| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* Long double expansions are |
| 13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 14 | and are incorporated herein by permission of the author. The author |
| 15 | reserves the right to distribute this material elsewhere under different |
| 16 | copying permissions. These modifications are distributed here under |
| 17 | the following terms: |
| 18 | |
| 19 | This library is free software; you can redistribute it and/or |
| 20 | modify it under the terms of the GNU Lesser General Public |
| 21 | License as published by the Free Software Foundation; either |
| 22 | version 2.1 of the License, or (at your option) any later version. |
| 23 | |
| 24 | This library is distributed in the hope that it will be useful, |
| 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 27 | Lesser General Public License for more details. |
| 28 | |
| 29 | You should have received a copy of the GNU Lesser General Public |
| 30 | License along with this library; if not, see |
| 31 | <https://www.gnu.org/licenses/>. */ |
| 32 | |
| 33 | /* __ieee754_j1(x), __ieee754_y1(x) |
| 34 | * Bessel function of the first and second kinds of order zero. |
| 35 | * Method -- j1(x): |
| 36 | * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... |
| 37 | * 2. Reduce x to |x| since j1(x)=-j1(-x), and |
| 38 | * for x in (0,2) |
| 39 | * j1(x) = x/2 + x*z*R0/S0, where z = x*x; |
| 40 | * for x in (2,inf) |
| 41 | * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) |
| 42 | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
| 43 | * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
| 44 | * as follow: |
| 45 | * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
| 46 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
| 47 | * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
| 48 | * = -1/sqrt(2) * (sin(x) + cos(x)) |
| 49 | * (To avoid cancellation, use |
| 50 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
| 51 | * to compute the worse one.) |
| 52 | * |
| 53 | * 3 Special cases |
| 54 | * j1(nan)= nan |
| 55 | * j1(0) = 0 |
| 56 | * j1(inf) = 0 |
| 57 | * |
| 58 | * Method -- y1(x): |
| 59 | * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN |
| 60 | * 2. For x<2. |
| 61 | * Since |
| 62 | * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) |
| 63 | * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. |
| 64 | * We use the following function to approximate y1, |
| 65 | * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 |
| 66 | * Note: For tiny x, 1/x dominate y1 and hence |
| 67 | * y1(tiny) = -2/pi/tiny |
| 68 | * 3. For x>=2. |
| 69 | * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) |
| 70 | * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) |
| 71 | * by method mentioned above. |
| 72 | */ |
| 73 | |
| 74 | #include <errno.h> |
| 75 | #include <float.h> |
| 76 | #include <math.h> |
| 77 | #include <math_private.h> |
| 78 | #include <math-underflow.h> |
| 79 | #include <libm-alias-finite.h> |
| 80 | |
| 81 | static long double pone (long double), qone (long double); |
| 82 | |
| 83 | static const long double |
| 84 | huge = 1e4930L, |
| 85 | one = 1.0L, |
| 86 | invsqrtpi = 5.6418958354775628694807945156077258584405e-1L, |
| 87 | tpi = 6.3661977236758134307553505349005744813784e-1L, |
| 88 | |
| 89 | /* J1(x) = .5 x + x x^2 R(x^2) / S(x^2) |
| 90 | 0 <= x <= 2 |
| 91 | Peak relative error 4.5e-21 */ |
| 92 | R[5] = { |
| 93 | -9.647406112428107954753770469290757756814E7L, |
| 94 | 2.686288565865230690166454005558203955564E6L, |
| 95 | -3.689682683905671185891885948692283776081E4L, |
| 96 | 2.195031194229176602851429567792676658146E2L, |
| 97 | -5.124499848728030297902028238597308971319E-1L, |
| 98 | }, |
| 99 | |
| 100 | S[4] = |
| 101 | { |
| 102 | 1.543584977988497274437410333029029035089E9L, |
| 103 | 2.133542369567701244002565983150952549520E7L, |
| 104 | 1.394077011298227346483732156167414670520E5L, |
| 105 | 5.252401789085732428842871556112108446506E2L, |
| 106 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 107 | }; |
| 108 | |
| 109 | static const long double zero = 0.0; |
| 110 | |
| 111 | |
| 112 | long double |
| 113 | __ieee754_j1l (long double x) |
| 114 | { |
| 115 | long double z, c, r, s, ss, cc, u, v, y; |
| 116 | int32_t ix; |
| 117 | uint32_t se; |
| 118 | |
| 119 | GET_LDOUBLE_EXP (se, x); |
| 120 | ix = se & 0x7fff; |
| 121 | if (__glibc_unlikely (ix >= 0x7fff)) |
| 122 | return one / x; |
| 123 | y = fabsl (x); |
| 124 | if (ix >= 0x4000) |
| 125 | { /* |x| >= 2.0 */ |
| 126 | __sincosl (y, &s, &c); |
| 127 | ss = -s - c; |
| 128 | cc = s - c; |
| 129 | if (ix < 0x7ffe) |
| 130 | { /* make sure y+y not overflow */ |
| 131 | z = __cosl (y + y); |
| 132 | if ((s * c) > zero) |
| 133 | cc = z / ss; |
| 134 | else |
| 135 | ss = z / cc; |
| 136 | } |
| 137 | /* |
| 138 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
| 139 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
| 140 | */ |
| 141 | if (__glibc_unlikely (ix > 0x408e)) |
| 142 | z = (invsqrtpi * cc) / sqrtl (y); |
| 143 | else |
| 144 | { |
| 145 | u = pone (y); |
| 146 | v = qone (y); |
| 147 | z = invsqrtpi * (u * cc - v * ss) / sqrtl (y); |
| 148 | } |
| 149 | if (se & 0x8000) |
| 150 | return -z; |
| 151 | else |
| 152 | return z; |
| 153 | } |
| 154 | if (__glibc_unlikely (ix < 0x3fde)) /* |x| < 2^-33 */ |
| 155 | { |
| 156 | if (huge + x > one) /* inexact if x!=0 necessary */ |
| 157 | { |
| 158 | long double ret = 0.5 * x; |
| 159 | math_check_force_underflow (ret); |
| 160 | if (ret == 0 && x != 0) |
| 161 | __set_errno (ERANGE); |
| 162 | return ret; |
| 163 | } |
| 164 | } |
| 165 | z = x * x; |
| 166 | r = z * (R[0] + z * (R[1]+ z * (R[2] + z * (R[3] + z * R[4])))); |
| 167 | s = S[0] + z * (S[1] + z * (S[2] + z * (S[3] + z))); |
| 168 | r *= x; |
| 169 | return (x * 0.5 + r / s); |
| 170 | } |
| 171 | libm_alias_finite (__ieee754_j1l, __j1l) |
| 172 | |
| 173 | |
| 174 | /* Y1(x) = 2/pi * (log(x) * j1(x) - 1/x) + x R(x^2) |
| 175 | 0 <= x <= 2 |
| 176 | Peak relative error 2.3e-23 */ |
| 177 | static const long double U0[6] = { |
| 178 | -5.908077186259914699178903164682444848615E10L, |
| 179 | 1.546219327181478013495975514375773435962E10L, |
| 180 | -6.438303331169223128870035584107053228235E8L, |
| 181 | 9.708540045657182600665968063824819371216E6L, |
| 182 | -6.138043997084355564619377183564196265471E4L, |
| 183 | 1.418503228220927321096904291501161800215E2L, |
| 184 | }; |
| 185 | static const long double V0[5] = { |
| 186 | 3.013447341682896694781964795373783679861E11L, |
| 187 | 4.669546565705981649470005402243136124523E9L, |
| 188 | 3.595056091631351184676890179233695857260E7L, |
| 189 | 1.761554028569108722903944659933744317994E5L, |
| 190 | 5.668480419646516568875555062047234534863E2L, |
| 191 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 192 | }; |
| 193 | |
| 194 | |
| 195 | long double |
| 196 | __ieee754_y1l (long double x) |
| 197 | { |
| 198 | long double z, s, c, ss, cc, u, v; |
| 199 | int32_t ix; |
| 200 | uint32_t se, i0, i1; |
| 201 | |
| 202 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
| 203 | ix = se & 0x7fff; |
| 204 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
| 205 | if (__glibc_unlikely (se & 0x8000)) |
| 206 | return zero / (zero * x); |
| 207 | if (__glibc_unlikely (ix >= 0x7fff)) |
| 208 | return one / (x + x * x); |
| 209 | if (__glibc_unlikely ((i0 | i1) == 0)) |
| 210 | return -HUGE_VALL + x; /* -inf and overflow exception. */ |
| 211 | if (ix >= 0x4000) |
| 212 | { /* |x| >= 2.0 */ |
| 213 | __sincosl (x, &s, &c); |
| 214 | ss = -s - c; |
| 215 | cc = s - c; |
| 216 | if (ix < 0x7ffe) |
| 217 | { /* make sure x+x not overflow */ |
| 218 | z = __cosl (x + x); |
| 219 | if ((s * c) > zero) |
| 220 | cc = z / ss; |
| 221 | else |
| 222 | ss = z / cc; |
| 223 | } |
| 224 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
| 225 | * where x0 = x-3pi/4 |
| 226 | * Better formula: |
| 227 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
| 228 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
| 229 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
| 230 | * = -1/sqrt(2) * (cos(x) + sin(x)) |
| 231 | * To avoid cancellation, use |
| 232 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
| 233 | * to compute the worse one. |
| 234 | */ |
| 235 | if (__glibc_unlikely (ix > 0x408e)) |
| 236 | z = (invsqrtpi * ss) / sqrtl (x); |
| 237 | else |
| 238 | { |
| 239 | u = pone (x); |
| 240 | v = qone (x); |
| 241 | z = invsqrtpi * (u * ss + v * cc) / sqrtl (x); |
| 242 | } |
| 243 | return z; |
| 244 | } |
| 245 | if (__glibc_unlikely (ix <= 0x3fbe)) |
| 246 | { /* x < 2**-65 */ |
| 247 | z = -tpi / x; |
| 248 | if (isinf (z)) |
| 249 | __set_errno (ERANGE); |
| 250 | return z; |
| 251 | } |
| 252 | z = x * x; |
| 253 | u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * (U0[4] + z * U0[5])))); |
| 254 | v = V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * (V0[4] + z)))); |
| 255 | return (x * (u / v) + |
| 256 | tpi * (__ieee754_j1l (x) * __ieee754_logl (x) - one / x)); |
| 257 | } |
| 258 | libm_alias_finite (__ieee754_y1l, __y1l) |
| 259 | |
| 260 | |
| 261 | /* For x >= 8, the asymptotic expansions of pone is |
| 262 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
| 263 | * We approximate pone by |
| 264 | * pone(x) = 1 + (R/S) |
| 265 | */ |
| 266 | |
| 267 | /* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x) |
| 268 | P1(x) = 1 + z^2 R(z^2), z=1/x |
| 269 | 8 <= x <= inf (0 <= z <= 0.125) |
| 270 | Peak relative error 5.2e-22 */ |
| 271 | |
| 272 | static const long double pr8[7] = { |
| 273 | 8.402048819032978959298664869941375143163E-9L, |
| 274 | 1.813743245316438056192649247507255996036E-6L, |
| 275 | 1.260704554112906152344932388588243836276E-4L, |
| 276 | 3.439294839869103014614229832700986965110E-3L, |
| 277 | 3.576910849712074184504430254290179501209E-2L, |
| 278 | 1.131111483254318243139953003461511308672E-1L, |
| 279 | 4.480715825681029711521286449131671880953E-2L, |
| 280 | }; |
| 281 | static const long double ps8[6] = { |
| 282 | 7.169748325574809484893888315707824924354E-8L, |
| 283 | 1.556549720596672576431813934184403614817E-5L, |
| 284 | 1.094540125521337139209062035774174565882E-3L, |
| 285 | 3.060978962596642798560894375281428805840E-2L, |
| 286 | 3.374146536087205506032643098619414507024E-1L, |
| 287 | 1.253830208588979001991901126393231302559E0L, |
| 288 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 289 | }; |
| 290 | |
| 291 | /* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x) |
| 292 | P1(x) = 1 + z^2 R(z^2), z=1/x |
| 293 | 4.54541015625 <= x <= 8 |
| 294 | Peak relative error 7.7e-22 */ |
| 295 | static const long double pr5[7] = { |
| 296 | 4.318486887948814529950980396300969247900E-7L, |
| 297 | 4.715341880798817230333360497524173929315E-5L, |
| 298 | 1.642719430496086618401091544113220340094E-3L, |
| 299 | 2.228688005300803935928733750456396149104E-2L, |
| 300 | 1.142773760804150921573259605730018327162E-1L, |
| 301 | 1.755576530055079253910829652698703791957E-1L, |
| 302 | 3.218803858282095929559165965353784980613E-2L, |
| 303 | }; |
| 304 | static const long double ps5[6] = { |
| 305 | 3.685108812227721334719884358034713967557E-6L, |
| 306 | 4.069102509511177498808856515005792027639E-4L, |
| 307 | 1.449728676496155025507893322405597039816E-2L, |
| 308 | 2.058869213229520086582695850441194363103E-1L, |
| 309 | 1.164890985918737148968424972072751066553E0L, |
| 310 | 2.274776933457009446573027260373361586841E0L, |
| 311 | /* 1.000000000000000000000000000000000000000E0L,*/ |
| 312 | }; |
| 313 | |
| 314 | /* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x) |
| 315 | P1(x) = 1 + z^2 R(z^2), z=1/x |
| 316 | 2.85711669921875 <= x <= 4.54541015625 |
| 317 | Peak relative error 6.5e-21 */ |
| 318 | static const long double pr3[7] = { |
| 319 | 1.265251153957366716825382654273326407972E-5L, |
| 320 | 8.031057269201324914127680782288352574567E-4L, |
| 321 | 1.581648121115028333661412169396282881035E-2L, |
| 322 | 1.179534658087796321928362981518645033967E-1L, |
| 323 | 3.227936912780465219246440724502790727866E-1L, |
| 324 | 2.559223765418386621748404398017602935764E-1L, |
| 325 | 2.277136933287817911091370397134882441046E-2L, |
| 326 | }; |
| 327 | static const long double ps3[6] = { |
| 328 | 1.079681071833391818661952793568345057548E-4L, |
| 329 | 6.986017817100477138417481463810841529026E-3L, |
| 330 | 1.429403701146942509913198539100230540503E-1L, |
| 331 | 1.148392024337075609460312658938700765074E0L, |
| 332 | 3.643663015091248720208251490291968840882E0L, |
| 333 | 3.990702269032018282145100741746633960737E0L, |
| 334 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 335 | }; |
| 336 | |
| 337 | /* J1(x) cosX + Y1(x) sinX = sqrt( 2/(pi x)) P1(x) |
| 338 | P1(x) = 1 + z^2 R(z^2), z=1/x |
| 339 | 2 <= x <= 2.85711669921875 |
| 340 | Peak relative error 3.5e-21 */ |
| 341 | static const long double pr2[7] = { |
| 342 | 2.795623248568412225239401141338714516445E-4L, |
| 343 | 1.092578168441856711925254839815430061135E-2L, |
| 344 | 1.278024620468953761154963591853679640560E-1L, |
| 345 | 5.469680473691500673112904286228351988583E-1L, |
| 346 | 8.313769490922351300461498619045639016059E-1L, |
| 347 | 3.544176317308370086415403567097130611468E-1L, |
| 348 | 1.604142674802373041247957048801599740644E-2L, |
| 349 | }; |
| 350 | static const long double ps2[6] = { |
| 351 | 2.385605161555183386205027000675875235980E-3L, |
| 352 | 9.616778294482695283928617708206967248579E-2L, |
| 353 | 1.195215570959693572089824415393951258510E0L, |
| 354 | 5.718412857897054829999458736064922974662E0L, |
| 355 | 1.065626298505499086386584642761602177568E1L, |
| 356 | 6.809140730053382188468983548092322151791E0L, |
| 357 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 358 | }; |
| 359 | |
| 360 | |
| 361 | static long double |
| 362 | pone (long double x) |
| 363 | { |
| 364 | const long double *p, *q; |
| 365 | long double z, r, s; |
| 366 | int32_t ix; |
| 367 | uint32_t se, i0, i1; |
| 368 | |
| 369 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
| 370 | ix = se & 0x7fff; |
| 371 | /* ix >= 0x4000 for all calls to this function. */ |
| 372 | if (ix >= 0x4002) /* x >= 8 */ |
| 373 | { |
| 374 | p = pr8; |
| 375 | q = ps8; |
| 376 | } |
| 377 | else |
| 378 | { |
| 379 | i1 = (ix << 16) | (i0 >> 16); |
| 380 | if (i1 >= 0x40019174) /* x >= 4.54541015625 */ |
| 381 | { |
| 382 | p = pr5; |
| 383 | q = ps5; |
| 384 | } |
| 385 | else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */ |
| 386 | { |
| 387 | p = pr3; |
| 388 | q = ps3; |
| 389 | } |
| 390 | else /* x >= 2 */ |
| 391 | { |
| 392 | p = pr2; |
| 393 | q = ps2; |
| 394 | } |
| 395 | } |
| 396 | z = one / (x * x); |
| 397 | r = p[0] + z * (p[1] + |
| 398 | z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6]))))); |
| 399 | s = q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * (q[5] + z))))); |
| 400 | return one + z * r / s; |
| 401 | } |
| 402 | |
| 403 | |
| 404 | /* For x >= 8, the asymptotic expansions of qone is |
| 405 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
| 406 | * We approximate pone by |
| 407 | * qone(x) = s*(0.375 + (R/S)) |
| 408 | */ |
| 409 | |
| 410 | /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), |
| 411 | Q1(x) = z(.375 + z^2 R(z^2)), z=1/x |
| 412 | 8 <= x <= inf |
| 413 | Peak relative error 8.3e-22 */ |
| 414 | |
| 415 | static const long double qr8[7] = { |
| 416 | -5.691925079044209246015366919809404457380E-10L, |
| 417 | -1.632587664706999307871963065396218379137E-7L, |
| 418 | -1.577424682764651970003637263552027114600E-5L, |
| 419 | -6.377627959241053914770158336842725291713E-4L, |
| 420 | -1.087408516779972735197277149494929568768E-2L, |
| 421 | -6.854943629378084419631926076882330494217E-2L, |
| 422 | -1.055448290469180032312893377152490183203E-1L, |
| 423 | }; |
| 424 | static const long double qs8[7] = { |
| 425 | 5.550982172325019811119223916998393907513E-9L, |
| 426 | 1.607188366646736068460131091130644192244E-6L, |
| 427 | 1.580792530091386496626494138334505893599E-4L, |
| 428 | 6.617859900815747303032860443855006056595E-3L, |
| 429 | 1.212840547336984859952597488863037659161E-1L, |
| 430 | 9.017885953937234900458186716154005541075E-1L, |
| 431 | 2.201114489712243262000939120146436167178E0L, |
| 432 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 433 | }; |
| 434 | |
| 435 | /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), |
| 436 | Q1(x) = z(.375 + z^2 R(z^2)), z=1/x |
| 437 | 4.54541015625 <= x <= 8 |
| 438 | Peak relative error 4.1e-22 */ |
| 439 | static const long double qr5[7] = { |
| 440 | -6.719134139179190546324213696633564965983E-8L, |
| 441 | -9.467871458774950479909851595678622044140E-6L, |
| 442 | -4.429341875348286176950914275723051452838E-4L, |
| 443 | -8.539898021757342531563866270278505014487E-3L, |
| 444 | -6.818691805848737010422337101409276287170E-2L, |
| 445 | -1.964432669771684034858848142418228214855E-1L, |
| 446 | -1.333896496989238600119596538299938520726E-1L, |
| 447 | }; |
| 448 | static const long double qs5[7] = { |
| 449 | 6.552755584474634766937589285426911075101E-7L, |
| 450 | 9.410814032118155978663509073200494000589E-5L, |
| 451 | 4.561677087286518359461609153655021253238E-3L, |
| 452 | 9.397742096177905170800336715661091535805E-2L, |
| 453 | 8.518538116671013902180962914473967738771E-1L, |
| 454 | 3.177729183645800174212539541058292579009E0L, |
| 455 | 4.006745668510308096259753538973038902990E0L, |
| 456 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 457 | }; |
| 458 | |
| 459 | /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), |
| 460 | Q1(x) = z(.375 + z^2 R(z^2)), z=1/x |
| 461 | 2.85711669921875 <= x <= 4.54541015625 |
| 462 | Peak relative error 2.2e-21 */ |
| 463 | static const long double qr3[7] = { |
| 464 | -3.618746299358445926506719188614570588404E-6L, |
| 465 | -2.951146018465419674063882650970344502798E-4L, |
| 466 | -7.728518171262562194043409753656506795258E-3L, |
| 467 | -8.058010968753999435006488158237984014883E-2L, |
| 468 | -3.356232856677966691703904770937143483472E-1L, |
| 469 | -4.858192581793118040782557808823460276452E-1L, |
| 470 | -1.592399251246473643510898335746432479373E-1L, |
| 471 | }; |
| 472 | static const long double qs3[7] = { |
| 473 | 3.529139957987837084554591421329876744262E-5L, |
| 474 | 2.973602667215766676998703687065066180115E-3L, |
| 475 | 8.273534546240864308494062287908662592100E-2L, |
| 476 | 9.613359842126507198241321110649974032726E-1L, |
| 477 | 4.853923697093974370118387947065402707519E0L, |
| 478 | 1.002671608961669247462020977417828796933E1L, |
| 479 | 7.028927383922483728931327850683151410267E0L, |
| 480 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 481 | }; |
| 482 | |
| 483 | /* Y1(x)cosX - J1(x)sinX = sqrt( 2/(pi x)) Q1(x), |
| 484 | Q1(x) = z(.375 + z^2 R(z^2)), z=1/x |
| 485 | 2 <= x <= 2.85711669921875 |
| 486 | Peak relative error 6.9e-22 */ |
| 487 | static const long double qr2[7] = { |
| 488 | -1.372751603025230017220666013816502528318E-4L, |
| 489 | -6.879190253347766576229143006767218972834E-3L, |
| 490 | -1.061253572090925414598304855316280077828E-1L, |
| 491 | -6.262164224345471241219408329354943337214E-1L, |
| 492 | -1.423149636514768476376254324731437473915E0L, |
| 493 | -1.087955310491078933531734062917489870754E0L, |
| 494 | -1.826821119773182847861406108689273719137E-1L, |
| 495 | }; |
| 496 | static const long double qs2[7] = { |
| 497 | 1.338768933634451601814048220627185324007E-3L, |
| 498 | 7.071099998918497559736318523932241901810E-2L, |
| 499 | 1.200511429784048632105295629933382142221E0L, |
| 500 | 8.327301713640367079030141077172031825276E0L, |
| 501 | 2.468479301872299311658145549931764426840E1L, |
| 502 | 2.961179686096262083509383820557051621644E1L, |
| 503 | 1.201402313144305153005639494661767354977E1L, |
| 504 | /* 1.000000000000000000000000000000000000000E0L, */ |
| 505 | }; |
| 506 | |
| 507 | |
| 508 | static long double |
| 509 | qone (long double x) |
| 510 | { |
| 511 | const long double *p, *q; |
| 512 | long double s, r, z; |
| 513 | int32_t ix; |
| 514 | uint32_t se, i0, i1; |
| 515 | |
| 516 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
| 517 | ix = se & 0x7fff; |
| 518 | /* ix >= 0x4000 for all calls to this function. */ |
| 519 | if (ix >= 0x4002) /* x >= 8 */ |
| 520 | { |
| 521 | p = qr8; |
| 522 | q = qs8; |
| 523 | } |
| 524 | else |
| 525 | { |
| 526 | i1 = (ix << 16) | (i0 >> 16); |
| 527 | if (i1 >= 0x40019174) /* x >= 4.54541015625 */ |
| 528 | { |
| 529 | p = qr5; |
| 530 | q = qs5; |
| 531 | } |
| 532 | else if (i1 >= 0x4000b6db) /* x >= 2.85711669921875 */ |
| 533 | { |
| 534 | p = qr3; |
| 535 | q = qs3; |
| 536 | } |
| 537 | else /* x >= 2 */ |
| 538 | { |
| 539 | p = qr2; |
| 540 | q = qs2; |
| 541 | } |
| 542 | } |
| 543 | z = one / (x * x); |
| 544 | r = |
| 545 | p[0] + z * (p[1] + |
| 546 | z * (p[2] + z * (p[3] + z * (p[4] + z * (p[5] + z * p[6]))))); |
| 547 | s = |
| 548 | q[0] + z * (q[1] + |
| 549 | z * (q[2] + |
| 550 | z * (q[3] + z * (q[4] + z * (q[5] + z * (q[6] + z)))))); |
| 551 | return (.375 + z * r / s) / x; |
| 552 | } |
| 553 | |