| 1 | /* lgamma expanding around zeros. |
| 2 | Copyright (C) 2015-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <float.h> |
| 20 | #include <math.h> |
| 21 | #include <math-narrow-eval.h> |
| 22 | #include <math_private.h> |
| 23 | #include <fenv_private.h> |
| 24 | |
| 25 | static const double lgamma_zeros[][2] = |
| 26 | { |
| 27 | { -0x2.74ff92c01f0d8p+0, -0x2.abec9f315f1ap-56 }, |
| 28 | { -0x2.bf6821437b202p+0, 0x6.866a5b4b9be14p-56 }, |
| 29 | { -0x3.24c1b793cb35ep+0, -0xf.b8be699ad3d98p-56 }, |
| 30 | { -0x3.f48e2a8f85fcap+0, -0x1.70d4561291237p-56 }, |
| 31 | { -0x4.0a139e1665604p+0, 0xf.3c60f4f21e7fp-56 }, |
| 32 | { -0x4.fdd5de9bbabf4p+0, 0xa.ef2f55bf89678p-56 }, |
| 33 | { -0x5.021a95fc2db64p+0, -0x3.2a4c56e595394p-56 }, |
| 34 | { -0x5.ffa4bd647d034p+0, -0x1.7dd4ed62cbd32p-52 }, |
| 35 | { -0x6.005ac9625f234p+0, 0x4.9f83d2692e9c8p-56 }, |
| 36 | { -0x6.fff2fddae1bcp+0, 0xc.29d949a3dc03p-60 }, |
| 37 | { -0x7.000cff7b7f87cp+0, 0x1.20bb7d2324678p-52 }, |
| 38 | { -0x7.fffe5fe05673cp+0, -0x3.ca9e82b522b0cp-56 }, |
| 39 | { -0x8.0001a01459fc8p+0, -0x1.f60cb3cec1cedp-52 }, |
| 40 | { -0x8.ffffd1c425e8p+0, -0xf.fc864e9574928p-56 }, |
| 41 | { -0x9.00002e3bb47d8p+0, -0x6.d6d843fedc35p-56 }, |
| 42 | { -0x9.fffffb606bep+0, 0x2.32f9d51885afap-52 }, |
| 43 | { -0xa.0000049f93bb8p+0, -0x1.927b45d95e154p-52 }, |
| 44 | { -0xa.ffffff9466eap+0, 0xe.4c92532d5243p-56 }, |
| 45 | { -0xb.0000006b9915p+0, -0x3.15d965a6ffea4p-52 }, |
| 46 | { -0xb.fffffff708938p+0, -0x7.387de41acc3d4p-56 }, |
| 47 | { -0xc.00000008f76c8p+0, 0x8.cea983f0fdafp-56 }, |
| 48 | { -0xc.ffffffff4f6ep+0, 0x3.09e80685a0038p-52 }, |
| 49 | { -0xd.00000000b092p+0, -0x3.09c06683dd1bap-52 }, |
| 50 | { -0xd.fffffffff3638p+0, 0x3.a5461e7b5c1f6p-52 }, |
| 51 | { -0xe.000000000c9c8p+0, -0x3.a545e94e75ec6p-52 }, |
| 52 | { -0xe.ffffffffff29p+0, 0x3.f9f399fb10cfcp-52 }, |
| 53 | { -0xf.0000000000d7p+0, -0x3.f9f399bd0e42p-52 }, |
| 54 | { -0xf.fffffffffff28p+0, -0xc.060c6621f513p-56 }, |
| 55 | { -0x1.000000000000dp+4, -0x7.3f9f399da1424p-52 }, |
| 56 | { -0x1.0ffffffffffffp+4, -0x3.569c47e7a93e2p-52 }, |
| 57 | { -0x1.1000000000001p+4, 0x3.569c47e7a9778p-52 }, |
| 58 | { -0x1.2p+4, 0xb.413c31dcbecdp-56 }, |
| 59 | { -0x1.2p+4, -0xb.413c31dcbeca8p-56 }, |
| 60 | { -0x1.3p+4, 0x9.7a4da340a0ab8p-60 }, |
| 61 | { -0x1.3p+4, -0x9.7a4da340a0ab8p-60 }, |
| 62 | { -0x1.4p+4, 0x7.950ae90080894p-64 }, |
| 63 | { -0x1.4p+4, -0x7.950ae90080894p-64 }, |
| 64 | { -0x1.5p+4, 0x5.c6e3bdb73d5c8p-68 }, |
| 65 | { -0x1.5p+4, -0x5.c6e3bdb73d5c8p-68 }, |
| 66 | { -0x1.6p+4, 0x4.338e5b6dfe14cp-72 }, |
| 67 | { -0x1.6p+4, -0x4.338e5b6dfe14cp-72 }, |
| 68 | { -0x1.7p+4, 0x2.ec368262c7034p-76 }, |
| 69 | { -0x1.7p+4, -0x2.ec368262c7034p-76 }, |
| 70 | { -0x1.8p+4, 0x1.f2cf01972f578p-80 }, |
| 71 | { -0x1.8p+4, -0x1.f2cf01972f578p-80 }, |
| 72 | { -0x1.9p+4, 0x1.3f3ccdd165fa9p-84 }, |
| 73 | { -0x1.9p+4, -0x1.3f3ccdd165fa9p-84 }, |
| 74 | { -0x1.ap+4, 0xc.4742fe35272dp-92 }, |
| 75 | { -0x1.ap+4, -0xc.4742fe35272dp-92 }, |
| 76 | { -0x1.bp+4, 0x7.46ac70b733a8cp-96 }, |
| 77 | { -0x1.bp+4, -0x7.46ac70b733a8cp-96 }, |
| 78 | { -0x1.cp+4, 0x4.2862898d42174p-100 }, |
| 79 | }; |
| 80 | |
| 81 | static const double e_hi = 0x2.b7e151628aed2p+0, e_lo = 0xa.6abf7158809dp-56; |
| 82 | |
| 83 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's |
| 84 | approximation to lgamma function. */ |
| 85 | |
| 86 | static const double lgamma_coeff[] = |
| 87 | { |
| 88 | 0x1.5555555555555p-4, |
| 89 | -0xb.60b60b60b60b8p-12, |
| 90 | 0x3.4034034034034p-12, |
| 91 | -0x2.7027027027028p-12, |
| 92 | 0x3.72a3c5631fe46p-12, |
| 93 | -0x7.daac36664f1f4p-12, |
| 94 | 0x1.a41a41a41a41ap-8, |
| 95 | -0x7.90a1b2c3d4e6p-8, |
| 96 | 0x2.dfd2c703c0dp-4, |
| 97 | -0x1.6476701181f3ap+0, |
| 98 | 0xd.672219167003p+0, |
| 99 | -0x9.cd9292e6660d8p+4, |
| 100 | }; |
| 101 | |
| 102 | #define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) |
| 103 | |
| 104 | /* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is |
| 105 | the integer end-point of the half-integer interval containing x and |
| 106 | x0 is the zero of lgamma in that half-integer interval. Each |
| 107 | polynomial is expressed in terms of x-xm, where xm is the midpoint |
| 108 | of the interval for which the polynomial applies. */ |
| 109 | |
| 110 | static const double poly_coeff[] = |
| 111 | { |
| 112 | /* Interval [-2.125, -2] (polynomial degree 10). */ |
| 113 | -0x1.0b71c5c54d42fp+0, |
| 114 | -0xc.73a1dc05f3758p-4, |
| 115 | -0x1.ec84140851911p-4, |
| 116 | -0xe.37c9da23847e8p-4, |
| 117 | -0x1.03cd87cdc0ac6p-4, |
| 118 | -0xe.ae9aedce12eep-4, |
| 119 | 0x9.b11a1780cfd48p-8, |
| 120 | -0xe.f25fc460bdebp-4, |
| 121 | 0x2.6e984c61ca912p-4, |
| 122 | -0xf.83fea1c6d35p-4, |
| 123 | 0x4.760c8c8909758p-4, |
| 124 | /* Interval [-2.25, -2.125] (polynomial degree 11). */ |
| 125 | -0xf.2930890d7d678p-4, |
| 126 | -0xc.a5cfde054eaa8p-4, |
| 127 | 0x3.9c9e0fdebd99cp-4, |
| 128 | -0x1.02a5ad35619d9p+0, |
| 129 | 0x9.6e9b1167c164p-4, |
| 130 | -0x1.4d8332eba090ap+0, |
| 131 | 0x1.1c0c94b1b2b6p+0, |
| 132 | -0x1.c9a70d138c74ep+0, |
| 133 | 0x1.d7d9cf1d4c196p+0, |
| 134 | -0x2.91fbf4cd6abacp+0, |
| 135 | 0x2.f6751f74b8ff8p+0, |
| 136 | -0x3.e1bb7b09e3e76p+0, |
| 137 | /* Interval [-2.375, -2.25] (polynomial degree 12). */ |
| 138 | -0xd.7d28d505d618p-4, |
| 139 | -0xe.69649a3040958p-4, |
| 140 | 0xb.0d74a2827cd6p-4, |
| 141 | -0x1.924b09228a86ep+0, |
| 142 | 0x1.d49b12bcf6175p+0, |
| 143 | -0x3.0898bb530d314p+0, |
| 144 | 0x4.207a6be8fda4cp+0, |
| 145 | -0x6.39eef56d4e9p+0, |
| 146 | 0x8.e2e42acbccec8p+0, |
| 147 | -0xd.0d91c1e596a68p+0, |
| 148 | 0x1.2e20d7099c585p+4, |
| 149 | -0x1.c4eb6691b4ca9p+4, |
| 150 | 0x2.96a1a11fd85fep+4, |
| 151 | /* Interval [-2.5, -2.375] (polynomial degree 13). */ |
| 152 | -0xb.74ea1bcfff948p-4, |
| 153 | -0x1.2a82bd590c376p+0, |
| 154 | 0x1.88020f828b81p+0, |
| 155 | -0x3.32279f040d7aep+0, |
| 156 | 0x5.57ac8252ce868p+0, |
| 157 | -0x9.c2aedd093125p+0, |
| 158 | 0x1.12c132716e94cp+4, |
| 159 | -0x1.ea94dfa5c0a6dp+4, |
| 160 | 0x3.66b61abfe858cp+4, |
| 161 | -0x6.0cfceb62a26e4p+4, |
| 162 | 0xa.beeba09403bd8p+4, |
| 163 | -0x1.3188d9b1b288cp+8, |
| 164 | 0x2.37f774dd14c44p+8, |
| 165 | -0x3.fdf0a64cd7136p+8, |
| 166 | /* Interval [-2.625, -2.5] (polynomial degree 13). */ |
| 167 | -0x3.d10108c27ebbp-4, |
| 168 | 0x1.cd557caff7d2fp+0, |
| 169 | 0x3.819b4856d36cep+0, |
| 170 | 0x6.8505cbacfc42p+0, |
| 171 | 0xb.c1b2e6567a4dp+0, |
| 172 | 0x1.50a53a3ce6c73p+4, |
| 173 | 0x2.57adffbb1ec0cp+4, |
| 174 | 0x4.2b15549cf400cp+4, |
| 175 | 0x7.698cfd82b3e18p+4, |
| 176 | 0xd.2decde217755p+4, |
| 177 | 0x1.7699a624d07b9p+8, |
| 178 | 0x2.98ecf617abbfcp+8, |
| 179 | 0x4.d5244d44d60b4p+8, |
| 180 | 0x8.e962bf7395988p+8, |
| 181 | /* Interval [-2.75, -2.625] (polynomial degree 12). */ |
| 182 | -0x6.b5d252a56e8a8p-4, |
| 183 | 0x1.28d60383da3a6p+0, |
| 184 | 0x1.db6513ada89bep+0, |
| 185 | 0x2.e217118fa8c02p+0, |
| 186 | 0x4.450112c651348p+0, |
| 187 | 0x6.4af990f589b8cp+0, |
| 188 | 0x9.2db5963d7a238p+0, |
| 189 | 0xd.62c03647da19p+0, |
| 190 | 0x1.379f81f6416afp+4, |
| 191 | 0x1.c5618b4fdb96p+4, |
| 192 | 0x2.9342d0af2ac4ep+4, |
| 193 | 0x3.d9cdf56d2b186p+4, |
| 194 | 0x5.ab9f91d5a27a4p+4, |
| 195 | /* Interval [-2.875, -2.75] (polynomial degree 11). */ |
| 196 | -0x8.a41b1e4f36ff8p-4, |
| 197 | 0xc.da87d3b69dbe8p-4, |
| 198 | 0x1.1474ad5c36709p+0, |
| 199 | 0x1.761ecb90c8c5cp+0, |
| 200 | 0x1.d279bff588826p+0, |
| 201 | 0x2.4e5d003fb36a8p+0, |
| 202 | 0x2.d575575566842p+0, |
| 203 | 0x3.85152b0d17756p+0, |
| 204 | 0x4.5213d921ca13p+0, |
| 205 | 0x5.55da7dfcf69c4p+0, |
| 206 | 0x6.acef729b9404p+0, |
| 207 | 0x8.483cc21dd0668p+0, |
| 208 | /* Interval [-3, -2.875] (polynomial degree 11). */ |
| 209 | -0xa.046d667e468f8p-4, |
| 210 | 0x9.70b88dcc006cp-4, |
| 211 | 0xa.a8a39421c94dp-4, |
| 212 | 0xd.2f4d1363f98ep-4, |
| 213 | 0xd.ca9aa19975b7p-4, |
| 214 | 0xf.cf09c2f54404p-4, |
| 215 | 0x1.04b1365a9adfcp+0, |
| 216 | 0x1.22b54ef213798p+0, |
| 217 | 0x1.2c52c25206bf5p+0, |
| 218 | 0x1.4aa3d798aace4p+0, |
| 219 | 0x1.5c3f278b504e3p+0, |
| 220 | 0x1.7e08292cc347bp+0, |
| 221 | }; |
| 222 | |
| 223 | static const size_t poly_deg[] = |
| 224 | { |
| 225 | 10, |
| 226 | 11, |
| 227 | 12, |
| 228 | 13, |
| 229 | 13, |
| 230 | 12, |
| 231 | 11, |
| 232 | 11, |
| 233 | }; |
| 234 | |
| 235 | static const size_t poly_end[] = |
| 236 | { |
| 237 | 10, |
| 238 | 22, |
| 239 | 35, |
| 240 | 49, |
| 241 | 63, |
| 242 | 76, |
| 243 | 88, |
| 244 | 100, |
| 245 | }; |
| 246 | |
| 247 | /* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ |
| 248 | |
| 249 | static double |
| 250 | lg_sinpi (double x) |
| 251 | { |
| 252 | if (x <= 0.25) |
| 253 | return __sin (M_PI * x); |
| 254 | else |
| 255 | return __cos (M_PI * (0.5 - x)); |
| 256 | } |
| 257 | |
| 258 | /* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ |
| 259 | |
| 260 | static double |
| 261 | lg_cospi (double x) |
| 262 | { |
| 263 | if (x <= 0.25) |
| 264 | return __cos (M_PI * x); |
| 265 | else |
| 266 | return __sin (M_PI * (0.5 - x)); |
| 267 | } |
| 268 | |
| 269 | /* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ |
| 270 | |
| 271 | static double |
| 272 | lg_cotpi (double x) |
| 273 | { |
| 274 | return lg_cospi (x) / lg_sinpi (x); |
| 275 | } |
| 276 | |
| 277 | /* Compute lgamma of a negative argument -28 < X < -2, setting |
| 278 | *SIGNGAMP accordingly. */ |
| 279 | |
| 280 | double |
| 281 | __lgamma_neg (double x, int *signgamp) |
| 282 | { |
| 283 | /* Determine the half-integer region X lies in, handle exact |
| 284 | integers and determine the sign of the result. */ |
| 285 | int i = floor (-2 * x); |
| 286 | if ((i & 1) == 0 && i == -2 * x) |
| 287 | return 1.0 / 0.0; |
| 288 | double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); |
| 289 | i -= 4; |
| 290 | *signgamp = ((i & 2) == 0 ? -1 : 1); |
| 291 | |
| 292 | SET_RESTORE_ROUND (FE_TONEAREST); |
| 293 | |
| 294 | /* Expand around the zero X0 = X0_HI + X0_LO. */ |
| 295 | double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; |
| 296 | double xdiff = x - x0_hi - x0_lo; |
| 297 | |
| 298 | /* For arguments in the range -3 to -2, use polynomial |
| 299 | approximations to an adjusted version of the gamma function. */ |
| 300 | if (i < 2) |
| 301 | { |
| 302 | int j = floor (-8 * x) - 16; |
| 303 | double xm = (-33 - 2 * j) * 0.0625; |
| 304 | double x_adj = x - xm; |
| 305 | size_t deg = poly_deg[j]; |
| 306 | size_t end = poly_end[j]; |
| 307 | double g = poly_coeff[end]; |
| 308 | for (size_t j = 1; j <= deg; j++) |
| 309 | g = g * x_adj + poly_coeff[end - j]; |
| 310 | return __log1p (g * xdiff / (x - xn)); |
| 311 | } |
| 312 | |
| 313 | /* The result we want is log (sinpi (X0) / sinpi (X)) |
| 314 | + log (gamma (1 - X0) / gamma (1 - X)). */ |
| 315 | double x_idiff = fabs (xn - x), x0_idiff = fabs (xn - x0_hi - x0_lo); |
| 316 | double log_sinpi_ratio; |
| 317 | if (x0_idiff < x_idiff * 0.5) |
| 318 | /* Use log not log1p to avoid inaccuracy from log1p of arguments |
| 319 | close to -1. */ |
| 320 | log_sinpi_ratio = __ieee754_log (lg_sinpi (x0_idiff) |
| 321 | / lg_sinpi (x_idiff)); |
| 322 | else |
| 323 | { |
| 324 | /* Use log1p not log to avoid inaccuracy from log of arguments |
| 325 | close to 1. X0DIFF2 has positive sign if X0 is further from |
| 326 | XN than X is from XN, negative sign otherwise. */ |
| 327 | double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5; |
| 328 | double sx0d2 = lg_sinpi (x0diff2); |
| 329 | double cx0d2 = lg_cospi (x0diff2); |
| 330 | log_sinpi_ratio = __log1p (2 * sx0d2 |
| 331 | * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); |
| 332 | } |
| 333 | |
| 334 | double log_gamma_ratio; |
| 335 | double y0 = math_narrow_eval (1 - x0_hi); |
| 336 | double y0_eps = -x0_hi + (1 - y0) - x0_lo; |
| 337 | double y = math_narrow_eval (1 - x); |
| 338 | double y_eps = -x + (1 - y); |
| 339 | /* We now wish to compute LOG_GAMMA_RATIO |
| 340 | = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF |
| 341 | accurately approximates the difference Y0 + Y0_EPS - Y - |
| 342 | Y_EPS. Use Stirling's approximation. First, we may need to |
| 343 | adjust into the range where Stirling's approximation is |
| 344 | sufficiently accurate. */ |
| 345 | double log_gamma_adj = 0; |
| 346 | if (i < 6) |
| 347 | { |
| 348 | int n_up = (7 - i) / 2; |
| 349 | double ny0, ny0_eps, ny, ny_eps; |
| 350 | ny0 = math_narrow_eval (y0 + n_up); |
| 351 | ny0_eps = y0 - (ny0 - n_up) + y0_eps; |
| 352 | y0 = ny0; |
| 353 | y0_eps = ny0_eps; |
| 354 | ny = math_narrow_eval (y + n_up); |
| 355 | ny_eps = y - (ny - n_up) + y_eps; |
| 356 | y = ny; |
| 357 | y_eps = ny_eps; |
| 358 | double prodm1 = __lgamma_product (xdiff, y - n_up, y_eps, n_up); |
| 359 | log_gamma_adj = -__log1p (prodm1); |
| 360 | } |
| 361 | double log_gamma_high |
| 362 | = (xdiff * __log1p ((y0 - e_hi - e_lo + y0_eps) / e_hi) |
| 363 | + (y - 0.5 + y_eps) * __log1p (xdiff / y) + log_gamma_adj); |
| 364 | /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ |
| 365 | double y0r = 1 / y0, yr = 1 / y; |
| 366 | double y0r2 = y0r * y0r, yr2 = yr * yr; |
| 367 | double rdiff = -xdiff / (y * y0); |
| 368 | double bterm[NCOEFF]; |
| 369 | double dlast = rdiff, elast = rdiff * yr * (yr + y0r); |
| 370 | bterm[0] = dlast * lgamma_coeff[0]; |
| 371 | for (size_t j = 1; j < NCOEFF; j++) |
| 372 | { |
| 373 | double dnext = dlast * y0r2 + elast; |
| 374 | double enext = elast * yr2; |
| 375 | bterm[j] = dnext * lgamma_coeff[j]; |
| 376 | dlast = dnext; |
| 377 | elast = enext; |
| 378 | } |
| 379 | double log_gamma_low = 0; |
| 380 | for (size_t j = 0; j < NCOEFF; j++) |
| 381 | log_gamma_low += bterm[NCOEFF - 1 - j]; |
| 382 | log_gamma_ratio = log_gamma_high + log_gamma_low; |
| 383 | |
| 384 | return log_sinpi_ratio + log_gamma_ratio; |
| 385 | } |
| 386 | |