| 1 | /* e_jnf.c -- float version of e_jn.c. |
| 2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| 3 | */ |
| 4 | |
| 5 | /* |
| 6 | * ==================================================== |
| 7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 8 | * |
| 9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 10 | * Permission to use, copy, modify, and distribute this |
| 11 | * software is freely granted, provided that this notice |
| 12 | * is preserved. |
| 13 | * ==================================================== |
| 14 | */ |
| 15 | |
| 16 | #include <errno.h> |
| 17 | #include <float.h> |
| 18 | #include <math.h> |
| 19 | #include <math-narrow-eval.h> |
| 20 | #include <math_private.h> |
| 21 | #include <fenv_private.h> |
| 22 | #include <math-underflow.h> |
| 23 | #include <libm-alias-finite.h> |
| 24 | |
| 25 | static const float |
| 26 | two = 2.0000000000e+00, /* 0x40000000 */ |
| 27 | one = 1.0000000000e+00; /* 0x3F800000 */ |
| 28 | |
| 29 | static const float zero = 0.0000000000e+00; |
| 30 | |
| 31 | float |
| 32 | __ieee754_jnf(int n, float x) |
| 33 | { |
| 34 | float ret; |
| 35 | { |
| 36 | int32_t i,hx,ix, sgn; |
| 37 | float a, b, temp, di; |
| 38 | float z, w; |
| 39 | |
| 40 | /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
| 41 | * Thus, J(-n,x) = J(n,-x) |
| 42 | */ |
| 43 | GET_FLOAT_WORD(hx,x); |
| 44 | ix = 0x7fffffff&hx; |
| 45 | /* if J(n,NaN) is NaN */ |
| 46 | if(__builtin_expect(ix>0x7f800000, 0)) return x+x; |
| 47 | if(n<0){ |
| 48 | n = -n; |
| 49 | x = -x; |
| 50 | hx ^= 0x80000000; |
| 51 | } |
| 52 | if(n==0) return(__ieee754_j0f(x)); |
| 53 | if(n==1) return(__ieee754_j1f(x)); |
| 54 | sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ |
| 55 | x = fabsf(x); |
| 56 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
| 57 | if(__builtin_expect(ix==0||ix>=0x7f800000, 0)) /* if x is 0 or inf */ |
| 58 | return sgn == 1 ? -zero : zero; |
| 59 | else if((float)n<=x) { |
| 60 | /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| 61 | a = __ieee754_j0f(x); |
| 62 | b = __ieee754_j1f(x); |
| 63 | for(i=1;i<n;i++){ |
| 64 | temp = b; |
| 65 | b = b*((double)(i+i)/x) - a; /* avoid underflow */ |
| 66 | a = temp; |
| 67 | } |
| 68 | } else { |
| 69 | if(ix<0x30800000) { /* x < 2**-29 */ |
| 70 | /* x is tiny, return the first Taylor expansion of J(n,x) |
| 71 | * J(n,x) = 1/n!*(x/2)^n - ... |
| 72 | */ |
| 73 | if(n>33) /* underflow */ |
| 74 | b = zero; |
| 75 | else { |
| 76 | temp = x*(float)0.5; b = temp; |
| 77 | for (a=one,i=2;i<=n;i++) { |
| 78 | a *= (float)i; /* a = n! */ |
| 79 | b *= temp; /* b = (x/2)^n */ |
| 80 | } |
| 81 | b = b/a; |
| 82 | } |
| 83 | } else { |
| 84 | /* use backward recurrence */ |
| 85 | /* x x^2 x^2 |
| 86 | * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| 87 | * 2n - 2(n+1) - 2(n+2) |
| 88 | * |
| 89 | * 1 1 1 |
| 90 | * (for large x) = ---- ------ ------ ..... |
| 91 | * 2n 2(n+1) 2(n+2) |
| 92 | * -- - ------ - ------ - |
| 93 | * x x x |
| 94 | * |
| 95 | * Let w = 2n/x and h=2/x, then the above quotient |
| 96 | * is equal to the continued fraction: |
| 97 | * 1 |
| 98 | * = ----------------------- |
| 99 | * 1 |
| 100 | * w - ----------------- |
| 101 | * 1 |
| 102 | * w+h - --------- |
| 103 | * w+2h - ... |
| 104 | * |
| 105 | * To determine how many terms needed, let |
| 106 | * Q(0) = w, Q(1) = w(w+h) - 1, |
| 107 | * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| 108 | * When Q(k) > 1e4 good for single |
| 109 | * When Q(k) > 1e9 good for double |
| 110 | * When Q(k) > 1e17 good for quadruple |
| 111 | */ |
| 112 | /* determine k */ |
| 113 | float t,v; |
| 114 | float q0,q1,h,tmp; int32_t k,m; |
| 115 | w = (n+n)/(float)x; h = (float)2.0/(float)x; |
| 116 | q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1; |
| 117 | while(q1<(float)1.0e9) { |
| 118 | k += 1; z += h; |
| 119 | tmp = z*q1 - q0; |
| 120 | q0 = q1; |
| 121 | q1 = tmp; |
| 122 | } |
| 123 | m = n+n; |
| 124 | for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); |
| 125 | a = t; |
| 126 | b = one; |
| 127 | /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| 128 | * Hence, if n*(log(2n/x)) > ... |
| 129 | * single 8.8722839355e+01 |
| 130 | * double 7.09782712893383973096e+02 |
| 131 | * long double 1.1356523406294143949491931077970765006170e+04 |
| 132 | * then recurrent value may overflow and the result is |
| 133 | * likely underflow to zero |
| 134 | */ |
| 135 | tmp = n; |
| 136 | v = two/x; |
| 137 | tmp = tmp*__ieee754_logf(fabsf(v*tmp)); |
| 138 | if(tmp<(float)8.8721679688e+01) { |
| 139 | for(i=n-1,di=(float)(i+i);i>0;i--){ |
| 140 | temp = b; |
| 141 | b *= di; |
| 142 | b = b/x - a; |
| 143 | a = temp; |
| 144 | di -= two; |
| 145 | } |
| 146 | } else { |
| 147 | for(i=n-1,di=(float)(i+i);i>0;i--){ |
| 148 | temp = b; |
| 149 | b *= di; |
| 150 | b = b/x - a; |
| 151 | a = temp; |
| 152 | di -= two; |
| 153 | /* scale b to avoid spurious overflow */ |
| 154 | if(b>(float)1e10) { |
| 155 | a /= b; |
| 156 | t /= b; |
| 157 | b = one; |
| 158 | } |
| 159 | } |
| 160 | } |
| 161 | /* j0() and j1() suffer enormous loss of precision at and |
| 162 | * near zero; however, we know that their zero points never |
| 163 | * coincide, so just choose the one further away from zero. |
| 164 | */ |
| 165 | z = __ieee754_j0f (x); |
| 166 | w = __ieee754_j1f (x); |
| 167 | if (fabsf (z) >= fabsf (w)) |
| 168 | b = (t * z / b); |
| 169 | else |
| 170 | b = (t * w / a); |
| 171 | } |
| 172 | } |
| 173 | if(sgn==1) ret = -b; else ret = b; |
| 174 | ret = math_narrow_eval (ret); |
| 175 | } |
| 176 | if (ret == 0) |
| 177 | { |
| 178 | ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN); |
| 179 | __set_errno (ERANGE); |
| 180 | } |
| 181 | else |
| 182 | math_check_force_underflow (ret); |
| 183 | return ret; |
| 184 | } |
| 185 | libm_alias_finite (__ieee754_jnf, __jnf) |
| 186 | |
| 187 | float |
| 188 | __ieee754_ynf(int n, float x) |
| 189 | { |
| 190 | float ret; |
| 191 | { |
| 192 | int32_t i,hx,ix; |
| 193 | uint32_t ib; |
| 194 | int32_t sign; |
| 195 | float a, b, temp; |
| 196 | |
| 197 | GET_FLOAT_WORD(hx,x); |
| 198 | ix = 0x7fffffff&hx; |
| 199 | /* if Y(n,NaN) is NaN */ |
| 200 | if(__builtin_expect(ix>0x7f800000, 0)) return x+x; |
| 201 | sign = 1; |
| 202 | if(n<0){ |
| 203 | n = -n; |
| 204 | sign = 1 - ((n&1)<<1); |
| 205 | } |
| 206 | if(n==0) return(__ieee754_y0f(x)); |
| 207 | if(__builtin_expect(ix==0, 0)) |
| 208 | return -sign/zero; |
| 209 | if(__builtin_expect(hx<0, 0)) return zero/(zero*x); |
| 210 | SET_RESTORE_ROUNDF (FE_TONEAREST); |
| 211 | if(n==1) { |
| 212 | ret = sign*__ieee754_y1f(x); |
| 213 | goto out; |
| 214 | } |
| 215 | if(__builtin_expect(ix==0x7f800000, 0)) return zero; |
| 216 | |
| 217 | a = __ieee754_y0f(x); |
| 218 | b = __ieee754_y1f(x); |
| 219 | /* quit if b is -inf */ |
| 220 | GET_FLOAT_WORD(ib,b); |
| 221 | for(i=1;i<n&&ib!=0xff800000;i++){ |
| 222 | temp = b; |
| 223 | b = ((double)(i+i)/x)*b - a; |
| 224 | GET_FLOAT_WORD(ib,b); |
| 225 | a = temp; |
| 226 | } |
| 227 | /* If B is +-Inf, set up errno accordingly. */ |
| 228 | if (! isfinite (b)) |
| 229 | __set_errno (ERANGE); |
| 230 | if(sign>0) ret = b; else ret = -b; |
| 231 | } |
| 232 | out: |
| 233 | if (isinf (ret)) |
| 234 | ret = copysignf (FLT_MAX, ret) * FLT_MAX; |
| 235 | return ret; |
| 236 | } |
| 237 | libm_alias_finite (__ieee754_ynf, __ynf) |
| 238 | |