| 1 | // Copyright 2016 The SwiftShader Authors. All Rights Reserved. | 
|---|
| 2 | // | 
|---|
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|---|
| 4 | // you may not use this file except in compliance with the License. | 
|---|
| 5 | // You may obtain a copy of the License at | 
|---|
| 6 | // | 
|---|
| 7 | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|---|
| 8 | // | 
|---|
| 9 | // Unless required by applicable law or agreed to in writing, software | 
|---|
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, | 
|---|
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|---|
| 12 | // See the License for the specific language governing permissions and | 
|---|
| 13 | // limitations under the License. | 
|---|
| 14 |  | 
|---|
| 15 | #include "ShaderCore.hpp" | 
|---|
| 16 |  | 
|---|
| 17 | #include "Device/Renderer.hpp" | 
|---|
| 18 | #include "Vulkan/VkDebug.hpp" | 
|---|
| 19 |  | 
|---|
| 20 | #include <limits.h> | 
|---|
| 21 |  | 
|---|
| 22 | namespace sw | 
|---|
| 23 | { | 
|---|
| 24 | Vector4s::Vector4s() | 
|---|
| 25 | { | 
|---|
| 26 | } | 
|---|
| 27 |  | 
|---|
| 28 | Vector4s::Vector4s(unsigned short x, unsigned short y, unsigned short z, unsigned short w) | 
|---|
| 29 | { | 
|---|
| 30 | this->x = Short4(x); | 
|---|
| 31 | this->y = Short4(y); | 
|---|
| 32 | this->z = Short4(z); | 
|---|
| 33 | this->w = Short4(w); | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | Vector4s::Vector4s(const Vector4s &rhs) | 
|---|
| 37 | { | 
|---|
| 38 | x = rhs.x; | 
|---|
| 39 | y = rhs.y; | 
|---|
| 40 | z = rhs.z; | 
|---|
| 41 | w = rhs.w; | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | Vector4s &Vector4s::operator=(const Vector4s &rhs) | 
|---|
| 45 | { | 
|---|
| 46 | x = rhs.x; | 
|---|
| 47 | y = rhs.y; | 
|---|
| 48 | z = rhs.z; | 
|---|
| 49 | w = rhs.w; | 
|---|
| 50 |  | 
|---|
| 51 | return *this; | 
|---|
| 52 | } | 
|---|
| 53 |  | 
|---|
| 54 | Short4 &Vector4s::operator[](int i) | 
|---|
| 55 | { | 
|---|
| 56 | switch(i) | 
|---|
| 57 | { | 
|---|
| 58 | case 0: return x; | 
|---|
| 59 | case 1: return y; | 
|---|
| 60 | case 2: return z; | 
|---|
| 61 | case 3: return w; | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | return x; | 
|---|
| 65 | } | 
|---|
| 66 |  | 
|---|
| 67 | Vector4f::Vector4f() | 
|---|
| 68 | { | 
|---|
| 69 | } | 
|---|
| 70 |  | 
|---|
| 71 | Vector4f::Vector4f(float x, float y, float z, float w) | 
|---|
| 72 | { | 
|---|
| 73 | this->x = Float4(x); | 
|---|
| 74 | this->y = Float4(y); | 
|---|
| 75 | this->z = Float4(z); | 
|---|
| 76 | this->w = Float4(w); | 
|---|
| 77 | } | 
|---|
| 78 |  | 
|---|
| 79 | Vector4f::Vector4f(const Vector4f &rhs) | 
|---|
| 80 | { | 
|---|
| 81 | x = rhs.x; | 
|---|
| 82 | y = rhs.y; | 
|---|
| 83 | z = rhs.z; | 
|---|
| 84 | w = rhs.w; | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | Vector4f &Vector4f::operator=(const Vector4f &rhs) | 
|---|
| 88 | { | 
|---|
| 89 | x = rhs.x; | 
|---|
| 90 | y = rhs.y; | 
|---|
| 91 | z = rhs.z; | 
|---|
| 92 | w = rhs.w; | 
|---|
| 93 |  | 
|---|
| 94 | return *this; | 
|---|
| 95 | } | 
|---|
| 96 |  | 
|---|
| 97 | Float4 &Vector4f::operator[](int i) | 
|---|
| 98 | { | 
|---|
| 99 | switch(i) | 
|---|
| 100 | { | 
|---|
| 101 | case 0: return x; | 
|---|
| 102 | case 1: return y; | 
|---|
| 103 | case 2: return z; | 
|---|
| 104 | case 3: return w; | 
|---|
| 105 | } | 
|---|
| 106 |  | 
|---|
| 107 | return x; | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | Float4 exponential2(RValue<Float4> x, bool pp) | 
|---|
| 111 | { | 
|---|
| 112 | // This implementation is based on 2^(i + f) = 2^i * 2^f, | 
|---|
| 113 | // where i is the integer part of x and f is the fraction. | 
|---|
| 114 |  | 
|---|
| 115 | // For 2^i we can put the integer part directly in the exponent of | 
|---|
| 116 | // the IEEE-754 floating-point number. Clamp to prevent overflow | 
|---|
| 117 | // past the representation of infinity. | 
|---|
| 118 | Float4 x0 = x; | 
|---|
| 119 | x0 = Min(x0, As<Float4>(Int4(0x43010000)));   // 129.00000e+0f | 
|---|
| 120 | x0 = Max(x0, As<Float4>(Int4(0xC2FDFFFF)));   // -126.99999e+0f | 
|---|
| 121 |  | 
|---|
| 122 | Int4 i = RoundInt(x0 - Float4(0.5f)); | 
|---|
| 123 | Float4 ii = As<Float4>((i + Int4(127)) << 23);   // Add single-precision bias, and shift into exponent. | 
|---|
| 124 |  | 
|---|
| 125 | // For the fractional part use a polynomial | 
|---|
| 126 | // which approximates 2^f in the 0 to 1 range. | 
|---|
| 127 | Float4 f = x0 - Float4(i); | 
|---|
| 128 | Float4 ff = As<Float4>(Int4(0x3AF61905));     // 1.8775767e-3f | 
|---|
| 129 | ff = ff * f + As<Float4>(Int4(0x3C134806));   // 8.9893397e-3f | 
|---|
| 130 | ff = ff * f + As<Float4>(Int4(0x3D64AA23));   // 5.5826318e-2f | 
|---|
| 131 | ff = ff * f + As<Float4>(Int4(0x3E75EAD4));   // 2.4015361e-1f | 
|---|
| 132 | ff = ff * f + As<Float4>(Int4(0x3F31727B));   // 6.9315308e-1f | 
|---|
| 133 | ff = ff * f + Float4(1.0f); | 
|---|
| 134 |  | 
|---|
| 135 | return ii * ff; | 
|---|
| 136 | } | 
|---|
| 137 |  | 
|---|
| 138 | Float4 logarithm2(RValue<Float4> x, bool pp) | 
|---|
| 139 | { | 
|---|
| 140 | Float4 x0; | 
|---|
| 141 | Float4 x1; | 
|---|
| 142 | Float4 x2; | 
|---|
| 143 | Float4 x3; | 
|---|
| 144 |  | 
|---|
| 145 | x0 = x; | 
|---|
| 146 |  | 
|---|
| 147 | x1 = As<Float4>(As<Int4>(x0) & Int4(0x7F800000)); | 
|---|
| 148 | x1 = As<Float4>(As<UInt4>(x1) >> 8); | 
|---|
| 149 | x1 = As<Float4>(As<Int4>(x1) | As<Int4>(Float4(1.0f))); | 
|---|
| 150 | x1 = (x1 - Float4(1.4960938f)) * Float4(256.0f);   // FIXME: (x1 - 1.4960938f) * 256.0f; | 
|---|
| 151 | x0 = As<Float4>((As<Int4>(x0) & Int4(0x007FFFFF)) | As<Int4>(Float4(1.0f))); | 
|---|
| 152 |  | 
|---|
| 153 | x2 = (Float4(9.5428179e-2f) * x0 + Float4(4.7779095e-1f)) * x0 + Float4(1.9782813e-1f); | 
|---|
| 154 | x3 = ((Float4(1.6618466e-2f) * x0 + Float4(2.0350508e-1f)) * x0 + Float4(2.7382900e-1f)) * x0 + Float4(4.0496687e-2f); | 
|---|
| 155 | x2 /= x3; | 
|---|
| 156 |  | 
|---|
| 157 | x1 += (x0 - Float4(1.0f)) * x2; | 
|---|
| 158 |  | 
|---|
| 159 | Int4 pos_inf_x = CmpEQ(As<Int4>(x), Int4(0x7F800000)); | 
|---|
| 160 | return As<Float4>((pos_inf_x & As<Int4>(x)) | (~pos_inf_x & As<Int4>(x1))); | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | Float4 exponential(RValue<Float4> x, bool pp) | 
|---|
| 164 | { | 
|---|
| 165 | // FIXME: Propagate the constant | 
|---|
| 166 | return exponential2(Float4(1.44269504f) * x, pp);   // 1/ln(2) | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | Float4 logarithm(RValue<Float4> x, bool pp) | 
|---|
| 170 | { | 
|---|
| 171 | // FIXME: Propagate the constant | 
|---|
| 172 | return Float4(6.93147181e-1f) * logarithm2(x, pp);   // ln(2) | 
|---|
| 173 | } | 
|---|
| 174 |  | 
|---|
| 175 | Float4 power(RValue<Float4> x, RValue<Float4> y, bool pp) | 
|---|
| 176 | { | 
|---|
| 177 | Float4 log = logarithm2(x, pp); | 
|---|
| 178 | log *= y; | 
|---|
| 179 | return exponential2(log, pp); | 
|---|
| 180 | } | 
|---|
| 181 |  | 
|---|
| 182 | Float4 reciprocal(RValue<Float4> x, bool pp, bool finite, bool exactAtPow2) | 
|---|
| 183 | { | 
|---|
| 184 | Float4 rcp = Rcp_pp(x, exactAtPow2); | 
|---|
| 185 |  | 
|---|
| 186 | if(!pp) | 
|---|
| 187 | { | 
|---|
| 188 | rcp = (rcp + rcp) - (x * rcp * rcp); | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | if(finite) | 
|---|
| 192 | { | 
|---|
| 193 | int big = 0x7F7FFFFF; | 
|---|
| 194 | rcp = Min(rcp, Float4((float&)big)); | 
|---|
| 195 | } | 
|---|
| 196 |  | 
|---|
| 197 | return rcp; | 
|---|
| 198 | } | 
|---|
| 199 |  | 
|---|
| 200 | Float4 reciprocalSquareRoot(RValue<Float4> x, bool absolute, bool pp) | 
|---|
| 201 | { | 
|---|
| 202 | Float4 abs = x; | 
|---|
| 203 |  | 
|---|
| 204 | if(absolute) | 
|---|
| 205 | { | 
|---|
| 206 | abs = Abs(abs); | 
|---|
| 207 | } | 
|---|
| 208 |  | 
|---|
| 209 | Float4 rsq; | 
|---|
| 210 |  | 
|---|
| 211 | if(!pp) | 
|---|
| 212 | { | 
|---|
| 213 | rsq = Float4(1.0f) / Sqrt(abs); | 
|---|
| 214 | } | 
|---|
| 215 | else | 
|---|
| 216 | { | 
|---|
| 217 | rsq = RcpSqrt_pp(abs); | 
|---|
| 218 |  | 
|---|
| 219 | if(!pp) | 
|---|
| 220 | { | 
|---|
| 221 | rsq = rsq * (Float4(3.0f) - rsq * rsq * abs) * Float4(0.5f); | 
|---|
| 222 | } | 
|---|
| 223 |  | 
|---|
| 224 | rsq = As<Float4>(CmpNEQ(As<Int4>(abs), Int4(0x7F800000)) & As<Int4>(rsq)); | 
|---|
| 225 | } | 
|---|
| 226 |  | 
|---|
| 227 | return rsq; | 
|---|
| 228 | } | 
|---|
| 229 |  | 
|---|
| 230 | Float4 modulo(RValue<Float4> x, RValue<Float4> y) | 
|---|
| 231 | { | 
|---|
| 232 | return x - y * Floor(x / y); | 
|---|
| 233 | } | 
|---|
| 234 |  | 
|---|
| 235 | Float4 sine_pi(RValue<Float4> x, bool pp) | 
|---|
| 236 | { | 
|---|
| 237 | const Float4 A = Float4(-4.05284734e-1f);   // -4/pi^2 | 
|---|
| 238 | const Float4 B = Float4(1.27323954e+0f);    // 4/pi | 
|---|
| 239 | const Float4 C = Float4(7.75160950e-1f); | 
|---|
| 240 | const Float4 D = Float4(2.24839049e-1f); | 
|---|
| 241 |  | 
|---|
| 242 | // Parabola approximating sine | 
|---|
| 243 | Float4 sin = x * (Abs(x) * A + B); | 
|---|
| 244 |  | 
|---|
| 245 | // Improve precision from 0.06 to 0.001 | 
|---|
| 246 | if(true) | 
|---|
| 247 | { | 
|---|
| 248 | sin = sin * (Abs(sin) * D + C); | 
|---|
| 249 | } | 
|---|
| 250 |  | 
|---|
| 251 | return sin; | 
|---|
| 252 | } | 
|---|
| 253 |  | 
|---|
| 254 | Float4 cosine_pi(RValue<Float4> x, bool pp) | 
|---|
| 255 | { | 
|---|
| 256 | // cos(x) = sin(x + pi/2) | 
|---|
| 257 | Float4 y = x + Float4(1.57079632e+0f); | 
|---|
| 258 |  | 
|---|
| 259 | // Wrap around | 
|---|
| 260 | y -= As<Float4>(CmpNLT(y, Float4(3.14159265e+0f)) & As<Int4>(Float4(6.28318530e+0f))); | 
|---|
| 261 |  | 
|---|
| 262 | return sine_pi(y, pp); | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | Float4 sine(RValue<Float4> x, bool pp) | 
|---|
| 266 | { | 
|---|
| 267 | // Reduce to [-0.5, 0.5] range | 
|---|
| 268 | Float4 y = x * Float4(1.59154943e-1f);   // 1/2pi | 
|---|
| 269 | y = y - Round(y); | 
|---|
| 270 |  | 
|---|
| 271 | if(!pp) | 
|---|
| 272 | { | 
|---|
| 273 | // From the paper: "A Fast, Vectorizable Algorithm for Producing Single-Precision Sine-Cosine Pairs" | 
|---|
| 274 | // This implementation passes OpenGL ES 3.0 precision requirements, at the cost of more operations: | 
|---|
| 275 | // !pp : 17 mul, 7 add, 1 sub, 1 reciprocal | 
|---|
| 276 | //  pp : 4 mul, 2 add, 2 abs | 
|---|
| 277 |  | 
|---|
| 278 | Float4 y2 = y * y; | 
|---|
| 279 | Float4 c1 = y2 * (y2 * (y2 * Float4(-0.0204391631f) + Float4(0.2536086171f)) + Float4(-1.2336977925f)) + Float4(1.0f); | 
|---|
| 280 | Float4 s1 = y * (y2 * (y2 * (y2 * Float4(-0.0046075748f) + Float4(0.0796819754f)) + Float4(-0.645963615f)) + Float4(1.5707963235f)); | 
|---|
| 281 | Float4 c2 = (c1 * c1) - (s1 * s1); | 
|---|
| 282 | Float4 s2 = Float4(2.0f) * s1 * c1; | 
|---|
| 283 | return Float4(2.0f) * s2 * c2 * reciprocal(s2 * s2 + c2 * c2, pp, true); | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | const Float4 A = Float4(-16.0f); | 
|---|
| 287 | const Float4 B = Float4(8.0f); | 
|---|
| 288 | const Float4 C = Float4(7.75160950e-1f); | 
|---|
| 289 | const Float4 D = Float4(2.24839049e-1f); | 
|---|
| 290 |  | 
|---|
| 291 | // Parabola approximating sine | 
|---|
| 292 | Float4 sin = y * (Abs(y) * A + B); | 
|---|
| 293 |  | 
|---|
| 294 | // Improve precision from 0.06 to 0.001 | 
|---|
| 295 | if(true) | 
|---|
| 296 | { | 
|---|
| 297 | sin = sin * (Abs(sin) * D + C); | 
|---|
| 298 | } | 
|---|
| 299 |  | 
|---|
| 300 | return sin; | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | Float4 cosine(RValue<Float4> x, bool pp) | 
|---|
| 304 | { | 
|---|
| 305 | // cos(x) = sin(x + pi/2) | 
|---|
| 306 | Float4 y = x + Float4(1.57079632e+0f); | 
|---|
| 307 | return sine(y, pp); | 
|---|
| 308 | } | 
|---|
| 309 |  | 
|---|
| 310 | Float4 tangent(RValue<Float4> x, bool pp) | 
|---|
| 311 | { | 
|---|
| 312 | return sine(x, pp) / cosine(x, pp); | 
|---|
| 313 | } | 
|---|
| 314 |  | 
|---|
| 315 | Float4 arccos(RValue<Float4> x, bool pp) | 
|---|
| 316 | { | 
|---|
| 317 | // pi/2 - arcsin(x) | 
|---|
| 318 | return Float4(1.57079632e+0f) - arcsin(x); | 
|---|
| 319 | } | 
|---|
| 320 |  | 
|---|
| 321 | Float4 arcsin(RValue<Float4> x, bool pp) | 
|---|
| 322 | { | 
|---|
| 323 | if(false) // Simpler implementation fails even lowp precision tests | 
|---|
| 324 | { | 
|---|
| 325 | // x*(pi/2-sqrt(1-x*x)*pi/5) | 
|---|
| 326 | return x * (Float4(1.57079632e+0f) - Sqrt(Float4(1.0f) - x*x) * Float4(6.28318531e-1f)); | 
|---|
| 327 | } | 
|---|
| 328 | else | 
|---|
| 329 | { | 
|---|
| 330 | // From 4.4.45, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
|---|
| 331 | const Float4 half_pi(1.57079632f); | 
|---|
| 332 | const Float4 a0(1.5707288f); | 
|---|
| 333 | const Float4 a1(-0.2121144f); | 
|---|
| 334 | const Float4 a2(0.0742610f); | 
|---|
| 335 | const Float4 a3(-0.0187293f); | 
|---|
| 336 | Float4 absx = Abs(x); | 
|---|
| 337 | return As<Float4>(As<Int4>(half_pi - Sqrt(Float4(1.0f) - absx) * (a0 + absx * (a1 + absx * (a2 + absx * a3)))) ^ | 
|---|
| 338 | (As<Int4>(x) & Int4(0x80000000))); | 
|---|
| 339 | } | 
|---|
| 340 | } | 
|---|
| 341 |  | 
|---|
| 342 | // Approximation of atan in [0..1] | 
|---|
| 343 | Float4 arctan_01(Float4 x, bool pp) | 
|---|
| 344 | { | 
|---|
| 345 | if(pp) | 
|---|
| 346 | { | 
|---|
| 347 | return x * (Float4(-0.27f) * x + Float4(1.05539816f)); | 
|---|
| 348 | } | 
|---|
| 349 | else | 
|---|
| 350 | { | 
|---|
| 351 | // From 4.4.49, page 81 of the Handbook of Mathematical Functions, by Milton Abramowitz and Irene Stegun | 
|---|
| 352 | const Float4 a2(-0.3333314528f); | 
|---|
| 353 | const Float4 a4(0.1999355085f); | 
|---|
| 354 | const Float4 a6(-0.1420889944f); | 
|---|
| 355 | const Float4 a8(0.1065626393f); | 
|---|
| 356 | const Float4 a10(-0.0752896400f); | 
|---|
| 357 | const Float4 a12(0.0429096138f); | 
|---|
| 358 | const Float4 a14(-0.0161657367f); | 
|---|
| 359 | const Float4 a16(0.0028662257f); | 
|---|
| 360 | Float4 x2 = x * x; | 
|---|
| 361 | return (x + x * (x2 * (a2 + x2 * (a4 + x2 * (a6 + x2 * (a8 + x2 * (a10 + x2 * (a12 + x2 * (a14 + x2 * a16))))))))); | 
|---|
| 362 | } | 
|---|
| 363 | } | 
|---|
| 364 |  | 
|---|
| 365 | Float4 arctan(RValue<Float4> x, bool pp) | 
|---|
| 366 | { | 
|---|
| 367 | Float4 absx = Abs(x); | 
|---|
| 368 | Int4 O = CmpNLT(absx, Float4(1.0f)); | 
|---|
| 369 | Float4 y = As<Float4>((O & As<Int4>(Float4(1.0f) / absx)) | (~O & As<Int4>(absx))); // FIXME: Vector select | 
|---|
| 370 |  | 
|---|
| 371 | const Float4 half_pi(1.57079632f); | 
|---|
| 372 | Float4 theta = arctan_01(y, pp); | 
|---|
| 373 | return As<Float4>(((O & As<Int4>(half_pi - theta)) | (~O & As<Int4>(theta))) ^ // FIXME: Vector select | 
|---|
| 374 | (As<Int4>(x) & Int4(0x80000000))); | 
|---|
| 375 | } | 
|---|
| 376 |  | 
|---|
| 377 | Float4 arctan(RValue<Float4> y, RValue<Float4> x, bool pp) | 
|---|
| 378 | { | 
|---|
| 379 | const Float4 pi(3.14159265f);            // pi | 
|---|
| 380 | const Float4 minus_pi(-3.14159265f);     // -pi | 
|---|
| 381 | const Float4 half_pi(1.57079632f);       // pi/2 | 
|---|
| 382 | const Float4 quarter_pi(7.85398163e-1f); // pi/4 | 
|---|
| 383 |  | 
|---|
| 384 | // Rotate to upper semicircle when in lower semicircle | 
|---|
| 385 | Int4 S = CmpLT(y, Float4(0.0f)); | 
|---|
| 386 | Float4 theta = As<Float4>(S & As<Int4>(minus_pi)); | 
|---|
| 387 | Float4 x0 = As<Float4>((As<Int4>(y) & Int4(0x80000000)) ^ As<Int4>(x)); | 
|---|
| 388 | Float4 y0 = Abs(y); | 
|---|
| 389 |  | 
|---|
| 390 | // Rotate to right quadrant when in left quadrant | 
|---|
| 391 | Int4 Q = CmpLT(x0, Float4(0.0f)); | 
|---|
| 392 | theta += As<Float4>(Q & As<Int4>(half_pi)); | 
|---|
| 393 | Float4 x1 = As<Float4>((Q & As<Int4>(y0)) | (~Q & As<Int4>(x0)));  // FIXME: Vector select | 
|---|
| 394 | Float4 y1 = As<Float4>((Q & As<Int4>(-x0)) | (~Q & As<Int4>(y0))); // FIXME: Vector select | 
|---|
| 395 |  | 
|---|
| 396 | // Mirror to first octant when in second octant | 
|---|
| 397 | Int4 O = CmpNLT(y1, x1); | 
|---|
| 398 | Float4 x2 = As<Float4>((O & As<Int4>(y1)) | (~O & As<Int4>(x1))); // FIXME: Vector select | 
|---|
| 399 | Float4 y2 = As<Float4>((O & As<Int4>(x1)) | (~O & As<Int4>(y1))); // FIXME: Vector select | 
|---|
| 400 |  | 
|---|
| 401 | // Approximation of atan in [0..1] | 
|---|
| 402 | Int4 zero_x = CmpEQ(x2, Float4(0.0f)); | 
|---|
| 403 | Int4 inf_y = IsInf(y2); // Since x2 >= y2, this means x2 == y2 == inf, so we use 45 degrees or pi/4 | 
|---|
| 404 | Float4 atan2_theta = arctan_01(y2 / x2, pp); | 
|---|
| 405 | theta += As<Float4>((~zero_x & ~inf_y & ((O & As<Int4>(half_pi - atan2_theta)) | (~O & (As<Int4>(atan2_theta))))) | // FIXME: Vector select | 
|---|
| 406 | (inf_y & As<Int4>(quarter_pi))); | 
|---|
| 407 |  | 
|---|
| 408 | // Recover loss of precision for tiny theta angles | 
|---|
| 409 | Int4 precision_loss = S & Q & O & ~inf_y; // This combination results in (-pi + half_pi + half_pi - atan2_theta) which is equivalent to -atan2_theta | 
|---|
| 410 | return As<Float4>((precision_loss & As<Int4>(-atan2_theta)) | (~precision_loss & As<Int4>(theta))); // FIXME: Vector select | 
|---|
| 411 | } | 
|---|
| 412 |  | 
|---|
| 413 | Float4 sineh(RValue<Float4> x, bool pp) | 
|---|
| 414 | { | 
|---|
| 415 | return (exponential(x, pp) - exponential(-x, pp)) * Float4(0.5f); | 
|---|
| 416 | } | 
|---|
| 417 |  | 
|---|
| 418 | Float4 cosineh(RValue<Float4> x, bool pp) | 
|---|
| 419 | { | 
|---|
| 420 | return (exponential(x, pp) + exponential(-x, pp)) * Float4(0.5f); | 
|---|
| 421 | } | 
|---|
| 422 |  | 
|---|
| 423 | Float4 tangenth(RValue<Float4> x, bool pp) | 
|---|
| 424 | { | 
|---|
| 425 | Float4 e_x = exponential(x, pp); | 
|---|
| 426 | Float4 e_minus_x = exponential(-x, pp); | 
|---|
| 427 | return (e_x - e_minus_x) / (e_x + e_minus_x); | 
|---|
| 428 | } | 
|---|
| 429 |  | 
|---|
| 430 | Float4 arccosh(RValue<Float4> x, bool pp) | 
|---|
| 431 | { | 
|---|
| 432 | return logarithm(x + Sqrt(x + Float4(1.0f)) * Sqrt(x - Float4(1.0f)), pp); | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 | Float4 arcsinh(RValue<Float4> x, bool pp) | 
|---|
| 436 | { | 
|---|
| 437 | return logarithm(x + Sqrt(x * x + Float4(1.0f)), pp); | 
|---|
| 438 | } | 
|---|
| 439 |  | 
|---|
| 440 | Float4 arctanh(RValue<Float4> x, bool pp) | 
|---|
| 441 | { | 
|---|
| 442 | return logarithm((Float4(1.0f) + x) / (Float4(1.0f) - x), pp) * Float4(0.5f); | 
|---|
| 443 | } | 
|---|
| 444 |  | 
|---|
| 445 | Float4 dot2(const Vector4f &v0, const Vector4f &v1) | 
|---|
| 446 | { | 
|---|
| 447 | return v0.x * v1.x + v0.y * v1.y; | 
|---|
| 448 | } | 
|---|
| 449 |  | 
|---|
| 450 | Float4 dot3(const Vector4f &v0, const Vector4f &v1) | 
|---|
| 451 | { | 
|---|
| 452 | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; | 
|---|
| 453 | } | 
|---|
| 454 |  | 
|---|
| 455 | Float4 dot4(const Vector4f &v0, const Vector4f &v1) | 
|---|
| 456 | { | 
|---|
| 457 | return v0.x * v1.x + v0.y * v1.y + v0.z * v1.z + v0.w * v1.w; | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | void transpose4x4(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
|---|
| 461 | { | 
|---|
| 462 | Int2 tmp0 = UnpackHigh(row0, row1); | 
|---|
| 463 | Int2 tmp1 = UnpackHigh(row2, row3); | 
|---|
| 464 | Int2 tmp2 = UnpackLow(row0, row1); | 
|---|
| 465 | Int2 tmp3 = UnpackLow(row2, row3); | 
|---|
| 466 |  | 
|---|
| 467 | row0 = UnpackLow(tmp2, tmp3); | 
|---|
| 468 | row1 = UnpackHigh(tmp2, tmp3); | 
|---|
| 469 | row2 = UnpackLow(tmp0, tmp1); | 
|---|
| 470 | row3 = UnpackHigh(tmp0, tmp1); | 
|---|
| 471 | } | 
|---|
| 472 |  | 
|---|
| 473 | void transpose4x3(Short4 &row0, Short4 &row1, Short4 &row2, Short4 &row3) | 
|---|
| 474 | { | 
|---|
| 475 | Int2 tmp0 = UnpackHigh(row0, row1); | 
|---|
| 476 | Int2 tmp1 = UnpackHigh(row2, row3); | 
|---|
| 477 | Int2 tmp2 = UnpackLow(row0, row1); | 
|---|
| 478 | Int2 tmp3 = UnpackLow(row2, row3); | 
|---|
| 479 |  | 
|---|
| 480 | row0 = UnpackLow(tmp2, tmp3); | 
|---|
| 481 | row1 = UnpackHigh(tmp2, tmp3); | 
|---|
| 482 | row2 = UnpackLow(tmp0, tmp1); | 
|---|
| 483 | } | 
|---|
| 484 |  | 
|---|
| 485 | void transpose4x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|---|
| 486 | { | 
|---|
| 487 | Float4 tmp0 = UnpackLow(row0, row1); | 
|---|
| 488 | Float4 tmp1 = UnpackLow(row2, row3); | 
|---|
| 489 | Float4 tmp2 = UnpackHigh(row0, row1); | 
|---|
| 490 | Float4 tmp3 = UnpackHigh(row2, row3); | 
|---|
| 491 |  | 
|---|
| 492 | row0 = Float4(tmp0.xy, tmp1.xy); | 
|---|
| 493 | row1 = Float4(tmp0.zw, tmp1.zw); | 
|---|
| 494 | row2 = Float4(tmp2.xy, tmp3.xy); | 
|---|
| 495 | row3 = Float4(tmp2.zw, tmp3.zw); | 
|---|
| 496 | } | 
|---|
| 497 |  | 
|---|
| 498 | void transpose4x3(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|---|
| 499 | { | 
|---|
| 500 | Float4 tmp0 = UnpackLow(row0, row1); | 
|---|
| 501 | Float4 tmp1 = UnpackLow(row2, row3); | 
|---|
| 502 | Float4 tmp2 = UnpackHigh(row0, row1); | 
|---|
| 503 | Float4 tmp3 = UnpackHigh(row2, row3); | 
|---|
| 504 |  | 
|---|
| 505 | row0 = Float4(tmp0.xy, tmp1.xy); | 
|---|
| 506 | row1 = Float4(tmp0.zw, tmp1.zw); | 
|---|
| 507 | row2 = Float4(tmp2.xy, tmp3.xy); | 
|---|
| 508 | } | 
|---|
| 509 |  | 
|---|
| 510 | void transpose4x2(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|---|
| 511 | { | 
|---|
| 512 | Float4 tmp0 = UnpackLow(row0, row1); | 
|---|
| 513 | Float4 tmp1 = UnpackLow(row2, row3); | 
|---|
| 514 |  | 
|---|
| 515 | row0 = Float4(tmp0.xy, tmp1.xy); | 
|---|
| 516 | row1 = Float4(tmp0.zw, tmp1.zw); | 
|---|
| 517 | } | 
|---|
| 518 |  | 
|---|
| 519 | void transpose4x1(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|---|
| 520 | { | 
|---|
| 521 | Float4 tmp0 = UnpackLow(row0, row1); | 
|---|
| 522 | Float4 tmp1 = UnpackLow(row2, row3); | 
|---|
| 523 |  | 
|---|
| 524 | row0 = Float4(tmp0.xy, tmp1.xy); | 
|---|
| 525 | } | 
|---|
| 526 |  | 
|---|
| 527 | void transpose2x4(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3) | 
|---|
| 528 | { | 
|---|
| 529 | Float4 tmp01 = UnpackLow(row0, row1); | 
|---|
| 530 | Float4 tmp23 = UnpackHigh(row0, row1); | 
|---|
| 531 |  | 
|---|
| 532 | row0 = tmp01; | 
|---|
| 533 | row1 = Float4(tmp01.zw, row1.zw); | 
|---|
| 534 | row2 = tmp23; | 
|---|
| 535 | row3 = Float4(tmp23.zw, row3.zw); | 
|---|
| 536 | } | 
|---|
| 537 |  | 
|---|
| 538 | void transpose4xN(Float4 &row0, Float4 &row1, Float4 &row2, Float4 &row3, int N) | 
|---|
| 539 | { | 
|---|
| 540 | switch(N) | 
|---|
| 541 | { | 
|---|
| 542 | case 1: transpose4x1(row0, row1, row2, row3); break; | 
|---|
| 543 | case 2: transpose4x2(row0, row1, row2, row3); break; | 
|---|
| 544 | case 3: transpose4x3(row0, row1, row2, row3); break; | 
|---|
| 545 | case 4: transpose4x4(row0, row1, row2, row3); break; | 
|---|
| 546 | } | 
|---|
| 547 | } | 
|---|
| 548 |  | 
|---|
| 549 | UInt4 halfToFloatBits(UInt4 halfBits) | 
|---|
| 550 | { | 
|---|
| 551 | auto magic = UInt4(126 << 23); | 
|---|
| 552 |  | 
|---|
| 553 | auto sign16 = halfBits & UInt4(0x8000); | 
|---|
| 554 | auto man16  = halfBits & UInt4(0x3FF); | 
|---|
| 555 | auto exp16  = halfBits & UInt4(0x7C00); | 
|---|
| 556 |  | 
|---|
| 557 | auto isDnormOrZero = CmpEQ(exp16, UInt4(0)); | 
|---|
| 558 | auto isInfOrNaN = CmpEQ(exp16, UInt4(0x7C00)); | 
|---|
| 559 |  | 
|---|
| 560 | auto sign32 = sign16 << 16; | 
|---|
| 561 | auto man32  = man16 << 13; | 
|---|
| 562 | auto exp32  = (exp16 + UInt4(0x1C000)) << 13; | 
|---|
| 563 | auto norm32 = (man32 | exp32) | (isInfOrNaN & UInt4(0x7F800000)); | 
|---|
| 564 |  | 
|---|
| 565 | auto denorm32 = As<UInt4>(As<Float4>(magic + man16) - As<Float4>(magic)); | 
|---|
| 566 |  | 
|---|
| 567 | return sign32 | (norm32 & ~isDnormOrZero) | (denorm32 & isDnormOrZero); | 
|---|
| 568 | } | 
|---|
| 569 | } | 
|---|
| 570 |  | 
|---|