| 1 | // Copyright 2018 The SwiftShader Authors. All Rights Reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "VkDeviceMemory.hpp" |
| 16 | #include "VkBuffer.hpp" |
| 17 | #include "VkDevice.hpp" |
| 18 | #include "VkImage.hpp" |
| 19 | #include "Device/Blitter.hpp" |
| 20 | #include "Device/ETC_Decoder.hpp" |
| 21 | #include <cstring> |
| 22 | |
| 23 | #ifdef __ANDROID__ |
| 24 | #include "System/GrallocAndroid.hpp" |
| 25 | #endif |
| 26 | |
| 27 | namespace |
| 28 | { |
| 29 | ETC_Decoder::InputType GetInputType(const vk::Format& format) |
| 30 | { |
| 31 | switch(format) |
| 32 | { |
| 33 | case VK_FORMAT_EAC_R11_UNORM_BLOCK: |
| 34 | return ETC_Decoder::ETC_R_UNSIGNED; |
| 35 | case VK_FORMAT_EAC_R11_SNORM_BLOCK: |
| 36 | return ETC_Decoder::ETC_R_SIGNED; |
| 37 | case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: |
| 38 | return ETC_Decoder::ETC_RG_UNSIGNED; |
| 39 | case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: |
| 40 | return ETC_Decoder::ETC_RG_SIGNED; |
| 41 | case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: |
| 42 | case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: |
| 43 | return ETC_Decoder::ETC_RGB; |
| 44 | case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: |
| 45 | case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: |
| 46 | return ETC_Decoder::ETC_RGB_PUNCHTHROUGH_ALPHA; |
| 47 | case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: |
| 48 | case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: |
| 49 | return ETC_Decoder::ETC_RGBA; |
| 50 | default: |
| 51 | UNIMPLEMENTED("format: %d" , int(format)); |
| 52 | return ETC_Decoder::ETC_RGBA; |
| 53 | } |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | namespace vk |
| 58 | { |
| 59 | |
| 60 | Image::Image(const VkImageCreateInfo* pCreateInfo, void* mem, Device *device) : |
| 61 | device(device), |
| 62 | flags(pCreateInfo->flags), |
| 63 | imageType(pCreateInfo->imageType), |
| 64 | format(pCreateInfo->format), |
| 65 | extent(pCreateInfo->extent), |
| 66 | mipLevels(pCreateInfo->mipLevels), |
| 67 | arrayLayers(pCreateInfo->arrayLayers), |
| 68 | samples(pCreateInfo->samples), |
| 69 | tiling(pCreateInfo->tiling), |
| 70 | usage(pCreateInfo->usage) |
| 71 | { |
| 72 | if(format.isCompressed()) |
| 73 | { |
| 74 | VkImageCreateInfo compressedImageCreateInfo = *pCreateInfo; |
| 75 | compressedImageCreateInfo.format = format.getDecompressedFormat(); |
| 76 | decompressedImage = new (mem) Image(&compressedImageCreateInfo, nullptr, device); |
| 77 | } |
| 78 | |
| 79 | const auto* nextInfo = reinterpret_cast<const VkBaseInStructure*>(pCreateInfo->pNext); |
| 80 | for (; nextInfo != nullptr; nextInfo = nextInfo->pNext) |
| 81 | { |
| 82 | if (nextInfo->sType == VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO) |
| 83 | { |
| 84 | const auto* externalInfo = reinterpret_cast<const VkExternalMemoryImageCreateInfo*>(nextInfo); |
| 85 | supportedExternalMemoryHandleTypes = externalInfo->handleTypes; |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | void Image::destroy(const VkAllocationCallbacks* pAllocator) |
| 91 | { |
| 92 | if(decompressedImage) |
| 93 | { |
| 94 | vk::deallocate(decompressedImage, pAllocator); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | size_t Image::ComputeRequiredAllocationSize(const VkImageCreateInfo* pCreateInfo) |
| 99 | { |
| 100 | return Format(pCreateInfo->format).isCompressed() ? sizeof(Image) : 0; |
| 101 | } |
| 102 | |
| 103 | const VkMemoryRequirements Image::getMemoryRequirements() const |
| 104 | { |
| 105 | VkMemoryRequirements memoryRequirements; |
| 106 | memoryRequirements.alignment = vk::REQUIRED_MEMORY_ALIGNMENT; |
| 107 | memoryRequirements.memoryTypeBits = vk::MEMORY_TYPE_GENERIC_BIT; |
| 108 | memoryRequirements.size = getStorageSize(format.getAspects()) + |
| 109 | (decompressedImage ? decompressedImage->getStorageSize(decompressedImage->format.getAspects()) : 0); |
| 110 | return memoryRequirements; |
| 111 | } |
| 112 | |
| 113 | bool Image::canBindToMemory(DeviceMemory* pDeviceMemory) const |
| 114 | { |
| 115 | return pDeviceMemory->checkExternalMemoryHandleType(supportedExternalMemoryHandleTypes); |
| 116 | } |
| 117 | |
| 118 | void Image::bind(DeviceMemory* pDeviceMemory, VkDeviceSize pMemoryOffset) |
| 119 | { |
| 120 | deviceMemory = pDeviceMemory; |
| 121 | memoryOffset = pMemoryOffset; |
| 122 | if(decompressedImage) |
| 123 | { |
| 124 | decompressedImage->deviceMemory = deviceMemory; |
| 125 | decompressedImage->memoryOffset = memoryOffset + getStorageSize(format.getAspects()); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | #ifdef __ANDROID__ |
| 130 | VkResult Image::prepareForExternalUseANDROID() const |
| 131 | { |
| 132 | void* nativeBuffer = nullptr; |
| 133 | VkExtent3D extent = getMipLevelExtent(VK_IMAGE_ASPECT_COLOR_BIT, 0); |
| 134 | |
| 135 | if(GrallocModule::getInstance()->lock(backingMemory.nativeHandle, GRALLOC_USAGE_SW_WRITE_OFTEN, 0, 0, extent.width, extent.height, &nativeBuffer) != 0) |
| 136 | { |
| 137 | return VK_ERROR_OUT_OF_DATE_KHR; |
| 138 | } |
| 139 | |
| 140 | if(!nativeBuffer) |
| 141 | { |
| 142 | return VK_ERROR_OUT_OF_DATE_KHR; |
| 143 | } |
| 144 | |
| 145 | int imageRowBytes = rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0); |
| 146 | int bufferRowBytes = backingMemory.stride * getFormat().bytes(); |
| 147 | ASSERT(imageRowBytes <= bufferRowBytes); |
| 148 | |
| 149 | uint8_t* srcBuffer = static_cast<uint8_t*>(deviceMemory->getOffsetPointer(0)); |
| 150 | uint8_t* dstBuffer = static_cast<uint8_t*>(nativeBuffer); |
| 151 | for(uint32_t i = 0; i < extent.height; i++) |
| 152 | { |
| 153 | memcpy(dstBuffer + (i * bufferRowBytes), srcBuffer + (i * imageRowBytes), imageRowBytes); |
| 154 | } |
| 155 | |
| 156 | if(GrallocModule::getInstance()->unlock(backingMemory.nativeHandle) != 0) |
| 157 | { |
| 158 | return VK_ERROR_OUT_OF_DATE_KHR; |
| 159 | } |
| 160 | |
| 161 | return VK_SUCCESS; |
| 162 | } |
| 163 | |
| 164 | VkDeviceMemory Image::getExternalMemory() const |
| 165 | { |
| 166 | return backingMemory.externalMemory ? *deviceMemory : VkDeviceMemory{ VK_NULL_HANDLE }; |
| 167 | } |
| 168 | #endif |
| 169 | |
| 170 | void Image::getSubresourceLayout(const VkImageSubresource* pSubresource, VkSubresourceLayout* pLayout) const |
| 171 | { |
| 172 | // By spec, aspectMask has a single bit set. |
| 173 | if (!((pSubresource->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| 174 | (pSubresource->aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || |
| 175 | (pSubresource->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || |
| 176 | (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || |
| 177 | (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || |
| 178 | (pSubresource->aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) |
| 179 | { |
| 180 | UNSUPPORTED("aspectMask %X" , pSubresource->aspectMask); |
| 181 | } |
| 182 | |
| 183 | auto aspect = static_cast<VkImageAspectFlagBits>(pSubresource->aspectMask); |
| 184 | pLayout->offset = getMemoryOffset(aspect, pSubresource->mipLevel, pSubresource->arrayLayer); |
| 185 | pLayout->size = getMultiSampledLevelSize(aspect, pSubresource->mipLevel); |
| 186 | pLayout->rowPitch = rowPitchBytes(aspect, pSubresource->mipLevel); |
| 187 | pLayout->depthPitch = slicePitchBytes(aspect, pSubresource->mipLevel); |
| 188 | pLayout->arrayPitch = getLayerSize(aspect); |
| 189 | } |
| 190 | |
| 191 | void Image::copyTo(Image* dstImage, const VkImageCopy& pRegion) const |
| 192 | { |
| 193 | // Image copy does not perform any conversion, it simply copies memory from |
| 194 | // an image to another image that has the same number of bytes per pixel. |
| 195 | |
| 196 | if (!((pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| 197 | (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || |
| 198 | (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || |
| 199 | (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || |
| 200 | (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || |
| 201 | (pRegion.srcSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) |
| 202 | { |
| 203 | UNSUPPORTED("srcSubresource.aspectMask %X" , pRegion.srcSubresource.aspectMask); |
| 204 | } |
| 205 | |
| 206 | if (!((pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| 207 | (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_DEPTH_BIT) || |
| 208 | (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) || |
| 209 | (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_0_BIT) || |
| 210 | (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_1_BIT) || |
| 211 | (pRegion.dstSubresource.aspectMask == VK_IMAGE_ASPECT_PLANE_2_BIT))) |
| 212 | { |
| 213 | UNSUPPORTED("dstSubresource.aspectMask %X" , pRegion.dstSubresource.aspectMask); |
| 214 | } |
| 215 | |
| 216 | VkImageAspectFlagBits srcAspect = static_cast<VkImageAspectFlagBits>(pRegion.srcSubresource.aspectMask); |
| 217 | VkImageAspectFlagBits dstAspect = static_cast<VkImageAspectFlagBits>(pRegion.dstSubresource.aspectMask); |
| 218 | |
| 219 | Format srcFormat = getFormat(srcAspect); |
| 220 | Format dstFormat = dstImage->getFormat(dstAspect); |
| 221 | |
| 222 | if(((samples > VK_SAMPLE_COUNT_1_BIT) && (imageType == VK_IMAGE_TYPE_2D) && !format.isNonNormalizedInteger()) || |
| 223 | srcFormat.hasQuadLayout() || dstFormat.hasQuadLayout()) |
| 224 | { |
| 225 | // Requires multisampling resolve, or quadlayout awareness |
| 226 | VkImageBlit region; |
| 227 | region.srcSubresource = pRegion.srcSubresource; |
| 228 | region.srcOffsets[0] = pRegion.srcOffset; |
| 229 | region.srcOffsets[1].x = region.srcOffsets[0].x + pRegion.extent.width; |
| 230 | region.srcOffsets[1].y = region.srcOffsets[0].y + pRegion.extent.height; |
| 231 | region.srcOffsets[1].z = region.srcOffsets[0].z + pRegion.extent.depth; |
| 232 | |
| 233 | region.dstSubresource = pRegion.dstSubresource; |
| 234 | region.dstOffsets[0] = pRegion.dstOffset; |
| 235 | region.dstOffsets[1].x = region.dstOffsets[0].x + pRegion.extent.width; |
| 236 | region.dstOffsets[1].y = region.dstOffsets[0].y + pRegion.extent.height; |
| 237 | region.dstOffsets[1].z = region.dstOffsets[0].z + pRegion.extent.depth; |
| 238 | |
| 239 | return device->getBlitter()->blit(this, dstImage, region, VK_FILTER_NEAREST); |
| 240 | } |
| 241 | |
| 242 | int srcBytesPerBlock = srcFormat.bytesPerBlock(); |
| 243 | ASSERT(srcBytesPerBlock == dstFormat.bytesPerBlock()); |
| 244 | |
| 245 | const uint8_t* srcMem = static_cast<const uint8_t*>(getTexelPointer(pRegion.srcOffset, pRegion.srcSubresource)); |
| 246 | uint8_t* dstMem = static_cast<uint8_t*>(dstImage->getTexelPointer(pRegion.dstOffset, pRegion.dstSubresource)); |
| 247 | |
| 248 | int srcRowPitchBytes = rowPitchBytes(srcAspect, pRegion.srcSubresource.mipLevel); |
| 249 | int srcSlicePitchBytes = slicePitchBytes(srcAspect, pRegion.srcSubresource.mipLevel); |
| 250 | int dstRowPitchBytes = dstImage->rowPitchBytes(dstAspect, pRegion.dstSubresource.mipLevel); |
| 251 | int dstSlicePitchBytes = dstImage->slicePitchBytes(dstAspect, pRegion.dstSubresource.mipLevel); |
| 252 | |
| 253 | VkExtent3D srcExtent = getMipLevelExtent(srcAspect, pRegion.srcSubresource.mipLevel); |
| 254 | VkExtent3D dstExtent = dstImage->getMipLevelExtent(dstAspect, pRegion.dstSubresource.mipLevel); |
| 255 | VkExtent3D copyExtent = imageExtentInBlocks(pRegion.extent, srcAspect); |
| 256 | |
| 257 | bool isSinglePlane = (copyExtent.depth == 1); |
| 258 | bool isSingleLine = (copyExtent.height == 1) && isSinglePlane; |
| 259 | // In order to copy multiple lines using a single memcpy call, we |
| 260 | // have to make sure that we need to copy the entire line and that |
| 261 | // both source and destination lines have the same length in bytes |
| 262 | bool isEntireLine = (pRegion.extent.width == srcExtent.width) && |
| 263 | (pRegion.extent.width == dstExtent.width) && |
| 264 | // For non compressed formats, blockWidth is 1. For compressed |
| 265 | // formats, rowPitchBytes returns the number of bytes for a row of |
| 266 | // blocks, so we have to divide by the block height, which means: |
| 267 | // srcRowPitchBytes / srcBlockWidth == dstRowPitchBytes / dstBlockWidth |
| 268 | // And, to avoid potential non exact integer division, for example if a |
| 269 | // block has 16 bytes and represents 5 lines, we change the equation to: |
| 270 | // srcRowPitchBytes * dstBlockWidth == dstRowPitchBytes * srcBlockWidth |
| 271 | ((srcRowPitchBytes * dstFormat.blockWidth()) == |
| 272 | (dstRowPitchBytes * srcFormat.blockWidth())); |
| 273 | // In order to copy multiple planes using a single memcpy call, we |
| 274 | // have to make sure that we need to copy the entire plane and that |
| 275 | // both source and destination planes have the same length in bytes |
| 276 | bool isEntirePlane = isEntireLine && |
| 277 | (copyExtent.height == srcExtent.height) && |
| 278 | (copyExtent.height == dstExtent.height) && |
| 279 | (srcSlicePitchBytes == dstSlicePitchBytes); |
| 280 | |
| 281 | if(isSingleLine) // Copy one line |
| 282 | { |
| 283 | size_t copySize = copyExtent.width * srcBytesPerBlock; |
| 284 | ASSERT((srcMem + copySize) < end()); |
| 285 | ASSERT((dstMem + copySize) < dstImage->end()); |
| 286 | memcpy(dstMem, srcMem, copySize); |
| 287 | } |
| 288 | else if(isEntireLine && isSinglePlane) // Copy one plane |
| 289 | { |
| 290 | size_t copySize = copyExtent.height * srcRowPitchBytes; |
| 291 | ASSERT((srcMem + copySize) < end()); |
| 292 | ASSERT((dstMem + copySize) < dstImage->end()); |
| 293 | memcpy(dstMem, srcMem, copySize); |
| 294 | } |
| 295 | else if(isEntirePlane) // Copy multiple planes |
| 296 | { |
| 297 | size_t copySize = copyExtent.depth * srcSlicePitchBytes; |
| 298 | ASSERT((srcMem + copySize) < end()); |
| 299 | ASSERT((dstMem + copySize) < dstImage->end()); |
| 300 | memcpy(dstMem, srcMem, copySize); |
| 301 | } |
| 302 | else if(isEntireLine) // Copy plane by plane |
| 303 | { |
| 304 | size_t copySize = copyExtent.height * srcRowPitchBytes; |
| 305 | |
| 306 | for(uint32_t z = 0; z < copyExtent.depth; z++, dstMem += dstSlicePitchBytes, srcMem += srcSlicePitchBytes) |
| 307 | { |
| 308 | ASSERT((srcMem + copySize) < end()); |
| 309 | ASSERT((dstMem + copySize) < dstImage->end()); |
| 310 | memcpy(dstMem, srcMem, copySize); |
| 311 | } |
| 312 | } |
| 313 | else // Copy line by line |
| 314 | { |
| 315 | size_t copySize = copyExtent.width * srcBytesPerBlock; |
| 316 | |
| 317 | for(uint32_t z = 0; z < copyExtent.depth; z++, dstMem += dstSlicePitchBytes, srcMem += srcSlicePitchBytes) |
| 318 | { |
| 319 | const uint8_t* srcSlice = srcMem; |
| 320 | uint8_t* dstSlice = dstMem; |
| 321 | for(uint32_t y = 0; y < copyExtent.height; y++, dstSlice += dstRowPitchBytes, srcSlice += srcRowPitchBytes) |
| 322 | { |
| 323 | ASSERT((srcSlice + copySize) < end()); |
| 324 | ASSERT((dstSlice + copySize) < dstImage->end()); |
| 325 | memcpy(dstSlice, srcSlice, copySize); |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | void Image::copy(Buffer* buffer, const VkBufferImageCopy& region, bool bufferIsSource) |
| 332 | { |
| 333 | switch(region.imageSubresource.aspectMask) |
| 334 | { |
| 335 | case VK_IMAGE_ASPECT_COLOR_BIT: |
| 336 | case VK_IMAGE_ASPECT_DEPTH_BIT: |
| 337 | case VK_IMAGE_ASPECT_STENCIL_BIT: |
| 338 | case VK_IMAGE_ASPECT_PLANE_0_BIT: |
| 339 | case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| 340 | case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| 341 | break; |
| 342 | default: |
| 343 | UNSUPPORTED("aspectMask %x" , int(region.imageSubresource.aspectMask)); |
| 344 | break; |
| 345 | } |
| 346 | |
| 347 | auto aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask); |
| 348 | Format copyFormat = getFormat(aspect); |
| 349 | |
| 350 | VkExtent3D imageExtent = imageExtentInBlocks(region.imageExtent, aspect); |
| 351 | VkExtent2D bufferExtent = bufferExtentInBlocks({ imageExtent.width, imageExtent.height }, region); |
| 352 | int bytesPerBlock = copyFormat.bytesPerBlock(); |
| 353 | int bufferRowPitchBytes = bufferExtent.width * bytesPerBlock; |
| 354 | int bufferSlicePitchBytes = bufferExtent.height * bufferRowPitchBytes; |
| 355 | |
| 356 | uint8_t* bufferMemory = static_cast<uint8_t*>(buffer->getOffsetPointer(region.bufferOffset)); |
| 357 | |
| 358 | if (copyFormat.hasQuadLayout()) |
| 359 | { |
| 360 | if (bufferIsSource) |
| 361 | { |
| 362 | return device->getBlitter()->blitFromBuffer(this, region.imageSubresource, region.imageOffset, |
| 363 | region.imageExtent, bufferMemory, bufferRowPitchBytes, |
| 364 | bufferSlicePitchBytes); |
| 365 | } |
| 366 | else |
| 367 | { |
| 368 | return device->getBlitter()->blitToBuffer(this, region.imageSubresource, region.imageOffset, |
| 369 | region.imageExtent, bufferMemory, bufferRowPitchBytes, |
| 370 | bufferSlicePitchBytes); |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | uint8_t* imageMemory = static_cast<uint8_t*>(getTexelPointer(region.imageOffset, region.imageSubresource)); |
| 375 | uint8_t* srcMemory = bufferIsSource ? bufferMemory : imageMemory; |
| 376 | uint8_t* dstMemory = bufferIsSource ? imageMemory : bufferMemory; |
| 377 | int imageRowPitchBytes = rowPitchBytes(aspect, region.imageSubresource.mipLevel); |
| 378 | int imageSlicePitchBytes = slicePitchBytes(aspect, region.imageSubresource.mipLevel); |
| 379 | |
| 380 | int srcSlicePitchBytes = bufferIsSource ? bufferSlicePitchBytes : imageSlicePitchBytes; |
| 381 | int dstSlicePitchBytes = bufferIsSource ? imageSlicePitchBytes : bufferSlicePitchBytes; |
| 382 | int srcRowPitchBytes = bufferIsSource ? bufferRowPitchBytes : imageRowPitchBytes; |
| 383 | int dstRowPitchBytes = bufferIsSource ? imageRowPitchBytes : bufferRowPitchBytes; |
| 384 | |
| 385 | VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, region.imageSubresource.mipLevel); |
| 386 | bool isSinglePlane = (imageExtent.depth == 1); |
| 387 | bool isSingleLine = (imageExtent.height == 1) && isSinglePlane; |
| 388 | bool isEntireLine = (imageExtent.width == mipLevelExtent.width) && |
| 389 | (imageRowPitchBytes == bufferRowPitchBytes); |
| 390 | bool isEntirePlane = isEntireLine && (imageExtent.height == mipLevelExtent.height) && |
| 391 | (imageSlicePitchBytes == bufferSlicePitchBytes); |
| 392 | |
| 393 | VkDeviceSize copySize = 0; |
| 394 | VkDeviceSize bufferLayerSize = 0; |
| 395 | if(isSingleLine) |
| 396 | { |
| 397 | copySize = imageExtent.width * bytesPerBlock; |
| 398 | bufferLayerSize = copySize; |
| 399 | } |
| 400 | else if(isEntireLine && isSinglePlane) |
| 401 | { |
| 402 | copySize = imageExtent.height * imageRowPitchBytes; |
| 403 | bufferLayerSize = copySize; |
| 404 | } |
| 405 | else if(isEntirePlane) |
| 406 | { |
| 407 | copySize = imageExtent.depth * imageSlicePitchBytes; // Copy multiple planes |
| 408 | bufferLayerSize = copySize; |
| 409 | } |
| 410 | else if(isEntireLine) // Copy plane by plane |
| 411 | { |
| 412 | copySize = imageExtent.height * imageRowPitchBytes; |
| 413 | bufferLayerSize = copySize * imageExtent.depth; |
| 414 | } |
| 415 | else // Copy line by line |
| 416 | { |
| 417 | copySize = imageExtent.width * bytesPerBlock; |
| 418 | bufferLayerSize = copySize * imageExtent.depth * imageExtent.height; |
| 419 | } |
| 420 | |
| 421 | VkDeviceSize imageLayerSize = getLayerSize(aspect); |
| 422 | VkDeviceSize srcLayerSize = bufferIsSource ? bufferLayerSize : imageLayerSize; |
| 423 | VkDeviceSize dstLayerSize = bufferIsSource ? imageLayerSize : bufferLayerSize; |
| 424 | |
| 425 | for(uint32_t i = 0; i < region.imageSubresource.layerCount; i++) |
| 426 | { |
| 427 | if(isSingleLine || (isEntireLine && isSinglePlane) || isEntirePlane) |
| 428 | { |
| 429 | ASSERT(((bufferIsSource ? dstMemory : srcMemory) + copySize) < end()); |
| 430 | ASSERT(((bufferIsSource ? srcMemory : dstMemory) + copySize) < buffer->end()); |
| 431 | memcpy(dstMemory, srcMemory, copySize); |
| 432 | } |
| 433 | else if(isEntireLine) // Copy plane by plane |
| 434 | { |
| 435 | uint8_t* srcPlaneMemory = srcMemory; |
| 436 | uint8_t* dstPlaneMemory = dstMemory; |
| 437 | for(uint32_t z = 0; z < imageExtent.depth; z++) |
| 438 | { |
| 439 | ASSERT(((bufferIsSource ? dstPlaneMemory : srcPlaneMemory) + copySize) < end()); |
| 440 | ASSERT(((bufferIsSource ? srcPlaneMemory : dstPlaneMemory) + copySize) < buffer->end()); |
| 441 | memcpy(dstPlaneMemory, srcPlaneMemory, copySize); |
| 442 | srcPlaneMemory += srcSlicePitchBytes; |
| 443 | dstPlaneMemory += dstSlicePitchBytes; |
| 444 | } |
| 445 | } |
| 446 | else // Copy line by line |
| 447 | { |
| 448 | uint8_t* srcLayerMemory = srcMemory; |
| 449 | uint8_t* dstLayerMemory = dstMemory; |
| 450 | for(uint32_t z = 0; z < imageExtent.depth; z++) |
| 451 | { |
| 452 | uint8_t* srcPlaneMemory = srcLayerMemory; |
| 453 | uint8_t* dstPlaneMemory = dstLayerMemory; |
| 454 | for(uint32_t y = 0; y < imageExtent.height; y++) |
| 455 | { |
| 456 | ASSERT(((bufferIsSource ? dstPlaneMemory : srcPlaneMemory) + copySize) < end()); |
| 457 | ASSERT(((bufferIsSource ? srcPlaneMemory : dstPlaneMemory) + copySize) < buffer->end()); |
| 458 | memcpy(dstPlaneMemory, srcPlaneMemory, copySize); |
| 459 | srcPlaneMemory += srcRowPitchBytes; |
| 460 | dstPlaneMemory += dstRowPitchBytes; |
| 461 | } |
| 462 | srcLayerMemory += srcSlicePitchBytes; |
| 463 | dstLayerMemory += dstSlicePitchBytes; |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | srcMemory += srcLayerSize; |
| 468 | dstMemory += dstLayerSize; |
| 469 | } |
| 470 | |
| 471 | if(bufferIsSource) |
| 472 | { |
| 473 | prepareForSampling({ region.imageSubresource.aspectMask, region.imageSubresource.mipLevel, 1, |
| 474 | region.imageSubresource.baseArrayLayer, region.imageSubresource.layerCount }); |
| 475 | } |
| 476 | } |
| 477 | |
| 478 | void Image::copyTo(Buffer* dstBuffer, const VkBufferImageCopy& region) |
| 479 | { |
| 480 | copy(dstBuffer, region, false); |
| 481 | } |
| 482 | |
| 483 | void Image::copyFrom(Buffer* srcBuffer, const VkBufferImageCopy& region) |
| 484 | { |
| 485 | copy(srcBuffer, region, true); |
| 486 | } |
| 487 | |
| 488 | void* Image::getTexelPointer(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const |
| 489 | { |
| 490 | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); |
| 491 | return deviceMemory->getOffsetPointer(texelOffsetBytesInStorage(offset, subresource) + |
| 492 | getMemoryOffset(aspect, subresource.mipLevel, subresource.baseArrayLayer)); |
| 493 | } |
| 494 | |
| 495 | VkExtent3D Image::imageExtentInBlocks(const VkExtent3D& extent, VkImageAspectFlagBits aspect) const |
| 496 | { |
| 497 | VkExtent3D adjustedExtent = extent; |
| 498 | Format usedFormat = getFormat(aspect); |
| 499 | if(usedFormat.isCompressed()) |
| 500 | { |
| 501 | // When using a compressed format, we use the block as the base unit, instead of the texel |
| 502 | int blockWidth = usedFormat.blockWidth(); |
| 503 | int blockHeight = usedFormat.blockHeight(); |
| 504 | |
| 505 | // Mip level allocations will round up to the next block for compressed texture |
| 506 | adjustedExtent.width = ((adjustedExtent.width + blockWidth - 1) / blockWidth); |
| 507 | adjustedExtent.height = ((adjustedExtent.height + blockHeight - 1) / blockHeight); |
| 508 | } |
| 509 | return adjustedExtent; |
| 510 | } |
| 511 | |
| 512 | VkOffset3D Image::imageOffsetInBlocks(const VkOffset3D& offset, VkImageAspectFlagBits aspect) const |
| 513 | { |
| 514 | VkOffset3D adjustedOffset = offset; |
| 515 | Format usedFormat = getFormat(aspect); |
| 516 | if(usedFormat.isCompressed()) |
| 517 | { |
| 518 | // When using a compressed format, we use the block as the base unit, instead of the texel |
| 519 | int blockWidth = usedFormat.blockWidth(); |
| 520 | int blockHeight = usedFormat.blockHeight(); |
| 521 | |
| 522 | ASSERT(((offset.x % blockWidth) == 0) && ((offset.y % blockHeight) == 0)); // We can't offset within a block |
| 523 | |
| 524 | adjustedOffset.x /= blockWidth; |
| 525 | adjustedOffset.y /= blockHeight; |
| 526 | } |
| 527 | return adjustedOffset; |
| 528 | } |
| 529 | |
| 530 | VkExtent2D Image::bufferExtentInBlocks(const VkExtent2D& extent, const VkBufferImageCopy& region) const |
| 531 | { |
| 532 | VkExtent2D adjustedExtent = extent; |
| 533 | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(region.imageSubresource.aspectMask); |
| 534 | Format usedFormat = getFormat(aspect); |
| 535 | if(region.bufferRowLength != 0) |
| 536 | { |
| 537 | adjustedExtent.width = region.bufferRowLength; |
| 538 | |
| 539 | if(usedFormat.isCompressed()) |
| 540 | { |
| 541 | int blockWidth = usedFormat.blockWidth(); |
| 542 | ASSERT((adjustedExtent.width % blockWidth) == 0); |
| 543 | adjustedExtent.width /= blockWidth; |
| 544 | } |
| 545 | } |
| 546 | if(region.bufferImageHeight != 0) |
| 547 | { |
| 548 | adjustedExtent.height = region.bufferImageHeight; |
| 549 | |
| 550 | if(usedFormat.isCompressed()) |
| 551 | { |
| 552 | int blockHeight = usedFormat.blockHeight(); |
| 553 | ASSERT((adjustedExtent.height % blockHeight) == 0); |
| 554 | adjustedExtent.height /= blockHeight; |
| 555 | } |
| 556 | } |
| 557 | return adjustedExtent; |
| 558 | } |
| 559 | |
| 560 | int Image::borderSize() const |
| 561 | { |
| 562 | // We won't add a border to compressed cube textures, we'll add it when we decompress the texture |
| 563 | return (isCube() && !format.isCompressed()) ? 1 : 0; |
| 564 | } |
| 565 | |
| 566 | VkDeviceSize Image::texelOffsetBytesInStorage(const VkOffset3D& offset, const VkImageSubresourceLayers& subresource) const |
| 567 | { |
| 568 | VkImageAspectFlagBits aspect = static_cast<VkImageAspectFlagBits>(subresource.aspectMask); |
| 569 | VkOffset3D adjustedOffset = imageOffsetInBlocks(offset, aspect); |
| 570 | int border = borderSize(); |
| 571 | return adjustedOffset.z * slicePitchBytes(aspect, subresource.mipLevel) + |
| 572 | (adjustedOffset.y + border) * rowPitchBytes(aspect, subresource.mipLevel) + |
| 573 | (adjustedOffset.x + border) * getFormat(aspect).bytesPerBlock(); |
| 574 | } |
| 575 | |
| 576 | VkExtent3D Image::getMipLevelExtent(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 577 | { |
| 578 | VkExtent3D mipLevelExtent; |
| 579 | mipLevelExtent.width = extent.width >> mipLevel; |
| 580 | mipLevelExtent.height = extent.height >> mipLevel; |
| 581 | mipLevelExtent.depth = extent.depth >> mipLevel; |
| 582 | |
| 583 | if(mipLevelExtent.width == 0) { mipLevelExtent.width = 1; } |
| 584 | if(mipLevelExtent.height == 0) { mipLevelExtent.height = 1; } |
| 585 | if(mipLevelExtent.depth == 0) { mipLevelExtent.depth = 1; } |
| 586 | |
| 587 | switch(aspect) |
| 588 | { |
| 589 | case VK_IMAGE_ASPECT_COLOR_BIT: |
| 590 | case VK_IMAGE_ASPECT_DEPTH_BIT: |
| 591 | case VK_IMAGE_ASPECT_STENCIL_BIT: |
| 592 | case VK_IMAGE_ASPECT_PLANE_0_BIT: // Vulkan 1.1 Table 31. Plane Format Compatibility Table: plane 0 of all defined formats is full resolution. |
| 593 | break; |
| 594 | case VK_IMAGE_ASPECT_PLANE_1_BIT: |
| 595 | case VK_IMAGE_ASPECT_PLANE_2_BIT: |
| 596 | switch(format) |
| 597 | { |
| 598 | case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| 599 | case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| 600 | ASSERT(mipLevelExtent.width % 2 == 0 && mipLevelExtent.height % 2 == 0); // Vulkan 1.1: "Images in this format must be defined with a width and height that is a multiple of two." |
| 601 | // Vulkan 1.1 Table 31. Plane Format Compatibility Table: |
| 602 | // Half-resolution U and V planes. |
| 603 | mipLevelExtent.width /= 2; |
| 604 | mipLevelExtent.height /= 2; |
| 605 | break; |
| 606 | default: |
| 607 | UNSUPPORTED("format %d" , int(format)); |
| 608 | } |
| 609 | break; |
| 610 | default: |
| 611 | UNSUPPORTED("aspect %x" , int(aspect)); |
| 612 | } |
| 613 | |
| 614 | return mipLevelExtent; |
| 615 | } |
| 616 | |
| 617 | int Image::rowPitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 618 | { |
| 619 | // Depth and Stencil pitch should be computed separately |
| 620 | ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != |
| 621 | (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); |
| 622 | |
| 623 | return getFormat(aspect).pitchB(getMipLevelExtent(aspect, mipLevel).width, borderSize(), true); |
| 624 | } |
| 625 | |
| 626 | int Image::slicePitchBytes(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 627 | { |
| 628 | // Depth and Stencil slice should be computed separately |
| 629 | ASSERT((aspect & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) != |
| 630 | (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)); |
| 631 | |
| 632 | VkExtent3D mipLevelExtent = getMipLevelExtent(aspect, mipLevel); |
| 633 | Format usedFormat = getFormat(aspect); |
| 634 | if(usedFormat.isCompressed()) |
| 635 | { |
| 636 | sw::align(mipLevelExtent.width, usedFormat.blockWidth()); |
| 637 | sw::align(mipLevelExtent.height, usedFormat.blockHeight()); |
| 638 | } |
| 639 | |
| 640 | return usedFormat.sliceB(mipLevelExtent.width, mipLevelExtent.height, borderSize(), true); |
| 641 | } |
| 642 | |
| 643 | Format Image::getFormat(VkImageAspectFlagBits aspect) const |
| 644 | { |
| 645 | return format.getAspectFormat(aspect); |
| 646 | } |
| 647 | |
| 648 | bool Image::isCube() const |
| 649 | { |
| 650 | return (flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT) && (imageType == VK_IMAGE_TYPE_2D); |
| 651 | } |
| 652 | |
| 653 | uint8_t* Image::end() const |
| 654 | { |
| 655 | return reinterpret_cast<uint8_t*>(deviceMemory->getOffsetPointer(deviceMemory->getCommittedMemoryInBytes() + 1)); |
| 656 | } |
| 657 | |
| 658 | VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect) const |
| 659 | { |
| 660 | switch(format) |
| 661 | { |
| 662 | case VK_FORMAT_D16_UNORM_S8_UINT: |
| 663 | case VK_FORMAT_D24_UNORM_S8_UINT: |
| 664 | case VK_FORMAT_D32_SFLOAT_S8_UINT: |
| 665 | if(aspect == VK_IMAGE_ASPECT_STENCIL_BIT) |
| 666 | { |
| 667 | // Offset by depth buffer to get to stencil buffer |
| 668 | return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_DEPTH_BIT); |
| 669 | } |
| 670 | break; |
| 671 | |
| 672 | case VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM: |
| 673 | if(aspect == VK_IMAGE_ASPECT_PLANE_2_BIT) |
| 674 | { |
| 675 | return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_1_BIT) |
| 676 | + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); |
| 677 | } |
| 678 | // Fall through to 2PLANE case: |
| 679 | case VK_FORMAT_G8_B8R8_2PLANE_420_UNORM: |
| 680 | if(aspect == VK_IMAGE_ASPECT_PLANE_1_BIT) |
| 681 | { |
| 682 | return memoryOffset + getStorageSize(VK_IMAGE_ASPECT_PLANE_0_BIT); |
| 683 | } |
| 684 | else |
| 685 | { |
| 686 | ASSERT(aspect == VK_IMAGE_ASPECT_PLANE_0_BIT); |
| 687 | |
| 688 | return memoryOffset; |
| 689 | } |
| 690 | break; |
| 691 | |
| 692 | default: |
| 693 | break; |
| 694 | } |
| 695 | |
| 696 | return memoryOffset; |
| 697 | } |
| 698 | |
| 699 | VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 700 | { |
| 701 | VkDeviceSize offset = getMemoryOffset(aspect); |
| 702 | for(uint32_t i = 0; i < mipLevel; ++i) |
| 703 | { |
| 704 | offset += getMultiSampledLevelSize(aspect, i); |
| 705 | } |
| 706 | return offset; |
| 707 | } |
| 708 | |
| 709 | VkDeviceSize Image::getMemoryOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel, uint32_t layer) const |
| 710 | { |
| 711 | return layer * getLayerOffset(aspect, mipLevel) + getMemoryOffset(aspect, mipLevel); |
| 712 | } |
| 713 | |
| 714 | VkDeviceSize Image::getMipLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 715 | { |
| 716 | return getMipLevelExtent(aspect, mipLevel).depth * slicePitchBytes(aspect, mipLevel); |
| 717 | } |
| 718 | |
| 719 | VkDeviceSize Image::getMultiSampledLevelSize(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 720 | { |
| 721 | return getMipLevelSize(aspect, mipLevel) * samples; |
| 722 | } |
| 723 | |
| 724 | bool Image::is3DSlice() const |
| 725 | { |
| 726 | return ((imageType == VK_IMAGE_TYPE_3D) && (flags & VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT)); |
| 727 | } |
| 728 | |
| 729 | VkDeviceSize Image::getLayerOffset(VkImageAspectFlagBits aspect, uint32_t mipLevel) const |
| 730 | { |
| 731 | if(is3DSlice()) |
| 732 | { |
| 733 | // When the VkImageSubresourceRange structure is used to select a subset of the slices of a 3D |
| 734 | // image's mip level in order to create a 2D or 2D array image view of a 3D image created with |
| 735 | // VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT, baseArrayLayer and layerCount specify the first |
| 736 | // slice index and the number of slices to include in the created image view. |
| 737 | ASSERT(samples == VK_SAMPLE_COUNT_1_BIT); |
| 738 | |
| 739 | // Offset to the proper slice of the 3D image's mip level |
| 740 | return slicePitchBytes(aspect, mipLevel); |
| 741 | } |
| 742 | |
| 743 | return getLayerSize(aspect); |
| 744 | } |
| 745 | |
| 746 | VkDeviceSize Image::getLayerSize(VkImageAspectFlagBits aspect) const |
| 747 | { |
| 748 | VkDeviceSize layerSize = 0; |
| 749 | |
| 750 | for(uint32_t mipLevel = 0; mipLevel < mipLevels; ++mipLevel) |
| 751 | { |
| 752 | layerSize += getMultiSampledLevelSize(aspect, mipLevel); |
| 753 | } |
| 754 | |
| 755 | return layerSize; |
| 756 | } |
| 757 | |
| 758 | VkDeviceSize Image::getStorageSize(VkImageAspectFlags aspectMask) const |
| 759 | { |
| 760 | if((aspectMask & ~(VK_IMAGE_ASPECT_COLOR_BIT | VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | |
| 761 | VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)) != 0) |
| 762 | { |
| 763 | UNSUPPORTED("aspectMask %x" , int(aspectMask)); |
| 764 | } |
| 765 | |
| 766 | VkDeviceSize storageSize = 0; |
| 767 | |
| 768 | if(aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_COLOR_BIT); |
| 769 | if(aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_DEPTH_BIT); |
| 770 | if(aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_STENCIL_BIT); |
| 771 | if(aspectMask & VK_IMAGE_ASPECT_PLANE_0_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_0_BIT); |
| 772 | if(aspectMask & VK_IMAGE_ASPECT_PLANE_1_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_1_BIT); |
| 773 | if(aspectMask & VK_IMAGE_ASPECT_PLANE_2_BIT) storageSize += getLayerSize(VK_IMAGE_ASPECT_PLANE_2_BIT); |
| 774 | |
| 775 | return arrayLayers * storageSize; |
| 776 | } |
| 777 | |
| 778 | const Image* Image::getSampledImage(const vk::Format& imageViewFormat) const |
| 779 | { |
| 780 | bool isImageViewCompressed = imageViewFormat.isCompressed(); |
| 781 | if(decompressedImage && !isImageViewCompressed) |
| 782 | { |
| 783 | ASSERT(flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT); |
| 784 | ASSERT(format.bytesPerBlock() == imageViewFormat.bytesPerBlock()); |
| 785 | } |
| 786 | // If the ImageView's format is compressed, then we do need to decompress the image so that |
| 787 | // it may be sampled properly by texture sampling functions, which don't support compressed |
| 788 | // textures. If the ImageView's format is NOT compressed, then we reinterpret cast the |
| 789 | // compressed image into the ImageView's format, so we must return the compressed image as is. |
| 790 | return (decompressedImage && isImageViewCompressed) ? decompressedImage : this; |
| 791 | } |
| 792 | |
| 793 | void Image::blit(Image* dstImage, const VkImageBlit& region, VkFilter filter) const |
| 794 | { |
| 795 | device->getBlitter()->blit(this, dstImage, region, filter); |
| 796 | } |
| 797 | |
| 798 | void Image::blitToBuffer(VkImageSubresourceLayers subresource, VkOffset3D offset, VkExtent3D extent, uint8_t* dst, int bufferRowPitch, int bufferSlicePitch) const |
| 799 | { |
| 800 | device->getBlitter()->blitToBuffer(this, subresource, offset, extent, dst, bufferRowPitch, bufferSlicePitch); |
| 801 | } |
| 802 | |
| 803 | void Image::resolve(Image* dstImage, const VkImageResolve& region) const |
| 804 | { |
| 805 | VkImageBlit blitRegion; |
| 806 | |
| 807 | blitRegion.srcOffsets[0] = blitRegion.srcOffsets[1] = region.srcOffset; |
| 808 | blitRegion.srcOffsets[1].x += region.extent.width; |
| 809 | blitRegion.srcOffsets[1].y += region.extent.height; |
| 810 | blitRegion.srcOffsets[1].z += region.extent.depth; |
| 811 | |
| 812 | blitRegion.dstOffsets[0] = blitRegion.dstOffsets[1] = region.dstOffset; |
| 813 | blitRegion.dstOffsets[1].x += region.extent.width; |
| 814 | blitRegion.dstOffsets[1].y += region.extent.height; |
| 815 | blitRegion.dstOffsets[1].z += region.extent.depth; |
| 816 | |
| 817 | blitRegion.srcSubresource = region.srcSubresource; |
| 818 | blitRegion.dstSubresource = region.dstSubresource; |
| 819 | |
| 820 | device->getBlitter()->blit(this, dstImage, blitRegion, VK_FILTER_NEAREST); |
| 821 | } |
| 822 | |
| 823 | VkFormat Image::getClearFormat() const |
| 824 | { |
| 825 | // Set the proper format for the clear value, as described here: |
| 826 | // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#clears-values |
| 827 | if(format.isSignedNonNormalizedInteger()) |
| 828 | { |
| 829 | return VK_FORMAT_R32G32B32A32_SINT; |
| 830 | } |
| 831 | else if(format.isUnsignedNonNormalizedInteger()) |
| 832 | { |
| 833 | return VK_FORMAT_R32G32B32A32_UINT; |
| 834 | } |
| 835 | |
| 836 | return VK_FORMAT_R32G32B32A32_SFLOAT; |
| 837 | } |
| 838 | |
| 839 | uint32_t Image::getLastLayerIndex(const VkImageSubresourceRange& subresourceRange) const |
| 840 | { |
| 841 | return ((subresourceRange.layerCount == VK_REMAINING_ARRAY_LAYERS) ? |
| 842 | arrayLayers : (subresourceRange.baseArrayLayer + subresourceRange.layerCount)) - 1; |
| 843 | } |
| 844 | |
| 845 | uint32_t Image::getLastMipLevel(const VkImageSubresourceRange& subresourceRange) const |
| 846 | { |
| 847 | return ((subresourceRange.levelCount == VK_REMAINING_MIP_LEVELS) ? |
| 848 | mipLevels : (subresourceRange.baseMipLevel + subresourceRange.levelCount)) - 1; |
| 849 | } |
| 850 | |
| 851 | void Image::clear(void* pixelData, VkFormat pixelFormat, const vk::Format& viewFormat, const VkImageSubresourceRange& subresourceRange, const VkRect2D& renderArea) |
| 852 | { |
| 853 | device->getBlitter()->clear(pixelData, pixelFormat, this, viewFormat, subresourceRange, &renderArea); |
| 854 | } |
| 855 | |
| 856 | void Image::clear(const VkClearColorValue& color, const VkImageSubresourceRange& subresourceRange) |
| 857 | { |
| 858 | if(!(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT)) |
| 859 | { |
| 860 | UNIMPLEMENTED("aspectMask" ); |
| 861 | } |
| 862 | |
| 863 | device->getBlitter()->clear((void*)color.float32, getClearFormat(), this, format, subresourceRange); |
| 864 | } |
| 865 | |
| 866 | void Image::clear(const VkClearDepthStencilValue& color, const VkImageSubresourceRange& subresourceRange) |
| 867 | { |
| 868 | if((subresourceRange.aspectMask & ~(VK_IMAGE_ASPECT_DEPTH_BIT | |
| 869 | VK_IMAGE_ASPECT_STENCIL_BIT)) != 0) |
| 870 | { |
| 871 | UNIMPLEMENTED("aspectMask" ); |
| 872 | } |
| 873 | |
| 874 | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) |
| 875 | { |
| 876 | VkImageSubresourceRange depthSubresourceRange = subresourceRange; |
| 877 | depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| 878 | device->getBlitter()->clear((void*)(&color.depth), VK_FORMAT_D32_SFLOAT, this, format, depthSubresourceRange); |
| 879 | } |
| 880 | |
| 881 | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) |
| 882 | { |
| 883 | VkImageSubresourceRange stencilSubresourceRange = subresourceRange; |
| 884 | stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| 885 | device->getBlitter()->clear((void*)(&color.stencil), VK_FORMAT_S8_UINT, this, format, stencilSubresourceRange); |
| 886 | } |
| 887 | } |
| 888 | |
| 889 | void Image::clear(const VkClearValue& clearValue, const vk::Format& viewFormat, const VkRect2D& renderArea, const VkImageSubresourceRange& subresourceRange) |
| 890 | { |
| 891 | if(!((subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) || |
| 892 | (subresourceRange.aspectMask & (VK_IMAGE_ASPECT_DEPTH_BIT | |
| 893 | VK_IMAGE_ASPECT_STENCIL_BIT)))) |
| 894 | { |
| 895 | UNIMPLEMENTED("subresourceRange" ); |
| 896 | } |
| 897 | |
| 898 | if(subresourceRange.aspectMask == VK_IMAGE_ASPECT_COLOR_BIT) |
| 899 | { |
| 900 | clear((void*)(clearValue.color.float32), getClearFormat(), viewFormat, subresourceRange, renderArea); |
| 901 | } |
| 902 | else |
| 903 | { |
| 904 | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) |
| 905 | { |
| 906 | VkImageSubresourceRange depthSubresourceRange = subresourceRange; |
| 907 | depthSubresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; |
| 908 | clear((void*)(&clearValue.depthStencil.depth), VK_FORMAT_D32_SFLOAT, viewFormat, depthSubresourceRange, renderArea); |
| 909 | } |
| 910 | |
| 911 | if(subresourceRange.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) |
| 912 | { |
| 913 | VkImageSubresourceRange stencilSubresourceRange = subresourceRange; |
| 914 | stencilSubresourceRange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT; |
| 915 | clear((void*)(&clearValue.depthStencil.stencil), VK_FORMAT_S8_UINT, viewFormat, stencilSubresourceRange, renderArea); |
| 916 | } |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | void Image::prepareForSampling(const VkImageSubresourceRange& subresourceRange) |
| 921 | { |
| 922 | if(decompressedImage) |
| 923 | { |
| 924 | switch(format) |
| 925 | { |
| 926 | case VK_FORMAT_EAC_R11_UNORM_BLOCK: |
| 927 | case VK_FORMAT_EAC_R11_SNORM_BLOCK: |
| 928 | case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: |
| 929 | case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: |
| 930 | case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: |
| 931 | case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: |
| 932 | case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: |
| 933 | case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: |
| 934 | case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: |
| 935 | case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: |
| 936 | decodeETC2(subresourceRange); |
| 937 | break; |
| 938 | default: |
| 939 | break; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | if(isCube() && (arrayLayers >= 6)) |
| 944 | { |
| 945 | VkImageSubresourceLayers subresourceLayers = |
| 946 | { |
| 947 | subresourceRange.aspectMask, |
| 948 | subresourceRange.baseMipLevel, |
| 949 | subresourceRange.baseArrayLayer, |
| 950 | 6 |
| 951 | }; |
| 952 | uint32_t lastMipLevel = getLastMipLevel(subresourceRange); |
| 953 | for(; subresourceLayers.mipLevel <= lastMipLevel; subresourceLayers.mipLevel++) |
| 954 | { |
| 955 | for(subresourceLayers.baseArrayLayer = 0; |
| 956 | subresourceLayers.baseArrayLayer < arrayLayers; |
| 957 | subresourceLayers.baseArrayLayer += 6) |
| 958 | { |
| 959 | device->getBlitter()->updateBorders(decompressedImage ? decompressedImage : this, subresourceLayers); |
| 960 | } |
| 961 | } |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | void Image::decodeETC2(const VkImageSubresourceRange& subresourceRange) const |
| 966 | { |
| 967 | ASSERT(decompressedImage); |
| 968 | |
| 969 | ETC_Decoder::InputType inputType = GetInputType(format); |
| 970 | |
| 971 | uint32_t lastLayer = getLastLayerIndex(subresourceRange); |
| 972 | uint32_t lastMipLevel = getLastMipLevel(subresourceRange); |
| 973 | |
| 974 | int bytes = decompressedImage->format.bytes(); |
| 975 | bool fakeAlpha = (format == VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK) || (format == VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK); |
| 976 | size_t sizeToWrite = 0; |
| 977 | |
| 978 | VkImageSubresourceLayers subresourceLayers = { subresourceRange.aspectMask, subresourceRange.baseMipLevel, subresourceRange.baseArrayLayer, 1 }; |
| 979 | for(; subresourceLayers.baseArrayLayer <= lastLayer; subresourceLayers.baseArrayLayer++) |
| 980 | { |
| 981 | for(; subresourceLayers.mipLevel <= lastMipLevel; subresourceLayers.mipLevel++) |
| 982 | { |
| 983 | VkExtent3D mipLevelExtent = getMipLevelExtent(static_cast<VkImageAspectFlagBits>(subresourceLayers.aspectMask), subresourceLayers.mipLevel); |
| 984 | |
| 985 | int pitchB = decompressedImage->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, subresourceLayers.mipLevel); |
| 986 | |
| 987 | if(fakeAlpha) |
| 988 | { |
| 989 | // To avoid overflow in case of cube textures, which are offset in memory to account for the border, |
| 990 | // compute the size from the first pixel to the last pixel, excluding any padding or border before |
| 991 | // the first pixel or after the last pixel. |
| 992 | sizeToWrite = ((mipLevelExtent.height - 1) * pitchB) + (mipLevelExtent.width * bytes); |
| 993 | } |
| 994 | |
| 995 | for(int32_t depth = 0; depth < static_cast<int32_t>(mipLevelExtent.depth); depth++) |
| 996 | { |
| 997 | uint8_t* source = static_cast<uint8_t*>(getTexelPointer({ 0, 0, depth }, subresourceLayers)); |
| 998 | uint8_t* dest = static_cast<uint8_t*>(decompressedImage->getTexelPointer({ 0, 0, depth }, subresourceLayers)); |
| 999 | |
| 1000 | if(fakeAlpha) |
| 1001 | { |
| 1002 | ASSERT((dest + sizeToWrite) < decompressedImage->end()); |
| 1003 | memset(dest, 0xFF, sizeToWrite); |
| 1004 | } |
| 1005 | |
| 1006 | ETC_Decoder::Decode(source, dest, mipLevelExtent.width, mipLevelExtent.height, |
| 1007 | mipLevelExtent.width, mipLevelExtent.height, pitchB, bytes, inputType); |
| 1008 | } |
| 1009 | } |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | } // namespace vk |
| 1014 | |