigh(tmp2, tmp3); |
469 | row2 = UnpackLow(tmp0, tmp1); |
470 | row3 = UnpackHigh(tmp0, tmp1); |
471 | } |
472 | |
473 | void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
474 | { |
475 | Int2 tmp0 = UnpackHigh(row0, row1); |
476 | Int2 tmp1 = UnpackHigh(row2, row3); |
477 | Int2 tmp2 = UnpackLow(row0, row1); |
478 | Int2 tmp3 = UnpackLow(row2, row3); |
479 | |
480 | row0 = UnpackLow(tmp2, tmp3); |
481 | row1 = UnpackHigh(tmp2, tmp3); |
482 | row2 = UnpackLow(tmp0, tmp1); |
483 | } |
484 | |
485 | void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
486 | { |
487 | Float4 tmp0 = UnpackLow(row0, row1); |
488 | Float4 tmp1 = UnpackLow(row2, row3); |
489 | Float4 tmp2 = UnpackHigh(row0, row1); |
490 | Float4 tmp3 = UnpackHigh(row2, row3); |
491 | |
492 | row0 = Float4(tmp0.xy, tmp1.xy); |
493 | row1 = Float4(tmp0.zw, tmp1.zw); |
494 | row2 = Float4(tmp2.xy, tmp3.xy); |
495 | row3 = Float4(tmp2.zw, tmp3.zw); |
496 | } |
497 | |
498 | void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
499 | { |
500 | Float4 tmp0 = UnpackLow(row0, row1); |
501 | Float4 tmp1 = UnpackLow(row2, row3); |
502 | Float4 tmp2 = UnpackHigh(row0, row1); |
503 | Float4 tmp3 = UnpackHigh(row2, row3); |
504 | |
505 | row0 = Float4(tmp0.xy, tmp1.xy); |
506 | row1 = Float4(tmp0.zw, tmp1.zw); |
507 | row2 = Float4(tmp2.xy, tmp3.xy); |
508 | } |
509 | |
510 | void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
511 | { |
512 | Float4 tmp0 = UnpackLow(row0, row1); |
513 | Float4 tmp1 = UnpackLow(row2, row3); |
514 | |
515 | row0 = Float4(tmp0.xy, tmp1.xy); |
516 | row1 = Float4(tmp0.zw, tmp1.zw); |
517 | } |
518 | |
519 | void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
520 | { |
521 | Float4 tmp0 = UnpackLow(row0, row1); |
522 | Float4 tmp1 = UnpackLow(row2, row3); |
523 | |
524 | row0 = Float4(tmp0.xy, tmp1.xy); |
525 | } |
526 | |
527 | void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
528 | { |
529 | Float4 tmp01 = UnpackLow(row0, row1); |
530 | Float4 tmp23 = UnpackHigh(row0, row1); |
531 | |
532 | row0 = tmp01; |
533 | row1 = Float4(tmp01.zw, row1.zw); |
534 | row2 = tmp23; |
535 | row3 = Float4(tmp23.zw, row3.zw); |
536 | } |
537 | |
538 | void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) |
539 | { |
540 | switch(N) |
541 | { |
542 | case 1: transpose4x1(row0, row1, row2, row3); break; |
543 | case 2: transpose4x2(row0, row1, row2, row3); break; |
544 | case 3: transpose4x3(row0, row1, row2, row3); break; |
545 | case 4: transpose4x4(row0, row1, row2, row3); break; |
546 | } |
547 | } |
548 | |
549 | UInt4 halfToFloatBits(UInt4 halfBits) |
550 | { |
551 | auto magic = UInt4(126 << 23); |
552 | |
553 | auto sign16 = halfBits & UInt4(0x8000); |
554 | auto man16 = halfBits & UInt4(0x3FF); |
555 | auto exp16 = halfBits & UInt4(0x7C00); |
556 | |
557 | auto isDnormOrZero = CmpEQ(exp16, UInt4(0)); |
558 | auto isInfOrNaN = CmpEQ(exp16, UInt4(0x7C00)); |
559 | |
560 | auto sign32 = sign16 << 16; |
561 | auto man32 = man16 << 13; |
562 | auto exp32 = (exp16 + UInt4(0x1C000)) << 13; |
563 | auto norm32 = (man32 | exp32) | (isInfOrNaN & UInt4(0x7F800000)); |
564 | |
565 | auto denorm32 = As<UInt4>(As<Float4>(magic + man16) - As<Float4>(magic)); |
566 | |
567 | return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); |
568 | } |
569 | } |
570 | |