| 1 | /* Compute complex natural logarithm. |
| 2 | Copyright (C) 1997-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997. |
| 5 | |
| 6 | The GNU C Library is free software; you can redistribute it and/or |
| 7 | modify it under the terms of the GNU Lesser General Public |
| 8 | License as published by the Free Software Foundation; either |
| 9 | version 2.1 of the License, or (at your option) any later version. |
| 10 | |
| 11 | The GNU C Library is distributed in the hope that it will be useful, |
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | Lesser General Public License for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU Lesser General Public |
| 17 | License along with the GNU C Library; if not, see |
| 18 | <https://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include <complex.h> |
| 21 | #include <math.h> |
| 22 | #include <math_private.h> |
| 23 | #include <math-underflow.h> |
| 24 | #include <float.h> |
| 25 | |
| 26 | CFLOAT |
| 27 | M_DECL_FUNC (__clog) (CFLOAT x) |
| 28 | { |
| 29 | CFLOAT result; |
| 30 | int rcls = fpclassify (__real__ x); |
| 31 | int icls = fpclassify (__imag__ x); |
| 32 | |
| 33 | if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO)) |
| 34 | { |
| 35 | /* Real and imaginary part are 0.0. */ |
| 36 | __imag__ result = signbit (__real__ x) ? (FLOAT) M_MLIT (M_PI) : 0; |
| 37 | __imag__ result = M_COPYSIGN (__imag__ result, __imag__ x); |
| 38 | /* Yes, the following line raises an exception. */ |
| 39 | __real__ result = -1 / M_FABS (__real__ x); |
| 40 | } |
| 41 | else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN)) |
| 42 | { |
| 43 | /* Neither real nor imaginary part is NaN. */ |
| 44 | FLOAT absx = M_FABS (__real__ x), absy = M_FABS (__imag__ x); |
| 45 | int scale = 0; |
| 46 | |
| 47 | if (absx < absy) |
| 48 | { |
| 49 | FLOAT t = absx; |
| 50 | absx = absy; |
| 51 | absy = t; |
| 52 | } |
| 53 | |
| 54 | if (absx > M_MAX / 2) |
| 55 | { |
| 56 | scale = -1; |
| 57 | absx = M_SCALBN (absx, scale); |
| 58 | absy = (absy >= M_MIN * 2 ? M_SCALBN (absy, scale) : 0); |
| 59 | } |
| 60 | else if (absx < M_MIN && absy < M_MIN) |
| 61 | { |
| 62 | scale = M_MANT_DIG; |
| 63 | absx = M_SCALBN (absx, scale); |
| 64 | absy = M_SCALBN (absy, scale); |
| 65 | } |
| 66 | |
| 67 | if (absx == 1 && scale == 0) |
| 68 | { |
| 69 | __real__ result = M_LOG1P (absy * absy) / 2; |
| 70 | math_check_force_underflow_nonneg (__real__ result); |
| 71 | } |
| 72 | else if (absx > 1 && absx < 2 && absy < 1 && scale == 0) |
| 73 | { |
| 74 | FLOAT d2m1 = (absx - 1) * (absx + 1); |
| 75 | if (absy >= M_EPSILON) |
| 76 | d2m1 += absy * absy; |
| 77 | __real__ result = M_LOG1P (d2m1) / 2; |
| 78 | } |
| 79 | else if (absx < 1 |
| 80 | && absx >= M_LIT (0.5) |
| 81 | && absy < M_EPSILON / 2 |
| 82 | && scale == 0) |
| 83 | { |
| 84 | FLOAT d2m1 = (absx - 1) * (absx + 1); |
| 85 | __real__ result = M_LOG1P (d2m1) / 2; |
| 86 | } |
| 87 | else if (absx < 1 |
| 88 | && absx >= M_LIT (0.5) |
| 89 | && scale == 0 |
| 90 | && absx * absx + absy * absy >= M_LIT (0.5)) |
| 91 | { |
| 92 | FLOAT d2m1 = M_SUF (__x2y2m1) (absx, absy); |
| 93 | __real__ result = M_LOG1P (d2m1) / 2; |
| 94 | } |
| 95 | else |
| 96 | { |
| 97 | FLOAT d = M_HYPOT (absx, absy); |
| 98 | __real__ result = M_LOG (d) - scale * (FLOAT) M_MLIT (M_LN2); |
| 99 | } |
| 100 | |
| 101 | __imag__ result = M_ATAN2 (__imag__ x, __real__ x); |
| 102 | } |
| 103 | else |
| 104 | { |
| 105 | __imag__ result = M_NAN; |
| 106 | if (rcls == FP_INFINITE || icls == FP_INFINITE) |
| 107 | /* Real or imaginary part is infinite. */ |
| 108 | __real__ result = M_HUGE_VAL; |
| 109 | else |
| 110 | __real__ result = M_NAN; |
| 111 | } |
| 112 | |
| 113 | return result; |
| 114 | } |
| 115 | |
| 116 | declare_mgen_alias (__clog, clog) |
| 117 | |