| 1 | // Copyright 2018 The SwiftShader Authors. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "VkDescriptorPool.hpp" |
| 16 | |
| 17 | #include "VkDescriptorSet.hpp" |
| 18 | #include "VkDescriptorSetLayout.hpp" |
| 19 | |
| 20 | #include <algorithm> |
| 21 | #include <memory> |
| 22 | |
| 23 | namespace |
| 24 | { |
| 25 | |
| 26 | inline VkDescriptorSet asDescriptorSet(uint8_t* memory) |
| 27 | { |
| 28 | return vk::TtoVkT<vk::DescriptorSet, VkDescriptorSet>(reinterpret_cast<vk::DescriptorSet*>(memory)); |
| 29 | } |
| 30 | |
| 31 | inline uint8_t* asMemory(VkDescriptorSet descriptorSet) |
| 32 | { |
| 33 | return reinterpret_cast<uint8_t*>(vk::Cast(descriptorSet)); |
| 34 | } |
| 35 | |
| 36 | } |
| 37 | |
| 38 | namespace vk |
| 39 | { |
| 40 | |
| 41 | DescriptorPool::DescriptorPool(const VkDescriptorPoolCreateInfo* pCreateInfo, void* mem) : |
| 42 | pool(static_cast<uint8_t*>(mem)), |
| 43 | poolSize(ComputeRequiredAllocationSize(pCreateInfo)) |
| 44 | { |
| 45 | } |
| 46 | |
| 47 | void DescriptorPool::destroy(const VkAllocationCallbacks* pAllocator) |
| 48 | { |
| 49 | vk::deallocate(pool, pAllocator); |
| 50 | } |
| 51 | |
| 52 | size_t DescriptorPool::ComputeRequiredAllocationSize(const VkDescriptorPoolCreateInfo* pCreateInfo) |
| 53 | { |
| 54 | size_t size = pCreateInfo->maxSets * sw::align(sizeof(DescriptorSetHeader), 16); |
| 55 | |
| 56 | for(uint32_t i = 0; i < pCreateInfo->poolSizeCount; i++) |
| 57 | { |
| 58 | size += pCreateInfo->pPoolSizes[i].descriptorCount * |
| 59 | sw::align(DescriptorSetLayout::GetDescriptorSize(pCreateInfo->pPoolSizes[i].type), 16); |
| 60 | } |
| 61 | |
| 62 | return size; |
| 63 | } |
| 64 | |
| 65 | VkResult DescriptorPool::allocateSets(uint32_t descriptorSetCount, const VkDescriptorSetLayout* pSetLayouts, VkDescriptorSet* pDescriptorSets) |
| 66 | { |
| 67 | // FIXME (b/119409619): use an allocator here so we can control all memory allocations |
| 68 | std::unique_ptr<size_t[]> layoutSizes(new size_t[descriptorSetCount]); |
| 69 | for(uint32_t i = 0; i < descriptorSetCount; i++) |
| 70 | { |
| 71 | pDescriptorSets[i] = VK_NULL_HANDLE; |
| 72 | layoutSizes[i] = vk::Cast(pSetLayouts[i])->getDescriptorSetAllocationSize(); |
| 73 | } |
| 74 | |
| 75 | VkResult result = allocateSets(&(layoutSizes[0]), descriptorSetCount, pDescriptorSets); |
| 76 | if(result == VK_SUCCESS) |
| 77 | { |
| 78 | for(uint32_t i = 0; i < descriptorSetCount; i++) |
| 79 | { |
| 80 | vk::Cast(pSetLayouts[i])->initialize(vk::Cast(pDescriptorSets[i])); |
| 81 | } |
| 82 | } |
| 83 | return result; |
| 84 | } |
| 85 | |
| 86 | uint8_t* DescriptorPool::findAvailableMemory(size_t size) |
| 87 | { |
| 88 | if(nodes.empty()) |
| 89 | { |
| 90 | return pool; |
| 91 | } |
| 92 | |
| 93 | // First, look for space at the end of the pool |
| 94 | const auto itLast = nodes.rbegin(); |
| 95 | ptrdiff_t itemStart = itLast->set - pool; |
| 96 | ptrdiff_t nextItemStart = itemStart + itLast->size; |
| 97 | size_t freeSpace = poolSize - nextItemStart; |
| 98 | if(freeSpace >= size) |
| 99 | { |
| 100 | return pool + nextItemStart; |
| 101 | } |
| 102 | |
| 103 | // Second, look for space at the beginning of the pool |
| 104 | const auto itBegin = nodes.begin(); |
| 105 | freeSpace = itBegin->set - pool; |
| 106 | if(freeSpace >= size) |
| 107 | { |
| 108 | return pool; |
| 109 | } |
| 110 | |
| 111 | // Finally, look between existing pool items |
| 112 | const auto itEnd = nodes.end(); |
| 113 | auto nextIt = itBegin; |
| 114 | ++nextIt; |
| 115 | for(auto it = itBegin; nextIt != itEnd; ++it, ++nextIt) |
| 116 | { |
| 117 | uint8_t* freeSpaceStart = it->set + it->size; |
| 118 | freeSpace = nextIt->set - freeSpaceStart; |
| 119 | if(freeSpace >= size) |
| 120 | { |
| 121 | return freeSpaceStart; |
| 122 | } |
| 123 | } |
| 124 | |
| 125 | return nullptr; |
| 126 | } |
| 127 | |
| 128 | VkResult DescriptorPool::allocateSets(size_t* sizes, uint32_t numAllocs, VkDescriptorSet* pDescriptorSets) |
| 129 | { |
| 130 | size_t totalSize = 0; |
| 131 | for(uint32_t i = 0; i < numAllocs; i++) |
| 132 | { |
| 133 | totalSize += sizes[i]; |
| 134 | } |
| 135 | |
| 136 | if(totalSize > poolSize) |
| 137 | { |
| 138 | return VK_ERROR_OUT_OF_POOL_MEMORY; |
| 139 | } |
| 140 | |
| 141 | // Attempt to allocate single chunk of memory |
| 142 | { |
| 143 | uint8_t* memory = findAvailableMemory(totalSize); |
| 144 | if(memory) |
| 145 | { |
| 146 | for(uint32_t i = 0; i < numAllocs; i++) |
| 147 | { |
| 148 | pDescriptorSets[i] = asDescriptorSet(memory); |
| 149 | nodes.insert(Node(memory, sizes[i])); |
| 150 | memory += sizes[i]; |
| 151 | } |
| 152 | |
| 153 | return VK_SUCCESS; |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | // Atttempt to allocate each descriptor set separately |
| 158 | for(uint32_t i = 0; i < numAllocs; i++) |
| 159 | { |
| 160 | uint8_t* memory = findAvailableMemory(sizes[i]); |
| 161 | if(memory) |
| 162 | { |
| 163 | pDescriptorSets[i] = asDescriptorSet(memory); |
| 164 | } |
| 165 | else |
| 166 | { |
| 167 | // vkAllocateDescriptorSets can be used to create multiple descriptor sets. If the |
| 168 | // creation of any of those descriptor sets fails, then the implementation must |
| 169 | // destroy all successfully created descriptor set objects from this command, set |
| 170 | // all entries of the pDescriptorSets array to VK_NULL_HANDLE and return the error. |
| 171 | for(uint32_t j = 0; j < i; j++) |
| 172 | { |
| 173 | freeSet(pDescriptorSets[j]); |
| 174 | pDescriptorSets[j] = VK_NULL_HANDLE; |
| 175 | } |
| 176 | return (computeTotalFreeSize() > totalSize) ? VK_ERROR_FRAGMENTED_POOL : VK_ERROR_OUT_OF_POOL_MEMORY; |
| 177 | } |
| 178 | nodes.insert(Node(memory, sizes[i])); |
| 179 | } |
| 180 | |
| 181 | return VK_SUCCESS; |
| 182 | } |
| 183 | |
| 184 | void DescriptorPool::freeSets(uint32_t descriptorSetCount, const VkDescriptorSet* pDescriptorSets) |
| 185 | { |
| 186 | for(uint32_t i = 0; i < descriptorSetCount; i++) |
| 187 | { |
| 188 | freeSet(pDescriptorSets[i]); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | void DescriptorPool::freeSet(const VkDescriptorSet descriptorSet) |
| 193 | { |
| 194 | const auto itEnd = nodes.end(); |
| 195 | auto it = std::find(nodes.begin(), itEnd, asMemory(descriptorSet)); |
| 196 | if(it != itEnd) |
| 197 | { |
| 198 | nodes.erase(it); |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | VkResult DescriptorPool::reset() |
| 203 | { |
| 204 | nodes.clear(); |
| 205 | |
| 206 | return VK_SUCCESS; |
| 207 | } |
| 208 | |
| 209 | size_t DescriptorPool::computeTotalFreeSize() const |
| 210 | { |
| 211 | size_t totalFreeSize = 0; |
| 212 | |
| 213 | // Compute space at the end of the pool |
| 214 | const auto itLast = nodes.rbegin(); |
| 215 | totalFreeSize += poolSize - (itLast->set - pool) + itLast->size; |
| 216 | |
| 217 | // Compute space at the beginning of the pool |
| 218 | const auto itBegin = nodes.begin(); |
| 219 | totalFreeSize += itBegin->set - pool; |
| 220 | |
| 221 | // Finally, look between existing pool items |
| 222 | const auto itEnd = nodes.end(); |
| 223 | auto nextIt = itBegin; |
| 224 | ++nextIt; |
| 225 | for(auto it = itBegin; nextIt != itEnd; ++it, ++nextIt) |
| 226 | { |
| 227 | totalFreeSize += (nextIt->set - it->set) - it->size; |
| 228 | } |
| 229 | |
| 230 | return totalFreeSize; |
| 231 | } |
| 232 | |
| 233 | } // namespace vk |