| 1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "ShaderCore.hpp" |
| 16 | |
| 17 | #include "Device/Renderer.hpp" |
| 18 | #include "Vulkan/VkDebug.hpp" |
| 19 | |
| 20 | #include <limits.h> |
| 21 | |
| 22 | namespace sw |
| 23 | { |
| 24 | Vector4s::Vector4s() |
| 25 | { |
| 26 | } |
| 27 | |
| 28 | Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) |
| 29 | { |
| 30 | this->x = Short4(x); |
| 31 | this->y = Short4(y); |
| 32 | this->z = Short4(z); |
| 33 | this->w = Short4(w); |
| 34 | } |
| 35 | |
| 36 | Vector4s::Vector4s(const Vector4s &rhs) |
| 37 | { |
| 38 | x = rhs.x; |
| 39 | y = rhs.y; |
| 40 | z = rhs.z; |
| 41 | w = rhs.w; |
| 42 | } |
| 43 | |
| 44 | Vector4s &Vector4s::operator=(const Vector4s &rhs) |
| 45 | { |
| 46 | x = rhs.x; |
| 47 | y = rhs.y; |
| 48 | z = rhs.z; |
| 49 | w = rhs.w; |
| 50 | |
| 51 | return *this; |
| 52 | } |
| 53 | |
| 54 | Short4 &Vector4s::operator[](int i) |
| 55 | { |
| 56 | switch(i) |
| 57 | { |
| 58 | case 0: return x; |
| 59 | case 1: return y; |
| 60 | case 2: return z; |
| 61 | case 3: return w; |
| 62 | } |
| 63 | |
| 64 | return x; |
| 65 | } |
| 66 | |
| 67 | Vector4f::Vector4f() |
| 68 | { |
| 69 | } |
| 70 | |
| 71 | Vector4f::Vector4f(float x, float y, float z, float w) |
| 72 | { |
| 73 | this->x = Float4(x); |
| 74 | this->y = Float4(y); |
| 75 | this->z = Float4(z); |
| 76 | this->w = Float4(w); |
| 77 | } |
| 78 | |
| 79 | Vector4f::Vector4f(const Vector4f &rhs) |
| 80 | { |
| 81 | x = rhs.x; |
| 82 | y = rhs.y; |
| 83 | z = rhs.z; |
| 84 | w = rhs.w; |
| 85 | } |
| 86 | |
| 87 | Vector4f &Vector4f::operator=(const Vector4f &rhs) |
| 88 | { |
| 89 | x = rhs.x; |
| 90 | y = rhs.y; |
| 91 | z = rhs.z; |
| 92 | w = rhs.w; |
| 93 | |
| 94 | return *this; |
| 95 | } |
| 96 | |
| 97 | Float4 &Vector4f::operator[](int i) |
| 98 | { |
| 99 | switch(i) |
| 100 | { |
| 101 | case 0: return x; |
| 102 | case 1: return y; |
| 103 | case 2: return z; |
| 104 | case 3: return w; |
| 105 | } |
| 106 | |
| 107 | return x; |
| 108 | } |
| 109 | |
| 110 | Float4 exponential2(RValue<Float4> x, bool pp) |
| 111 | { |
| 112 | // This implementation is based on 2^(i + f) = 2^i * 2^f, |
| 113 | // where i is the integer part of x and f is the fraction. |
| 114 | |
| 115 | // For 2^i we can put the integer part directly in the exponent of |
| 116 | // the IEEE-754 floating-point number. Clamp to prevent overflow |
| 117 | // past the representation of infinity. |
| 118 | Float4 x0 = x; |
| 119 | x0 = Min(x0, As<Float4>(Int4(0x43010000))); // 129.00000e+0f |
| 120 | x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF))); // -126.99999e+0f |
| 121 | |
| 122 | Int4 i = RoundInt(x0 - Float4(0.5f)); |
| 123 | Float4 ii = As<Float4>((i + Int4(127)) << 23); // Add single-precision bias, and shift into exponent. |
| 124 | |
| 125 | // For the fractional part use a polynomial |
| 126 | // which approximates 2^f in the 0 to 1 range. |
| 127 | Float4 f = x0 - Float4(i); |
| 128 | Float4 ff = As<Float4>(Int4(0x3AF61905)); // 1.8775767e-3f |
| 129 | ff = ff * f + As<Float4>(Int4(0x3C134806)); // 8.9893397e-3f |
| 130 | ff = ff * f + As<Float4>(Int4(0x3D64AA23)); // 5.5826318e-2f |
| 131 | ff = ff * f + As<Float4>(Int4(0x3E75EAD4)); // 2.4015361e-1f |
| 132 | ff = ff * f + As<Float4>(Int4(0x3F31727B)); // 6.9315308e-1f |
| 133 | ff = ff * f + Float4(1.0f); |
| 134 | |
| 135 | return ii * ff; |
| 136 | } |
| 137 | |
| 138 | Float4 logarithm2(RValue<Float4> x, bool pp) |
| 139 | { |
| 140 | Float4 x0; |
| 141 | Float4 x1; |
| 142 | Float4 x2; |
| 143 | Float4 x3; |
| 144 | |
| 145 | x0 = x; |
| 146 | |
| 147 | x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000)); |
| 148 | x1 = As<Float4>(As<UInt4>(x1) >> 8); |
| 149 | x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f))); |
| 150 | x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f); // FIXME: (x1 - 1.4960938f) * 256.0f; |
| 151 | x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f))); |
| 152 | |
| 153 | x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); |
| 154 | x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); |
| 155 | x2 /= x3; |
| 156 | |
| 157 | x1 += (x0 - Float4(1.0f)) * x2; |
| 158 | |
| 159 | Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000)); |
| 160 | return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1))); |
| 161 | } |
| 162 | |
| 163 | Float4 exponential(RValue<Float4> x, bool pp) |
| 164 | { |
| 165 | // FIXME: Propagate the constant |
| 166 | return exponential2(Float4(1.44269504f) * x, pp); // 1/ln(2) |
| 167 | } |
| 168 | |
| 169 | Float4 logarithm(RValue<Float4> x, bool pp) |
| 170 | { |
| 171 | // FIXME: Propagate the constant |
| 172 | return Float4(6.93147181e-1f) * logarithm2(x, pp); // ln(2) |
| 173 | } |
| 174 | |
| 175 | Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp) |
| 176 | { |
| 177 | Float4 log = logarithm2(x, pp); |
| 178 | log *= y; |
| 179 | return exponential2(log, pp); |
| 180 | } |
| 181 | |
| 182 | Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2) |
| 183 | { |
| 184 | Float4 rcp = Rcp_pp(x, exactAtPow2); |
| 185 | |
| 186 | if(!pp) |
| 187 | { |
| 188 | rcp = (rcp + rcp) - (x * rcp * rcp); |
| 189 | } |
| 190 | |
| 191 | if(finite) |
| 192 | { |
| 193 | int big = 0x7F7FFFFF; |
| 194 | rcp = Min(rcp, Float4((float&)big)); |
| 195 | } |
| 196 | |
| 197 | return rcp; |
| 198 | } |
| 199 | |
| 200 | Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) |
| 201 | { |
| 202 | Float4 abs = x; |
| 203 | |
| 204 | if(absolute) |
| 205 | { |
| 206 | abs = Abs(abs); |
| 207 | } |
| 208 | |
| 209 | Float4 rsq; |
| 210 | |
| 211 | if(!pp) |
| 212 | { |
| 213 | rsq = Float4(1.0f) / Sqrt(abs); |
| 214 | } |
| 215 | else |
| 216 | { |
| 217 | rsq = RcpSqrt_pp(abs); |
| 218 | |
| 219 | if(!pp) |
| 220 | { |
| 221 | rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f); |
| 222 | } |
| 223 | |
| 224 | rsq = As<Float4>(CmpNEQ(As<Int4>(abs), Int4(0x7F800000)) & As<Int4>(rsq)); |
| 225 | } |
| 226 | |
| 227 | return rsq; |
| 228 | } |
| 229 | |
| 230 | Float4 modulo(RValue<Float4> x, RValue<Float4> y) |
| 231 | { |
| 232 | return x - y * Floor(x / y); |
| 233 | } |
| 234 | |
| 235 | Float4 sine_pi(RValue<Float4> x, bool pp) |
| 236 | { |
| 237 | const Float4 A = Float4(-4.05284734e-1f); // -4/pi^2 |
| 238 | const Float4 B = Float4(1.27323954e+0f); // 4/pi |
| 239 | const Float4 C = Float4(7.75160950e-1f); |
| 240 | const Float4 D = Float4(2.24839049e-1f); |
| 241 | |
| 242 | // Parabola approximating sine |
| 243 | Float4 sin = x * (Abs(x) * A + B); |
| 244 | |
| 245 | // Improve precision from 0.06 to 0.001 |
| 246 | if(true) |
| 247 | { |
| 248 | sin = sin * (Abs(sin) * D + C); |
| 249 | } |
| 250 | |
| 251 | return sin; |
| 252 | } |
| 253 | |
| 254 | Float4 cosine_pi(RValue<Float4> x, bool pp) |
| 255 | { |
| 256 | // cos(x) = sin(x + pi/2) |
| 257 | Float4 y = x + Float4(1.57079632e+0f); |
| 258 | |
| 259 | // Wrap around |
| 260 | y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f))); |
| 261 | |
| 262 | return sine_pi(y, pp); |
| 263 | } |
| 264 | |
| 265 | Float4 sine(RValue<Float4> x, bool pp) |
| 266 | { |
| 267 | // Reduce to [-0.5, 0.5] range |
| 268 | Float4 y = x * Float4(1.59154943e-1f); // 1/2pi |
| 269 | y = y - Round(y); |
| 270 | |
| 271 | if(!pp) |
| 272 | { |
| 273 | // From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" |
| 274 | // This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: |
| 275 | // !pp : 17 mul, 7 add, 1 sub, 1 reciprocal |
| 276 | // pp : 4 mul, 2 add, 2 abs |
| 277 | |
| 278 | Float4 y2 = y * y; |
| 279 | Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); |
| 280 | Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); |
| 281 | Float4 c2 = (c1 * c1) - (s1 * s1); |
| 282 | Float4 s2 = Float4(2.0f) * s1 * c1; |
| 283 | return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); |
| 284 | } |
| 285 | |
| 286 | const Float4 A = Float4(-16.0f); |
| 287 | const Float4 B = Float4(8.0f); |
| 288 | const Float4 C = Float4(7.75160950e-1f); |
| 289 | const Float4 D = Float4(2.24839049e-1f); |
| 290 | |
| 291 | // Parabola approximating sine |
| 292 | Float4 sin = y * (Abs(y) * A + B); |
| 293 | |
| 294 | // Improve precision from 0.06 to 0.001 |
| 295 | if(true) |
| 296 | { |
| 297 | sin = sin * (Abs(sin) * D + C); |
| 298 | } |
| 299 | |
| 300 | return sin; |
| 301 | } |
| 302 | |
| 303 | Float4 cosine(RValue<Float4> x, bool pp) |
| 304 | { |
| 305 | // cos(x) = sin(x + pi/2) |
| 306 | Float4 y = x + Float4(1.57079632e+0f); |
| 307 | return sine(y, pp); |
| 308 | } |
| 309 | |
| 310 | Float4 tangent(RValue<Float4> x, bool pp) |
| 311 | { |
| 312 | return sine(x, pp) / cosine(x, pp); |
| 313 | } |
| 314 | |
| 315 | Float4 arccos(RValue<Float4> x, bool pp) |
| 316 | { |
| 317 | // pi/2 - arcsin(x) |
| 318 | return Float4(1.57079632e+0f) - arcsin(x); |
| 319 | } |
| 320 | |
| 321 | Float4 arcsin(RValue<Float4> x, bool pp) |
| 322 | { |
| 323 | if(false) // Simpler implementation fails even lowp precision tests |
| 324 | { |
| 325 | // x*(pi/2-sqrt(1-x*x)*pi/5) |
| 326 | return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x*x) * Float4(6.28318531e-1f)); |
| 327 | } |
| 328 | else |
| 329 | { |
| 330 | // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| 331 | const Float4 half_pi(1.57079632f); |
| 332 | const Float4 a0(1.5707288f); |
| 333 | const Float4 a1(-0.2121144f); |
| 334 | const Float4 a2(0.0742610f); |
| 335 | const Float4 a3(-0.0187293f); |
| 336 | Float4 absx = Abs(x); |
| 337 | return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ |
| 338 | (As<Int4>(x) & Int4(0x80000000))); |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // Approximation of atan in [0..1] |
| 343 | Float4 arctan_01(Float4 x, bool pp) |
| 344 | { |
| 345 | if(pp) |
| 346 | { |
| 347 | return x * (Float4(-0.27f) * x + Float4(1.05539816f)); |
| 348 | } |
| 349 | else |
| 350 | { |
| 351 | // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun |
| 352 | const Float4 a2(-0.3333314528f); |
| 353 | const Float4 a4(0.1999355085f); |
| 354 | const Float4 a6(-0.1420889944f); |
| 355 | const Float4 a8(0.1065626393f); |
| 356 | const Float4 a10(-0.0752896400f); |
| 357 | const Float4 a12(0.0429096138f); |
| 358 | const Float4 a14(-0.0161657367f); |
| 359 | const Float4 a16(0.0028662257f); |
| 360 | Float4 x2 = x * x; |
| 361 | return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | Float4 arctan(RValue<Float4> x, bool pp) |
| 366 | { |
| 367 | Float4 absx = Abs(x); |
| 368 | Int4 O = CmpNLT(absx, Float4(1.0f)); |
| 369 | Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select |
| 370 | |
| 371 | const Float4 half_pi(1.57079632f); |
| 372 | Float4 theta = arctan_01(y, pp); |
| 373 | return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select |
| 374 | (As<Int4>(x) & Int4(0x80000000))); |
| 375 | } |
| 376 | |
| 377 | Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp) |
| 378 | { |
| 379 | const Float4 pi(3.14159265f); // pi |
| 380 | const Float4 minus_pi(-3.14159265f); // -pi |
| 381 | const Float4 half_pi(1.57079632f); // pi/2 |
| 382 | const Float4 quarter_pi(7.85398163e-1f); // pi/4 |
| 383 | |
| 384 | // Rotate to upper semicircle when in lower semicircle |
| 385 | Int4 S = CmpLT(y, Float4(0.0f)); |
| 386 | Float4 theta = As<Float4>(S & As<Int4>(minus_pi)); |
| 387 | Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x)); |
| 388 | Float4 y0 = Abs(y); |
| 389 | |
| 390 | // Rotate to right quadrant when in left quadrant |
| 391 | Int4 Q = CmpLT(x0, Float4(0.0f)); |
| 392 | theta += As<Float4>(Q & As<Int4>(half_pi)); |
| 393 | Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0))); // FIXME: Vector select |
| 394 | Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select |
| 395 | |
| 396 | // Mirror to first octant when in second octant |
| 397 | Int4 O = CmpNLT(y1, x1); |
| 398 | Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select |
| 399 | Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select |
| 400 | |
| 401 | // Approximation of atan in [0..1] |
| 402 | Int4 zero_x = CmpEQ(x2, Float4(0.0f)); |
| 403 | Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 |
| 404 | Float4 atan2_theta = arctan_01(y2 / x2, pp); |
| 405 | theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select |
| 406 | (inf_y & As<Int4>(quarter_pi))); |
| 407 | |
| 408 | // Recover loss of precision for tiny theta angles |
| 409 | Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta |
| 410 | return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select |
| 411 | } |
| 412 | |
| 413 | Float4 sineh(RValue<Float4> x, bool pp) |
| 414 | { |
| 415 | return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); |
| 416 | } |
| 417 | |
| 418 | Float4 cosineh(RValue<Float4> x, bool pp) |
| 419 | { |
| 420 | return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); |
| 421 | } |
| 422 | |
| 423 | Float4 tangenth(RValue<Float4> x, bool pp) |
| 424 | { |
| 425 | Float4 e_x = exponential(x, pp); |
| 426 | Float4 e_minus_x = exponential(-x, pp); |
| 427 | return (e_x - e_minus_x) / (e_x + e_minus_x); |
| 428 | } |
| 429 | |
| 430 | Float4 arccosh(RValue<Float4> x, bool pp) |
| 431 | { |
| 432 | return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); |
| 433 | } |
| 434 | |
| 435 | Float4 arcsinh(RValue<Float4> x, bool pp) |
| 436 | { |
| 437 | return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); |
| 438 | } |
| 439 | |
| 440 | Float4 arctanh(RValue<Float4> x, bool pp) |
| 441 | { |
| 442 | return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); |
| 443 | } |
| 444 | |
| 445 | Float4 dot2(const Vector4f &v0, const Vector4f &v1) |
| 446 | { |
| 447 | return v0.x * v1.x + v0.y * v1.y; |
| 448 | } |
| 449 | |
| 450 | Float4 dot3(const Vector4f &v0, const Vector4f &v1) |
| 451 | { |
| 452 | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; |
| 453 | } |
| 454 | |
| 455 | Float4 dot4(const Vector4f &v0, const Vector4f &v1) |
| 456 | { |
| 457 | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; |
| 458 | } |
| 459 | |
| 460 | void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
| 461 | { |
| 462 | Int2 tmp0 = UnpackHigh(row0, row1); |
| 463 | Int2 tmp1 = UnpackHigh(row2, row3); |
| 464 | Int2 tmp2 = UnpackLow(row0, row1); |
| 465 | Int2 tmp3 = UnpackLow(row2, row3); |
| 466 | |
| 467 | row0 = UnpackLow(tmp2, tmp3); |
| 468 | row1 = UnpackHigh(tmp2, tmp3); |
| 469 | row2 = UnpackLow(tmp0, tmp1); |
| 470 | row3 = UnpackHigh(tmp0, tmp1); |
| 471 | } |
| 472 | |
| 473 | void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) |
| 474 | { |
| 475 | Int2 tmp0 = UnpackHigh(row0, row1); |
| 476 | Int2 tmp1 = UnpackHigh(row2, row3); |
| 477 | Int2 tmp2 = UnpackLow(row0, row1); |
| 478 | Int2 tmp3 = UnpackLow(row2, row3); |
| 479 | |
| 480 | row0 = UnpackLow(tmp2, tmp3); |
| 481 | row1 = UnpackHigh(tmp2, tmp3); |
| 482 | row2 = UnpackLow(tmp0, tmp1); |
| 483 | } |
| 484 | |
| 485 | void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| 486 | { |
| 487 | Float4 tmp0 = UnpackLow(row0, row1); |
| 488 | Float4 tmp1 = UnpackLow(row2, row3); |
| 489 | Float4 tmp2 = UnpackHigh(row0, row1); |
| 490 | Float4 tmp3 = UnpackHigh(row2, row3); |
| 491 | |
| 492 | row0 = Float4(tmp0.xy, tmp1.xy); |
| 493 | row1 = Float4(tmp0.zw, tmp1.zw); |
| 494 | row2 = Float4(tmp2.xy, tmp3.xy); |
| 495 | row3 = Float4(tmp2.zw, tmp3.zw); |
| 496 | } |
| 497 | |
| 498 | void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| 499 | { |
| 500 | Float4 tmp0 = UnpackLow(row0, row1); |
| 501 | Float4 tmp1 = UnpackLow(row2, row3); |
| 502 | Float4 tmp2 = UnpackHigh(row0, row1); |
| 503 | Float4 tmp3 = UnpackHigh(row2, row3); |
| 504 | |
| 505 | row0 = Float4(tmp0.xy, tmp1.xy); |
| 506 | row1 = Float4(tmp0.zw, tmp1.zw); |
| 507 | row2 = Float4(tmp2.xy, tmp3.xy); |
| 508 | } |
| 509 | |
| 510 | void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| 511 | { |
| 512 | Float4 tmp0 = UnpackLow(row0, row1); |
| 513 | Float4 tmp1 = UnpackLow(row2, row3); |
| 514 | |
| 515 | row0 = Float4(tmp0.xy, tmp1.xy); |
| 516 | row1 = Float4(tmp0.zw, tmp1.zw); |
| 517 | } |
| 518 | |
| 519 | void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| 520 | { |
| 521 | Float4 tmp0 = UnpackLow(row0, row1); |
| 522 | Float4 tmp1 = UnpackLow(row2, row3); |
| 523 | |
| 524 | row0 = Float4(tmp0.xy, tmp1.xy); |
| 525 | } |
| 526 | |
| 527 | void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) |
| 528 | { |
| 529 | Float4 tmp01 = UnpackLow(row0, row1); |
| 530 | Float4 tmp23 = UnpackHigh(row0, row1); |
| 531 | |
| 532 | row0 = tmp01; |
| 533 | row1 = Float4(tmp01.zw, row1.zw); |
| 534 | row2 = tmp23; |
| 535 | row3 = Float4(tmp23.zw, row3.zw); |
| 536 | } |
| 537 | |
| 538 | void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) |
| 539 | { |
| 540 | switch(N) |
| 541 | { |
| 542 | case 1: transpose4x1(row0, row1, row2, row3); break; |
| 543 | case 2: transpose4x2(row0, row1, row2, row3); break; |
| 544 | case 3: transpose4x3(row0, row1, row2, row3); break; |
| 545 | case 4: transpose4x4(row0, row1, row2, row3); break; |
| 546 | } |
| 547 | } |
| 548 | |
| 549 | UInt4 halfToFloatBits(UInt4 halfBits) |
| 550 | { |
| 551 | auto magic = UInt4(126 << 23); |
| 552 | |
| 553 | auto sign16 = halfBits & UInt4(0x8000); |
| 554 | auto man16 = halfBits & UInt4(0x3FF); |
| 555 | auto exp16 = halfBits & UInt4(0x7C00); |
| 556 | |
| 557 | auto isDnormOrZero = CmpEQ(exp16, UInt4(0)); |
| 558 | auto isInfOrNaN = CmpEQ(exp16, UInt4(0x7C00)); |
| 559 | |
| 560 | auto sign32 = sign16 << 16; |
| 561 | auto man32 = man16 << 13; |
| 562 | auto exp32 = (exp16 + UInt4(0x1C000)) << 13; |
| 563 | auto norm32 = (man32 | exp32) | (isInfOrNaN & UInt4(0x7F800000)); |
| 564 | |
| 565 | auto denorm32 = As<UInt4>(As<Float4>(magic + man16) - As<Float4>(magic)); |
| 566 | |
| 567 | return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); |
| 568 | } |
| 569 | } |
| 570 | |