| 1 | // Copyright 2019 The SwiftShader Authors. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "SpirvShader.hpp" |
| 16 | |
| 17 | #include "SamplerCore.hpp" // TODO: Figure out what's needed. |
| 18 | #include "System/Math.hpp" |
| 19 | #include "Vulkan/VkDebug.hpp" |
| 20 | #include "Vulkan/VkDescriptorSetLayout.hpp" |
| 21 | #include "Vulkan/VkDevice.hpp" |
| 22 | #include "Vulkan/VkImageView.hpp" |
| 23 | #include "Vulkan/VkSampler.hpp" |
| 24 | #include "Device/Config.hpp" |
| 25 | |
| 26 | #include <spirv/unified1/spirv.hpp> |
| 27 | #include <spirv/unified1/GLSL.std.450.h> |
| 28 | |
| 29 | #include <climits> |
| 30 | #include <mutex> |
| 31 | |
| 32 | namespace sw { |
| 33 | |
| 34 | SpirvShader::ImageSampler *SpirvShader::getImageSampler(uint32_t inst, vk::SampledImageDescriptor const *imageDescriptor, const vk::Sampler *sampler) |
| 35 | { |
| 36 | ImageInstruction instruction(inst); |
| 37 | const auto samplerId = sampler ? sampler->id : 0; |
| 38 | ASSERT(imageDescriptor->imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch)); |
| 39 | |
| 40 | vk::Device::SamplingRoutineCache::Key key = {inst, imageDescriptor->imageViewId, samplerId}; |
| 41 | |
| 42 | ASSERT(imageDescriptor->device); |
| 43 | |
| 44 | if(auto routine = imageDescriptor->device->findInConstCache(key)) |
| 45 | { |
| 46 | return (ImageSampler*)(routine->getEntry()); |
| 47 | } |
| 48 | |
| 49 | std::unique_lock<std::mutex> lock(imageDescriptor->device->getSamplingRoutineCacheMutex()); |
| 50 | vk::Device::SamplingRoutineCache* cache = imageDescriptor->device->getSamplingRoutineCache(); |
| 51 | |
| 52 | auto routine = cache->query(key); |
| 53 | if(routine) |
| 54 | { |
| 55 | return (ImageSampler*)(routine->getEntry()); |
| 56 | } |
| 57 | |
| 58 | auto type = imageDescriptor->type; |
| 59 | |
| 60 | Sampler samplerState = {}; |
| 61 | samplerState.textureType = type; |
| 62 | samplerState.textureFormat = imageDescriptor->format; |
| 63 | |
| 64 | samplerState.addressingModeU = convertAddressingMode(0, sampler, type); |
| 65 | samplerState.addressingModeV = convertAddressingMode(1, sampler, type); |
| 66 | samplerState.addressingModeW = convertAddressingMode(2, sampler, type); |
| 67 | |
| 68 | samplerState.mipmapFilter = convertMipmapMode(sampler); |
| 69 | samplerState.swizzle = imageDescriptor->swizzle; |
| 70 | samplerState.gatherComponent = instruction.gatherComponent; |
| 71 | samplerState.highPrecisionFiltering = false; |
| 72 | samplerState.largeTexture = (imageDescriptor->extent.width > SHRT_MAX) || |
| 73 | (imageDescriptor->extent.height > SHRT_MAX) || |
| 74 | (imageDescriptor->extent.depth > SHRT_MAX); |
| 75 | |
| 76 | if(sampler) |
| 77 | { |
| 78 | samplerState.textureFilter = (instruction.samplerMethod == Gather) ? FILTER_GATHER : convertFilterMode(sampler); |
| 79 | samplerState.border = sampler->borderColor; |
| 80 | |
| 81 | samplerState.mipmapFilter = convertMipmapMode(sampler); |
| 82 | |
| 83 | samplerState.compareEnable = (sampler->compareEnable == VK_TRUE); |
| 84 | samplerState.compareOp = sampler->compareOp; |
| 85 | samplerState.unnormalizedCoordinates = (sampler->unnormalizedCoordinates == VK_TRUE); |
| 86 | |
| 87 | if(sampler->ycbcrConversion) |
| 88 | { |
| 89 | samplerState.ycbcrModel = sampler->ycbcrConversion->ycbcrModel; |
| 90 | samplerState.studioSwing = (sampler->ycbcrConversion->ycbcrRange == VK_SAMPLER_YCBCR_RANGE_ITU_NARROW); |
| 91 | samplerState.swappedChroma = (sampler->ycbcrConversion->components.r != VK_COMPONENT_SWIZZLE_R); |
| 92 | } |
| 93 | |
| 94 | if(sampler->anisotropyEnable != VK_FALSE) |
| 95 | { |
| 96 | UNSUPPORTED("anisotropyEnable" ); |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | routine = emitSamplerRoutine(instruction, samplerState); |
| 101 | |
| 102 | cache->add(key, routine); |
| 103 | return (ImageSampler*)(routine->getEntry()); |
| 104 | } |
| 105 | |
| 106 | std::shared_ptr<rr::Routine> SpirvShader::emitSamplerRoutine(ImageInstruction instruction, const Sampler &samplerState) |
| 107 | { |
| 108 | // TODO(b/129523279): Hold a separate mutex lock for the sampler being built. |
| 109 | rr::Function<Void(Pointer<Byte>, Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function; |
| 110 | { |
| 111 | Pointer<Byte> texture = function.Arg<0>(); |
| 112 | Pointer<Byte> sampler = function.Arg<1>(); |
| 113 | Pointer<SIMD::Float> in = function.Arg<2>(); |
| 114 | Pointer<SIMD::Float> out = function.Arg<3>(); |
| 115 | Pointer<Byte> constants = function.Arg<4>(); |
| 116 | |
| 117 | SIMD::Float uvw[4] = {0, 0, 0, 0}; |
| 118 | SIMD::Float q = 0; |
| 119 | SIMD::Float lodOrBias = 0; // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod). |
| 120 | Vector4f dsx = {0, 0, 0, 0}; |
| 121 | Vector4f dsy = {0, 0, 0, 0}; |
| 122 | Vector4f offset = {0, 0, 0, 0}; |
| 123 | SamplerFunction samplerFunction = instruction.getSamplerFunction(); |
| 124 | |
| 125 | uint32_t i = 0; |
| 126 | for( ; i < instruction.coordinates; i++) |
| 127 | { |
| 128 | uvw[i] = in[i]; |
| 129 | } |
| 130 | |
| 131 | if (instruction.isDref()) |
| 132 | { |
| 133 | q = in[i]; |
| 134 | i++; |
| 135 | } |
| 136 | |
| 137 | // TODO(b/134669567): Currently 1D textures are treated as 2D by setting the second coordinate to 0. |
| 138 | // Implement optimized 1D sampling. |
| 139 | if(samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D) |
| 140 | { |
| 141 | uvw[1] = SIMD::Float(0); |
| 142 | } |
| 143 | else if(samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D_ARRAY) |
| 144 | { |
| 145 | uvw[1] = SIMD::Float(0); |
| 146 | uvw[2] = in[1]; // Move 1D layer coordinate to 2D layer coordinate index. |
| 147 | } |
| 148 | |
| 149 | if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch) |
| 150 | { |
| 151 | lodOrBias = in[i]; |
| 152 | i++; |
| 153 | } |
| 154 | else if(instruction.samplerMethod == Grad) |
| 155 | { |
| 156 | for(uint32_t j = 0; j < instruction.grad; j++, i++) |
| 157 | { |
| 158 | dsx[j] = in[i]; |
| 159 | } |
| 160 | |
| 161 | for(uint32_t j = 0; j < instruction.grad; j++, i++) |
| 162 | { |
| 163 | dsy[j] = in[i]; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | for(uint32_t j = 0; j < instruction.offset; j++, i++) |
| 168 | { |
| 169 | offset[j] = in[i]; |
| 170 | } |
| 171 | |
| 172 | // TODO(b/133868964): Handle 'Sample' operand. |
| 173 | |
| 174 | SamplerCore s(constants, samplerState); |
| 175 | |
| 176 | // For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes |
| 177 | // a single LOD per four elements, so we sample the image again for each LOD separately. |
| 178 | if(samplerFunction.method == Lod || samplerFunction.method == Grad) // TODO(b/133868964): Also handle divergent Bias and Fetch with Lod. |
| 179 | { |
| 180 | auto lod = Pointer<Float>(&lodOrBias); |
| 181 | |
| 182 | For(Int i = 0, i < SIMD::Width, i++) |
| 183 | { |
| 184 | SIMD::Float dPdx; |
| 185 | SIMD::Float dPdy; |
| 186 | |
| 187 | dPdx.x = Pointer<Float>(&dsx.x)[i]; |
| 188 | dPdx.y = Pointer<Float>(&dsx.y)[i]; |
| 189 | dPdx.z = Pointer<Float>(&dsx.z)[i]; |
| 190 | |
| 191 | dPdy.x = Pointer<Float>(&dsy.x)[i]; |
| 192 | dPdy.y = Pointer<Float>(&dsy.y)[i]; |
| 193 | dPdy.z = Pointer<Float>(&dsy.z)[i]; |
| 194 | |
| 195 | // 1D textures are treated as 2D texture with second coordinate 0, so we also need to zero out the second grad component. TODO(b/134669567) |
| 196 | if(samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D || samplerState.textureType == VK_IMAGE_VIEW_TYPE_1D_ARRAY) |
| 197 | { |
| 198 | dPdx.y = Float(0.0f); |
| 199 | dPdy.y = Float(0.0f); |
| 200 | } |
| 201 | |
| 202 | Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lod[i], dPdx, dPdy, offset, samplerFunction); |
| 203 | |
| 204 | Pointer<Float> rgba = out; |
| 205 | rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i]; |
| 206 | rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i]; |
| 207 | rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i]; |
| 208 | rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i]; |
| 209 | } |
| 210 | } |
| 211 | else |
| 212 | { |
| 213 | Vector4f sample = s.sampleTexture(texture, sampler, uvw[0], uvw[1], uvw[2], q, lodOrBias.x, (dsx.x), (dsy.x), offset, samplerFunction); |
| 214 | |
| 215 | Pointer<SIMD::Float> rgba = out; |
| 216 | rgba[0] = sample.x; |
| 217 | rgba[1] = sample.y; |
| 218 | rgba[2] = sample.z; |
| 219 | rgba[3] = sample.w; |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | return function("sampler" ); |
| 224 | } |
| 225 | |
| 226 | sw::FilterType SpirvShader::convertFilterMode(const vk::Sampler *sampler) |
| 227 | { |
| 228 | switch(sampler->magFilter) |
| 229 | { |
| 230 | case VK_FILTER_NEAREST: |
| 231 | switch(sampler->minFilter) |
| 232 | { |
| 233 | case VK_FILTER_NEAREST: return FILTER_POINT; |
| 234 | case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT; |
| 235 | default: |
| 236 | UNIMPLEMENTED("minFilter %d" , sampler->minFilter); |
| 237 | return FILTER_POINT; |
| 238 | } |
| 239 | break; |
| 240 | case VK_FILTER_LINEAR: |
| 241 | switch(sampler->minFilter) |
| 242 | { |
| 243 | case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR; |
| 244 | case VK_FILTER_LINEAR: return FILTER_LINEAR; |
| 245 | default: |
| 246 | UNIMPLEMENTED("minFilter %d" , sampler->minFilter); |
| 247 | return FILTER_POINT; |
| 248 | } |
| 249 | break; |
| 250 | default: |
| 251 | break; |
| 252 | } |
| 253 | |
| 254 | UNIMPLEMENTED("magFilter %d" , sampler->magFilter); |
| 255 | return FILTER_POINT; |
| 256 | } |
| 257 | |
| 258 | sw::MipmapType SpirvShader::convertMipmapMode(const vk::Sampler *sampler) |
| 259 | { |
| 260 | if(!sampler) |
| 261 | { |
| 262 | return MIPMAP_POINT; // Samplerless operations (OpImageFetch) can take an integer Lod operand. |
| 263 | } |
| 264 | |
| 265 | if(sampler->ycbcrConversion) |
| 266 | { |
| 267 | return MIPMAP_NONE; // YCbCr images can only have one mipmap level. |
| 268 | } |
| 269 | |
| 270 | switch(sampler->mipmapMode) |
| 271 | { |
| 272 | case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT; |
| 273 | case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR; |
| 274 | default: |
| 275 | UNIMPLEMENTED("mipmapMode %d" , sampler->mipmapMode); |
| 276 | return MIPMAP_POINT; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, const vk::Sampler *sampler, VkImageViewType imageViewType) |
| 281 | { |
| 282 | switch(imageViewType) |
| 283 | { |
| 284 | case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: |
| 285 | UNSUPPORTED("SPIR-V ImageCubeArray Capability (imageViewType: %d)" , int(imageViewType)); |
| 286 | if(coordinateIndex == 3) |
| 287 | { |
| 288 | return ADDRESSING_LAYER; |
| 289 | } |
| 290 | // Fall through to CUBE case: |
| 291 | case VK_IMAGE_VIEW_TYPE_CUBE: |
| 292 | if(coordinateIndex <= 1) // Cube faces themselves are addressed as 2D images. |
| 293 | { |
| 294 | // Vulkan 1.1 spec: |
| 295 | // "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then |
| 296 | // VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges |
| 297 | // is performed as described earlier in the Cube map edge handling section." |
| 298 | // This corresponds with our 'SEAMLESS' addressing mode. |
| 299 | return ADDRESSING_SEAMLESS; |
| 300 | } |
| 301 | else if(coordinateIndex == 2) |
| 302 | { |
| 303 | // The cube face is an index into array layers. |
| 304 | return ADDRESSING_CUBEFACE; |
| 305 | } |
| 306 | else |
| 307 | { |
| 308 | return ADDRESSING_UNUSED; |
| 309 | } |
| 310 | break; |
| 311 | |
| 312 | case VK_IMAGE_VIEW_TYPE_1D: // Treated as 2D texture with second coordinate 0. TODO(b/134669567) |
| 313 | if(coordinateIndex == 1) |
| 314 | { |
| 315 | return ADDRESSING_WRAP; |
| 316 | } |
| 317 | else if(coordinateIndex >= 2) |
| 318 | { |
| 319 | return ADDRESSING_UNUSED; |
| 320 | } |
| 321 | break; |
| 322 | |
| 323 | case VK_IMAGE_VIEW_TYPE_3D: |
| 324 | if(coordinateIndex >= 3) |
| 325 | { |
| 326 | return ADDRESSING_UNUSED; |
| 327 | } |
| 328 | break; |
| 329 | |
| 330 | case VK_IMAGE_VIEW_TYPE_1D_ARRAY: // Treated as 2D texture with second coordinate 0. TODO(b/134669567) |
| 331 | if(coordinateIndex == 1) |
| 332 | { |
| 333 | return ADDRESSING_WRAP; |
| 334 | } |
| 335 | // Fall through to 2D_ARRAY case: |
| 336 | case VK_IMAGE_VIEW_TYPE_2D_ARRAY: |
| 337 | if(coordinateIndex == 2) |
| 338 | { |
| 339 | return ADDRESSING_LAYER; |
| 340 | } |
| 341 | else if(coordinateIndex >= 3) |
| 342 | { |
| 343 | return ADDRESSING_UNUSED; |
| 344 | } |
| 345 | // Fall through to 2D case: |
| 346 | case VK_IMAGE_VIEW_TYPE_2D: |
| 347 | if(coordinateIndex >= 2) |
| 348 | { |
| 349 | return ADDRESSING_UNUSED; |
| 350 | } |
| 351 | break; |
| 352 | |
| 353 | default: |
| 354 | UNIMPLEMENTED("imageViewType %d" , imageViewType); |
| 355 | return ADDRESSING_WRAP; |
| 356 | } |
| 357 | |
| 358 | if(!sampler) |
| 359 | { |
| 360 | // OpImageFetch does not take a sampler descriptor, but still needs a valid, |
| 361 | // arbitrary addressing mode that prevents out-of-bounds accesses: |
| 362 | // "The value returned by a read of an invalid texel is undefined, unless that |
| 363 | // read operation is from a buffer resource and the robustBufferAccess feature |
| 364 | // is enabled. In that case, an invalid texel is replaced as described by the |
| 365 | // robustBufferAccess feature." - Vulkan 1.1 |
| 366 | |
| 367 | return ADDRESSING_WRAP; |
| 368 | } |
| 369 | |
| 370 | VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT; |
| 371 | switch(coordinateIndex) |
| 372 | { |
| 373 | case 0: addressMode = sampler->addressModeU; break; |
| 374 | case 1: addressMode = sampler->addressModeV; break; |
| 375 | case 2: addressMode = sampler->addressModeW; break; |
| 376 | default: UNSUPPORTED("coordinateIndex: %d" , coordinateIndex); |
| 377 | } |
| 378 | |
| 379 | switch(addressMode) |
| 380 | { |
| 381 | case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP; |
| 382 | case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR; |
| 383 | case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP; |
| 384 | case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER; |
| 385 | case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE; |
| 386 | default: |
| 387 | UNIMPLEMENTED("addressMode %d" , addressMode); |
| 388 | return ADDRESSING_WRAP; |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | } // namespace sw |
| 393 | |