1// Copyright 2018 The SwiftShader Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "VkDeviceMemory.hpp"
16#include "VkBuffer.hpp"
17#include "VkDevice.hpp"
18#include "VkImage.hpp"
19#include "Device/Blitter.hpp"
20#include "Device/ETC_Decoder.hpp"
21#include <cstring>
22
23#ifdef __ANDROID__
24#include "System/GrallocAndroid.hpp"
25#endif
26
27namespace
28{
29 ETC_Decoder::InputType GetInputType(const vk::Format& format)
30 {
31 switch(format)
32 {
33 case VK_FORMAT_EAC_R11_UNORM_BLOCK:
34 return ETC_Decoder::ETC_R_UNSIGNED;
35 case VK_FORMAT_EAC_R11_SNORM_BLOCK:
36 return ETC_Decoder::ETC_R_SIGNED;
37 case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
38 return ETC_Decoder::ETC_RG_UNSIGNED;
39 case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
40 return ETC_Decoder::ETC_RG_SIGNED;
41 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
42 case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
43 return ETC_Decoder::ETC_RGB;
44 case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
45 case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
46 return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA;
47 case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
48 case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
49 return ETC_Decoder::ETC_RGBA;
50 default:
51 UNIMPLEMENTED("format: %d", int(format));
52 return ETC_Decoder::ETC_RGBA;
53 }
54 }
55}
56
57namespace vk
58{
59
60Image::Image(const VkImageCreateInfo* pCreateInfo, void* mem, Device *device) :
61 device(device),
62 flags(pCreateInfo->flags),
63 imageType(pCreateInfo->imageType),
64 format(pCreateInfo->format),
65 extent(pCreateInfo->extent),
66 mipLevels(pCreateInfo->mipLevels),
67 arrayLayers(pCreateInfo->arrayLayers),
68 samples(pCreateInfo->samples),
69 tiling(pCreateInfo->tiling),
70 usage(pCreateInfo->usage)
71{
72 if(format.isCompressed())
73 {
74 VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo;
75 compressedImageCreateInfo.format = format.getDecompressedFormat();
76 decompressedImage = new (mem) Image(&compressedImageCreateInfo, nullptr, device);
77 }
78
79 const auto* nextInfo = reinterpret_cast<const VkBaseInStructure*>(pCreateInfo->pNext);
80 for (; nextInfo != nullptr; nextInfo = nextInfo->pNext)
81 {
82 if (nextInfo->sType == VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO)
83 {
84 const auto* externalInfo = reinterpret_cast<const VkExternalMemoryImageCreateInfo*>(nextInfo);
85 supportedExternalMemoryHandleTypes = externalInfo->handleTypes;
86 }
87 }
88}
89
90void Image::destroy(const VkAllocationCallbacks* pAllocator)
91{
92 if(decompressedImage)
93 {
94 vk::deallocate(decompressedImage, pAllocator);
95 }
96}
97
98size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo* pCreateInfo)
99{
100 return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0;
101}
102
103const VkMemoryRequirements Image::getMemoryRequirements() const
104{
105 VkMemoryRequirements memoryRequirements;
106 memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT;
107 memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT;
108 memoryRequirements.size = getStorageSize(format.getAspects()) +
109 (decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0);
110 return memoryRequirements;
111}
112
113bool Image::canBindToMemory(DeviceMemory* pDeviceMemory) const
114{
115 return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes);
116}
117
118void Image::bind(DeviceMemory* pDeviceMemory, VkDeviceSize pMemoryOffset)
119{
120 deviceMemory = pDeviceMemory;
121 memoryOffset = pMemoryOffset;
122 if(decompressedImage)
123 {
124 decompressedImage->deviceMemory = deviceMemory;
125 decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects());
126 }
127}
128
129#ifdef __ANDROID__
130VkResult Image::prepareForExternalUseANDROID() const
131{
132 void* nativeBuffer = nullptr;
133 VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0);
134
135 if(GrallocModule::getInstance()->lock(backingMemory.nativeHandle, GRALLOC_USAGE_SW_WRITE_OFTEN, 0, 0, extent.width, extent.height, &nativeBuffer) != 0)
136 {
137 return VK_ERROR_OUT_OF_DATE_KHR;
138 }
139
140 if(!nativeBuffer)
141 {
142 return VK_ERROR_OUT_OF_DATE_KHR;
143 }
144
145 int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
146 int bufferRowBytes = backingMemory.stride * getFormat().bytes();
147 ASSERT(imageRowBytes <= bufferRowBytes);
148
149 uint8_t* srcBuffer = static_cast<uint8_t*>(deviceMemory->getOffsetPointer(0));
150 uint8_t* dstBuffer = static_cast<uint8_t*>(nativeBuffer);
151 for(uint32_t i = 0; i < extent.height; i++)
152 {
153 memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes);
154 }
155
156 if(GrallocModule::getInstance()->unlock(backingMemory.nativeHandle) != 0)
157 {
158 return VK_ERROR_OUT_OF_DATE_KHR;
159 }
160
161 return VK_SUCCESS;
162}
163
164VkDeviceMemory Image::getExternalMemory() const
165{
166 return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE };
167}
168#endif
169
170void Image::getSubresourceLayout(const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) const
171{
172 // By spec, aspectMask has a single bit set.
173 if (!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
174 (pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
175 (pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
176 (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
177 (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
178 (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
179 {
180 UNSUPPORTED("aspectMask %X", pSubresource->aspectMask);
181 }
182
183 auto aspect = static_cast<VkImageAspectFlagBits>(pSubresource->aspectMask);
184 pLayout->offset = getMemoryOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer);
185 pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel);
186 pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel);
187 pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel);
188 pLayout->arrayPitch = getLayerSize(aspect);
189}
190
191void Image::copyTo(Image* dstImage, const VkImageCopy& pRegion) const
192{
193 // Image copy does not perform any conversion, it simply copies memory from
194 // an image to another image that has the same number of bytes per pixel.
195
196 if (!((pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
197 (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
198 (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
199 (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
200 (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
201 (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
202 {
203 UNSUPPORTED("srcSubresource.aspectMask %X", pRegion.srcSubresource.aspectMask);
204 }
205
206 if (!((pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
207 (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) ||
208 (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) ||
209 (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) ||
210 (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) ||
211 (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT)))
212 {
213 UNSUPPORTED("dstSubresource.aspectMask %X", pRegion.dstSubresource.aspectMask);
214 }
215
216 VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(pRegion.srcSubresource.aspectMask);
217 VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(pRegion.dstSubresource.aspectMask);
218
219 Format srcFormat = getFormat(srcAspect);
220 Format dstFormat = dstImage->getFormat(dstAspect);
221
222 if(((samples > VK_SAMPLE_COUNT_1_BIT) && (imageType == VK_IMAGE_TYPE_2D) && !format.isNonNormalizedInteger()) ||
223 srcFormat.hasQuadLayout() || dstFormat.hasQuadLayout())
224 {
225 // Requires multisampling resolve, or quadlayout awareness
226 VkImageBlit region;
227 region.srcSubresource = pRegion.srcSubresource;
228 region.srcOffsets[0] = pRegion.srcOffset;
229 region.srcOffsets[1].x = region.srcOffsets[0].x + pRegion.extent.width;
230 region.srcOffsets[1].y = region.srcOffsets[0].y + pRegion.extent.height;
231 region.srcOffsets[1].z = region.srcOffsets[0].z + pRegion.extent.depth;
232
233 region.dstSubresource = pRegion.dstSubresource;
234 region.dstOffsets[0] = pRegion.dstOffset;
235 region.dstOffsets[1].x = region.dstOffsets[0].x + pRegion.extent.width;
236 region.dstOffsets[1].y = region.dstOffsets[0].y + pRegion.extent.height;
237 region.dstOffsets[1].z = region.dstOffsets[0].z + pRegion.extent.depth;
238
239 return device->getBlitter()->blit(this, dstImage, region, VK_FILTER_NEAREST);
240 }
241
242 int srcBytesPerBlock = srcFormat.bytesPerBlock();
243 ASSERT(srcBytesPerBlock == dstFormat.bytesPerBlock());
244
245 const uint8_t* srcMem = static_cast<const uint8_t*>(getTexelPointer(pRegion.srcOffset, pRegion.srcSubresource));
246 uint8_t* dstMem = static_cast<uint8_t*>(dstImage->getTexelPointer(pRegion.dstOffset, pRegion.dstSubresource));
247
248 int srcRowPitchBytes = rowPitchBytes(srcAspect, pRegion.srcSubresource.mipLevel);
249 int srcSlicePitchBytes = slicePitchBytes(srcAspect, pRegion.srcSubresource.mipLevel);
250 int dstRowPitchBytes = dstImage->rowPitchBytes(dstAspect, pRegion.dstSubresource.mipLevel);
251 int dstSlicePitchBytes = dstImage->slicePitchBytes(dstAspect, pRegion.dstSubresource.mipLevel);
252
253 VkExtent3D srcExtent = getMipLevelExtent(srcAspect, pRegion.srcSubresource.mipLevel);
254 VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, pRegion.dstSubresource.mipLevel);
255 VkExtent3D copyExtent = imageExtentInBlocks(pRegion.extent, srcAspect);
256
257 bool isSinglePlane = (copyExtent.depth == 1);
258 bool isSingleLine = (copyExtent.height == 1) && isSinglePlane;
259 // In order to copy multiple lines using a single memcpy call, we
260 // have to make sure that we need to copy the entire line and that
261 // both source and destination lines have the same length in bytes
262 bool isEntireLine = (pRegion.extent.width == srcExtent.width) &&
263 (pRegion.extent.width == dstExtent.width) &&
264 // For non compressed formats, blockWidth is 1. For compressed
265 // formats, rowPitchBytes returns the number of bytes for a row of
266 // blocks, so we have to divide by the block height, which means:
267 // srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth
268 // And, to avoid potential non exact integer division, for example if a
269 // block has 16 bytes and represents 5 lines, we change the equation to:
270 // srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth
271 ((srcRowPitchBytes * dstFormat.blockWidth()) ==
272 (dstRowPitchBytes * srcFormat.blockWidth()));
273 // In order to copy multiple planes using a single memcpy call, we
274 // have to make sure that we need to copy the entire plane and that
275 // both source and destination planes have the same length in bytes
276 bool isEntirePlane = isEntireLine &&
277 (copyExtent.height == srcExtent.height) &&
278 (copyExtent.height == dstExtent.height) &&
279 (srcSlicePitchBytes == dstSlicePitchBytes);
280
281 if(isSingleLine) // Copy one line
282 {
283 size_t copySize = copyExtent.width * srcBytesPerBlock;
284 ASSERT((srcMem + copySize) < end());
285 ASSERT((dstMem + copySize) < dstImage->end());
286 memcpy(dstMem, srcMem, copySize);
287 }
288 else if(isEntireLine && isSinglePlane) // Copy one plane
289 {
290 size_t copySize = copyExtent.height * srcRowPitchBytes;
291 ASSERT((srcMem + copySize) < end());
292 ASSERT((dstMem + copySize) < dstImage->end());
293 memcpy(dstMem, srcMem, copySize);
294 }
295 else if(isEntirePlane) // Copy multiple planes
296 {
297 size_t copySize = copyExtent.depth * srcSlicePitchBytes;
298 ASSERT((srcMem + copySize) < end());
299 ASSERT((dstMem + copySize) < dstImage->end());
300 memcpy(dstMem, srcMem, copySize);
301 }
302 else if(isEntireLine) // Copy plane by plane
303 {
304 size_t copySize = copyExtent.height * srcRowPitchBytes;
305
306 for(uint32_t z = 0; z < copyExtent.depth; z++, dstMem += dstSlicePitchBytes, srcMem += srcSlicePitchBytes)
307 {
308 ASSERT((srcMem + copySize) < end());
309 ASSERT((dstMem + copySize) < dstImage->end());
310 memcpy(dstMem, srcMem, copySize);
311 }
312 }
313 else // Copy line by line
314 {
315 size_t copySize = copyExtent.width * srcBytesPerBlock;
316
317 for(uint32_t z = 0; z < copyExtent.depth; z++, dstMem += dstSlicePitchBytes, srcMem += srcSlicePitchBytes)
318 {
319 const uint8_t* srcSlice = srcMem;
320 uint8_t* dstSlice = dstMem;
321 for(uint32_t y = 0; y < copyExtent.height; y++, dstSlice += dstRowPitchBytes, srcSlice += srcRowPitchBytes)
322 {
323 ASSERT((srcSlice + copySize) < end());
324 ASSERT((dstSlice + copySize) < dstImage->end());
325 memcpy(dstSlice, srcSlice, copySize);
326 }
327 }
328 }
329}
330
331void Image::copy(Buffer* buffer, const VkBufferImageCopy& region, bool bufferIsSource)
332{
333 switch(region.imageSubresource.aspectMask)
334 {
335 case VK_IMAGE_ASPECT_COLOR_BIT:
336 case VK_IMAGE_ASPECT_DEPTH_BIT:
337 case VK_IMAGE_ASPECT_STENCIL_BIT:
338 case VK_IMAGE_ASPECT_PLANE_0_BIT:
339 case VK_IMAGE_ASPECT_PLANE_1_BIT:
340 case VK_IMAGE_ASPECT_PLANE_2_BIT:
341 break;
342 default:
343 UNSUPPORTED("aspectMask %x", int(region.imageSubresource.aspectMask));
344 break;
345 }
346
347 auto aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask);
348 Format copyFormat = getFormat(aspect);
349
350 VkExtent3D imageExtent = imageExtentInBlocks(region.imageExtent, aspect);
351 VkExtent2D bufferExtent = bufferExtentInBlocks({ imageExtent.width, imageExtent.height }, region);
352 int bytesPerBlock = copyFormat.bytesPerBlock();
353 int bufferRowPitchBytes = bufferExtent.width * bytesPerBlock;
354 int bufferSlicePitchBytes = bufferExtent.height * bufferRowPitchBytes;
355
356 uint8_t* bufferMemory = static_cast<uint8_t*>(buffer->getOffsetPointer(region.bufferOffset));
357
358 if (copyFormat.hasQuadLayout())
359 {
360 if (bufferIsSource)
361 {
362 return device->getBlitter()->blitFromBuffer(this, region.imageSubresource, region.imageOffset,
363 region.imageExtent, bufferMemory, bufferRowPitchBytes,
364 bufferSlicePitchBytes);
365 }
366 else
367 {
368 return device->getBlitter()->blitToBuffer(this, region.imageSubresource, region.imageOffset,
369 region.imageExtent, bufferMemory, bufferRowPitchBytes,
370 bufferSlicePitchBytes);
371 }
372 }
373
374 uint8_t* imageMemory = static_cast<uint8_t*>(getTexelPointer(region.imageOffset, region.imageSubresource));
375 uint8_t* srcMemory = bufferIsSource ? bufferMemory : imageMemory;
376 uint8_t* dstMemory = bufferIsSource ? imageMemory : bufferMemory;
377 int imageRowPitchBytes = rowPitchBytes(aspect, region.imageSubresource.mipLevel);
378 int imageSlicePitchBytes = slicePitchBytes(aspect, region.imageSubresource.mipLevel);
379
380 int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes;
381 int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes;
382 int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes;
383 int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes;
384
385 VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, region.imageSubresource.mipLevel);
386 bool isSinglePlane = (imageExtent.depth == 1);
387 bool isSingleLine = (imageExtent.height == 1) && isSinglePlane;
388 bool isEntireLine = (imageExtent.width == mipLevelExtent.width) &&
389 (imageRowPitchBytes == bufferRowPitchBytes);
390 bool isEntirePlane = isEntireLine && (imageExtent.height == mipLevelExtent.height) &&
391 (imageSlicePitchBytes == bufferSlicePitchBytes);
392
393 VkDeviceSize copySize = 0;
394 VkDeviceSize bufferLayerSize = 0;
395 if(isSingleLine)
396 {
397 copySize = imageExtent.width * bytesPerBlock;
398 bufferLayerSize = copySize;
399 }
400 else if(isEntireLine && isSinglePlane)
401 {
402 copySize = imageExtent.height * imageRowPitchBytes;
403 bufferLayerSize = copySize;
404 }
405 else if(isEntirePlane)
406 {
407 copySize = imageExtent.depth * imageSlicePitchBytes; // Copy multiple planes
408 bufferLayerSize = copySize;
409 }
410 else if(isEntireLine) // Copy plane by plane
411 {
412 copySize = imageExtent.height * imageRowPitchBytes;
413 bufferLayerSize = copySize * imageExtent.depth;
414 }
415 else // Copy line by line
416 {
417 copySize = imageExtent.width * bytesPerBlock;
418 bufferLayerSize = copySize * imageExtent.depth * imageExtent.height;
419 }
420
421 VkDeviceSize imageLayerSize = getLayerSize(aspect);
422 VkDeviceSize srcLayerSize = bufferIsSource ? bufferLayerSize : imageLayerSize;
423 VkDeviceSize dstLayerSize = bufferIsSource ? imageLayerSize : bufferLayerSize;
424
425 for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++)
426 {
427 if(isSingleLine || (isEntireLine && isSinglePlane) || isEntirePlane)
428 {
429 ASSERT(((bufferIsSource ? dstMemory : srcMemory) + copySize) < end());
430 ASSERT(((bufferIsSource ? srcMemory : dstMemory) + copySize) < buffer->end());
431 memcpy(dstMemory, srcMemory, copySize);
432 }
433 else if(isEntireLine) // Copy plane by plane
434 {
435 uint8_t* srcPlaneMemory = srcMemory;
436 uint8_t* dstPlaneMemory = dstMemory;
437 for(uint32_t z = 0; z < imageExtent.depth; z++)
438 {
439 ASSERT(((bufferIsSource ? dstPlaneMemory : srcPlaneMemory) + copySize) < end());
440 ASSERT(((bufferIsSource ? srcPlaneMemory : dstPlaneMemory) + copySize) < buffer->end());
441 memcpy(dstPlaneMemory, srcPlaneMemory, copySize);
442 srcPlaneMemory += srcSlicePitchBytes;
443 dstPlaneMemory += dstSlicePitchBytes;
444 }
445 }
446 else // Copy line by line
447 {
448 uint8_t* srcLayerMemory = srcMemory;
449 uint8_t* dstLayerMemory = dstMemory;
450 for(uint32_t z = 0; z < imageExtent.depth; z++)
451 {
452 uint8_t* srcPlaneMemory = srcLayerMemory;
453 uint8_t* dstPlaneMemory = dstLayerMemory;
454 for(uint32_t y = 0; y < imageExtent.height; y++)
455 {
456 ASSERT(((bufferIsSource ? dstPlaneMemory : srcPlaneMemory) + copySize) < end());
457 ASSERT(((bufferIsSource ? srcPlaneMemory : dstPlaneMemory) + copySize) < buffer->end());
458 memcpy(dstPlaneMemory, srcPlaneMemory, copySize);
459 srcPlaneMemory += srcRowPitchBytes;
460 dstPlaneMemory += dstRowPitchBytes;
461 }
462 srcLayerMemory += srcSlicePitchBytes;
463 dstLayerMemory += dstSlicePitchBytes;
464 }
465 }
466
467 srcMemory += srcLayerSize;
468 dstMemory += dstLayerSize;
469 }
470
471 if(bufferIsSource)
472 {
473 prepareForSampling({ region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, 1,
474 region.imageSubresource.baseArrayLayer, region.imageSubresource.layerCount });
475 }
476}
477
478void Image::copyTo(Buffer* dstBuffer, const VkBufferImageCopy& region)
479{
480 copy(dstBuffer, region, false);
481}
482
483void Image::copyFrom(Buffer* srcBuffer, const VkBufferImageCopy& region)
484{
485 copy(srcBuffer, region, true);
486}
487
488void* Image::getTexelPointer(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const
489{
490 VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
491 return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) +
492 getMemoryOffset(aspect, subresource.mipLevel, subresource.baseArrayLayer));
493}
494
495VkExtent3D Image::imageExtentInBlocks(const VkExtent3D& extent, VkImageAspectFlagBits aspect) const
496{
497 VkExtent3D adjustedExtent = extent;
498 Format usedFormat = getFormat(aspect);
499 if(usedFormat.isCompressed())
500 {
501 // When using a compressed format, we use the block as the base unit, instead of the texel
502 int blockWidth = usedFormat.blockWidth();
503 int blockHeight = usedFormat.blockHeight();
504
505 // Mip level allocations will round up to the next block for compressed texture
506 adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth);
507 adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight);
508 }
509 return adjustedExtent;
510}
511
512VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D& offset, VkImageAspectFlagBits aspect) const
513{
514 VkOffset3D adjustedOffset = offset;
515 Format usedFormat = getFormat(aspect);
516 if(usedFormat.isCompressed())
517 {
518 // When using a compressed format, we use the block as the base unit, instead of the texel
519 int blockWidth = usedFormat.blockWidth();
520 int blockHeight = usedFormat.blockHeight();
521
522 ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0)); // We can't offset within a block
523
524 adjustedOffset.x /= blockWidth;
525 adjustedOffset.y /= blockHeight;
526 }
527 return adjustedOffset;
528}
529
530VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D& extent, const VkBufferImageCopy& region) const
531{
532 VkExtent2D adjustedExtent = extent;
533 VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask);
534 Format usedFormat = getFormat(aspect);
535 if(region.bufferRowLength != 0)
536 {
537 adjustedExtent.width = region.bufferRowLength;
538
539 if(usedFormat.isCompressed())
540 {
541 int blockWidth = usedFormat.blockWidth();
542 ASSERT((adjustedExtent.width % blockWidth) == 0);
543 adjustedExtent.width /= blockWidth;
544 }
545 }
546 if(region.bufferImageHeight != 0)
547 {
548 adjustedExtent.height = region.bufferImageHeight;
549
550 if(usedFormat.isCompressed())
551 {
552 int blockHeight = usedFormat.blockHeight();
553 ASSERT((adjustedExtent.height % blockHeight) == 0);
554 adjustedExtent.height /= blockHeight;
555 }
556 }
557 return adjustedExtent;
558}
559
560int Image::borderSize() const
561{
562 // We won't add a border to compressed cube textures, we'll add it when we decompress the texture
563 return (isCube() && !format.isCompressed()) ? 1 : 0;
564}
565
566VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const
567{
568 VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask);
569 VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect);
570 int border = borderSize();
571 return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) +
572 (adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) +
573 (adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock();
574}
575
576VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
577{
578 VkExtent3D mipLevelExtent;
579 mipLevelExtent.width = extent.width >> mipLevel;
580 mipLevelExtent.height = extent.height >> mipLevel;
581 mipLevelExtent.depth = extent.depth >> mipLevel;
582
583 if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; }
584 if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; }
585 if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; }
586
587 switch(aspect)
588 {
589 case VK_IMAGE_ASPECT_COLOR_BIT:
590 case VK_IMAGE_ASPECT_DEPTH_BIT:
591 case VK_IMAGE_ASPECT_STENCIL_BIT:
592 case VK_IMAGE_ASPECT_PLANE_0_BIT: // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution.
593 break;
594 case VK_IMAGE_ASPECT_PLANE_1_BIT:
595 case VK_IMAGE_ASPECT_PLANE_2_BIT:
596 switch(format)
597 {
598 case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
599 case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
600 ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0); // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two."
601 // Vulkan 1.1 Table 31. Plane Format Compatibility Table:
602 // Half-resolution U and V planes.
603 mipLevelExtent.width /= 2;
604 mipLevelExtent.height /= 2;
605 break;
606 default:
607 UNSUPPORTED("format %d", int(format));
608 }
609 break;
610 default:
611 UNSUPPORTED("aspect %x", int(aspect));
612 }
613
614 return mipLevelExtent;
615}
616
617int Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
618{
619 // Depth and Stencil pitch should be computed separately
620 ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
621 (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
622
623 return getFormat(aspect).pitchB(getMipLevelExtent(aspect, mipLevel).width, borderSize(), true);
624}
625
626int Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
627{
628 // Depth and Stencil slice should be computed separately
629 ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) !=
630 (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
631
632 VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel);
633 Format usedFormat = getFormat(aspect);
634 if(usedFormat.isCompressed())
635 {
636 sw::align(mipLevelExtent.width, usedFormat.blockWidth());
637 sw::align(mipLevelExtent.height, usedFormat.blockHeight());
638 }
639
640 return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize(), true);
641}
642
643Format Image::getFormat(VkImageAspectFlagBits aspect) const
644{
645 return format.getAspectFormat(aspect);
646}
647
648bool Image::isCube() const
649{
650 return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D);
651}
652
653uint8_t* Image::end() const
654{
655 return reinterpret_cast<uint8_t*>(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1));
656}
657
658VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const
659{
660 switch(format)
661 {
662 case VK_FORMAT_D16_UNORM_S8_UINT:
663 case VK_FORMAT_D24_UNORM_S8_UINT:
664 case VK_FORMAT_D32_SFLOAT_S8_UINT:
665 if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT)
666 {
667 // Offset by depth buffer to get to stencil buffer
668 return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT);
669 }
670 break;
671
672 case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM:
673 if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT)
674 {
675 return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT)
676 + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
677 }
678 // Fall through to 2PLANE case:
679 case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM:
680 if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT)
681 {
682 return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
683 }
684 else
685 {
686 ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT);
687
688 return memoryOffset;
689 }
690 break;
691
692 default:
693 break;
694 }
695
696 return memoryOffset;
697}
698
699VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
700{
701 VkDeviceSize offset = getMemoryOffset(aspect);
702 for(uint32_t i = 0; i < mipLevel; ++i)
703 {
704 offset += getMultiSampledLevelSize(aspect, i);
705 }
706 return offset;
707}
708
709VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const
710{
711 return layer * getLayerOffset(aspect, mipLevel) + getMemoryOffset(aspect, mipLevel);
712}
713
714VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
715{
716 return getMipLevelExtent(aspect, mipLevel).depth * slicePitchBytes(aspect, mipLevel);
717}
718
719VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
720{
721 return getMipLevelSize(aspect, mipLevel) * samples;
722}
723
724bool Image::is3DSlice() const
725{
726 return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT));
727}
728
729VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const
730{
731 if(is3DSlice())
732 {
733 // When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D
734 // image's mip level in order to create a 2D or 2D array image view of a 3D image created with
735 // VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first
736 // slice index and the number of slices to include in the created image view.
737 ASSERT(samples == VK_SAMPLE_COUNT_1_BIT);
738
739 // Offset to the proper slice of the 3D image's mip level
740 return slicePitchBytes(aspect, mipLevel);
741 }
742
743 return getLayerSize(aspect);
744}
745
746VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const
747{
748 VkDeviceSize layerSize = 0;
749
750 for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel)
751 {
752 layerSize += getMultiSampledLevelSize(aspect, mipLevel);
753 }
754
755 return layerSize;
756}
757
758VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const
759{
760 if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT |
761 VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0)
762 {
763 UNSUPPORTED("aspectMask %x", int(aspectMask));
764 }
765
766 VkDeviceSize storageSize = 0;
767
768 if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT);
769 if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT);
770 if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT);
771 if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT);
772 if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT);
773 if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT);
774
775 return arrayLayers * storageSize;
776}
777
778const Image* Image::getSampledImage(const vk::Format& imageViewFormat) const
779{
780 bool isImageViewCompressed = imageViewFormat.isCompressed();
781 if(decompressedImage && !isImageViewCompressed)
782 {
783 ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT);
784 ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock());
785 }
786 // If the ImageView's format is compressed, then we do need to decompress the image so that
787 // it may be sampled properly by texture sampling functions, which don't support compressed
788 // textures. If the ImageView's format is NOT compressed, then we reinterpret cast the
789 // compressed image into the ImageView's format, so we must return the compressed image as is.
790 return (decompressedImage && isImageViewCompressed) ? decompressedImage : this;
791}
792
793void Image::blit(Image* dstImage, const VkImageBlit& region, VkFilter filter) const
794{
795 device->getBlitter()->blit(this, dstImage, region, filter);
796}
797
798void Image::blitToBuffer(VkImageSubresourceLayers subresource, VkOffset3D offset, VkExtent3D extent, uint8_t* dst, int bufferRowPitch, int bufferSlicePitch) const
799{
800 device->getBlitter()->blitToBuffer(this, subresource, offset, extent, dst, bufferRowPitch, bufferSlicePitch);
801}
802
803void Image::resolve(Image* dstImage, const VkImageResolve& region) const
804{
805 VkImageBlit blitRegion;
806
807 blitRegion.srcOffsets[0] = blitRegion.srcOffsets[1] = region.srcOffset;
808 blitRegion.srcOffsets[1].x += region.extent.width;
809 blitRegion.srcOffsets[1].y += region.extent.height;
810 blitRegion.srcOffsets[1].z += region.extent.depth;
811
812 blitRegion.dstOffsets[0] = blitRegion.dstOffsets[1] = region.dstOffset;
813 blitRegion.dstOffsets[1].x += region.extent.width;
814 blitRegion.dstOffsets[1].y += region.extent.height;
815 blitRegion.dstOffsets[1].z += region.extent.depth;
816
817 blitRegion.srcSubresource = region.srcSubresource;
818 blitRegion.dstSubresource = region.dstSubresource;
819
820 device->getBlitter()->blit(this, dstImage, blitRegion, VK_FILTER_NEAREST);
821}
822
823VkFormat Image::getClearFormat() const
824{
825 // Set the proper format for the clear value, as described here:
826 // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values
827 if(format.isSignedNonNormalizedInteger())
828 {
829 return VK_FORMAT_R32G32B32A32_SINT;
830 }
831 else if(format.isUnsignedNonNormalizedInteger())
832 {
833 return VK_FORMAT_R32G32B32A32_UINT;
834 }
835
836 return VK_FORMAT_R32G32B32A32_SFLOAT;
837}
838
839uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange& subresourceRange) const
840{
841 return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ?
842 arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1;
843}
844
845uint32_t Image::getLastMipLevel(const VkImageSubresourceRange& subresourceRange) const
846{
847 return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ?
848 mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1;
849}
850
851void Image::clear(void* pixelData, VkFormat pixelFormat, const vk::Format& viewFormat, const VkImageSubresourceRange& subresourceRange, const VkRect2D& renderArea)
852{
853 device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, &renderArea);
854}
855
856void Image::clear(const VkClearColorValue& color, const VkImageSubresourceRange& subresourceRange)
857{
858 if(!(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT))
859 {
860 UNIMPLEMENTED("aspectMask");
861 }
862
863 device->getBlitter()->clear((void*)color.float32, getClearFormat(), this, format, subresourceRange);
864}
865
866void Image::clear(const VkClearDepthStencilValue& color, const VkImageSubresourceRange& subresourceRange)
867{
868 if((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT |
869 VK_IMAGE_ASPECT_STENCIL_BIT)) != 0)
870 {
871 UNIMPLEMENTED("aspectMask");
872 }
873
874 if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
875 {
876 VkImageSubresourceRange depthSubresourceRange = subresourceRange;
877 depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
878 device->getBlitter()->clear((void*)(&color.depth), VK_FORMAT_D32_SFLOAT, this, format, depthSubresourceRange);
879 }
880
881 if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
882 {
883 VkImageSubresourceRange stencilSubresourceRange = subresourceRange;
884 stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
885 device->getBlitter()->clear((void*)(&color.stencil), VK_FORMAT_S8_UINT, this, format, stencilSubresourceRange);
886 }
887}
888
889void Image::clear(const VkClearValue& clearValue, const vk::Format& viewFormat, const VkRect2D& renderArea, const VkImageSubresourceRange& subresourceRange)
890{
891 if(!((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) ||
892 (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT |
893 VK_IMAGE_ASPECT_STENCIL_BIT))))
894 {
895 UNIMPLEMENTED("subresourceRange");
896 }
897
898 if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)
899 {
900 clear((void*)(clearValue.color.float32), getClearFormat(), viewFormat, subresourceRange, renderArea);
901 }
902 else
903 {
904 if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT)
905 {
906 VkImageSubresourceRange depthSubresourceRange = subresourceRange;
907 depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
908 clear((void*)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, renderArea);
909 }
910
911 if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT)
912 {
913 VkImageSubresourceRange stencilSubresourceRange = subresourceRange;
914 stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
915 clear((void*)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, renderArea);
916 }
917 }
918}
919
920void Image::prepareForSampling(const VkImageSubresourceRange& subresourceRange)
921{
922 if(decompressedImage)
923 {
924 switch(format)
925 {
926 case VK_FORMAT_EAC_R11_UNORM_BLOCK:
927 case VK_FORMAT_EAC_R11_SNORM_BLOCK:
928 case VK_FORMAT_EAC_R11G11_UNORM_BLOCK:
929 case VK_FORMAT_EAC_R11G11_SNORM_BLOCK:
930 case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK:
931 case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK:
932 case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK:
933 case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK:
934 case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK:
935 case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK:
936 decodeETC2(subresourceRange);
937 break;
938 default:
939 break;
940 }
941 }
942
943 if(isCube() && (arrayLayers >= 6))
944 {
945 VkImageSubresourceLayers subresourceLayers =
946 {
947 subresourceRange.aspectMask,
948 subresourceRange.baseMipLevel,
949 subresourceRange.baseArrayLayer,
950 6
951 };
952 uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
953 for(; subresourceLayers.mipLevel <= lastMipLevel; subresourceLayers.mipLevel++)
954 {
955 for(subresourceLayers.baseArrayLayer = 0;
956 subresourceLayers.baseArrayLayer < arrayLayers;
957 subresourceLayers.baseArrayLayer += 6)
958 {
959 device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresourceLayers);
960 }
961 }
962 }
963}
964
965void Image::decodeETC2(const VkImageSubresourceRange& subresourceRange) const
966{
967 ASSERT(decompressedImage);
968
969 ETC_Decoder::InputType inputType = GetInputType(format);
970
971 uint32_t lastLayer = getLastLayerIndex(subresourceRange);
972 uint32_t lastMipLevel = getLastMipLevel(subresourceRange);
973
974 int bytes = decompressedImage->format.bytes();
975 bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK);
976 size_t sizeToWrite = 0;
977
978 VkImageSubresourceLayers subresourceLayers = { subresourceRange.aspectMask, subresourceRange.baseMipLevel, subresourceRange.baseArrayLayer, 1 };
979 for(; subresourceLayers.baseArrayLayer <= lastLayer; subresourceLayers.baseArrayLayer++)
980 {
981 for(; subresourceLayers.mipLevel <= lastMipLevel; subresourceLayers.mipLevel++)
982 {
983 VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresourceLayers.aspectMask), subresourceLayers.mipLevel);
984
985 int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresourceLayers.mipLevel);
986
987 if(fakeAlpha)
988 {
989 // To avoid overflow in case of cube textures, which are offset in memory to account for the border,
990 // compute the size from the first pixel to the last pixel, excluding any padding or border before
991 // the first pixel or after the last pixel.
992 sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes);
993 }
994
995 for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++)
996 {
997 uint8_t* source = static_cast<uint8_t*>(getTexelPointer({ 0, 0, depth }, subresourceLayers));
998 uint8_t* dest = static_cast<uint8_t*>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresourceLayers));
999
1000 if(fakeAlpha)
1001 {
1002 ASSERT((dest + sizeToWrite) < decompressedImage->end());
1003 memset(dest, 0xFF, sizeToWrite);
1004 }
1005
1006 ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height,
1007 mipLevelExtent.width, mipLevelExtent.height, pitchB, bytes, inputType);
1008 }
1009 }
1010 }
1011}
1012
1013} // namespace vk
1014