1 | /* Compute complex natural logarithm. |
2 | Copyright (C) 1997-2020 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
5 | |
6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public |
8 | License as published by the Free Software Foundation; either |
9 | version 2.1 of the License, or (at your option) any later version. |
10 | |
11 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | Lesser General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU Lesser General Public |
17 | License along with the GNU C Library; if not, see |
18 | <https://www.gnu.org/licenses/>. */ |
19 | |
20 | #include <complex.h> |
21 | #include <math.h> |
22 | #include <math_private.h> |
23 | #include <math-underflow.h> |
24 | #include <float.h> |
25 | |
26 | CFLOAT |
27 | M_DECL_FUNC (__clog) (CFLOAT x) |
28 | { |
29 | CFLOAT result; |
30 | int rcls = fpclassify (__real__ x); |
31 | int icls = fpclassify (__imag__ x); |
32 | |
33 | if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) |
34 | { |
35 | /* Real and imaginary part are 0.0. */ |
36 | __imag__ result = signbit (__real__ x) ? (FLOAT) M_MLIT (M_PI) : 0; |
37 | __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x); |
38 | /* Yes, the following line raises an exception. */ |
39 | __real__ result = -1 / M_FABS (__real__ x); |
40 | } |
41 | else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) |
42 | { |
43 | /* Neither real nor imaginary part is NaN. */ |
44 | FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x); |
45 | int scale = 0; |
46 | |
47 | if (absx < absy) |
48 | { |
49 | FLOAT t = absx; |
50 | absx = absy; |
51 | absy = t; |
52 | } |
53 | |
54 | if (absx > M_MAX / 2) |
55 | { |
56 | scale = -1; |
57 | absx = M_SCALBN (absx, scale); |
58 | absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0); |
59 | } |
60 | else if (absx < M_MIN && absy < M_MIN) |
61 | { |
62 | scale = M_MANT_DIG; |
63 | absx = M_SCALBN (absx, scale); |
64 | absy = M_SCALBN (absy, scale); |
65 | } |
66 | |
67 | if (absx == 1 && scale == 0) |
68 | { |
69 | __real__ result = M_LOG1P (absy * absy) / 2; |
70 | math_check_force_underflow_nonneg (__real__ result); |
71 | } |
72 | else if (absx > 1 && absx < 2 && absy < 1 && scale == 0) |
73 | { |
74 | FLOAT d2m1 = (absx - 1) * (absx + 1); |
75 | if (absy >= M_EPSILON) |
76 | d2m1 += absy * absy; |
77 | __real__ result = M_LOG1P (d2m1) / 2; |
78 | } |
79 | else if (absx < 1 |
80 | && absx >= M_LIT (0.5) |
81 | && absy < M_EPSILON / 2 |
82 | && scale == 0) |
83 | { |
84 | FLOAT d2m1 = (absx - 1) * (absx + 1); |
85 | __real__ result = M_LOG1P (d2m1) / 2; |
86 | } |
87 | else if (absx < 1 |
88 | && absx >= M_LIT (0.5) |
89 | && scale == 0 |
90 | && absx * absx + absy * absy >= M_LIT (0.5)) |
91 | { |
92 | FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy); |
93 | __real__ result = M_LOG1P (d2m1) / 2; |
94 | } |
95 | else |
96 | { |
97 | FLOAT d = M_HYPOT (absx, absy); |
98 | __real__ result = M_LOG (d) - scale * (FLOAT) M_MLIT (M_LN2); |
99 | } |
100 | |
101 | __imag__ result = M_ATAN2 (__imag__ x, __real__ x); |
102 | } |
103 | else |
104 | { |
105 | __imag__ result = M_NAN; |
106 | if (rcls == FP_INFINITE || icls == FP_INFINITE) |
107 | /* Real or imaginary part is infinite. */ |
108 | __real__ result = M_HUGE_VAL; |
109 | else |
110 | __real__ result = M_NAN; |
111 | } |
112 | |
113 | return result; |
114 | } |
115 | |
116 | declare_mgen_alias (__clog, clog) |
117 | |