| 1 | /* lgammal expanding around zeros. |
| 2 | Copyright (C) 2015-2020 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <https://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <float.h> |
| 20 | #include <math.h> |
| 21 | #include <math_private.h> |
| 22 | #include <fenv_private.h> |
| 23 | |
| 24 | static const long double lgamma_zeros[][2] = |
| 25 | { |
| 26 | { -0x2.74ff92c01f0d82acp+0L, 0x1.360cea0e5f8ed3ccp-68L }, |
| 27 | { -0x2.bf6821437b201978p+0L, -0x1.95a4b4641eaebf4cp-64L }, |
| 28 | { -0x3.24c1b793cb35efb8p+0L, -0xb.e699ad3d9ba6545p-68L }, |
| 29 | { -0x3.f48e2a8f85fca17p+0L, -0xd.4561291236cc321p-68L }, |
| 30 | { -0x4.0a139e16656030cp+0L, -0x3.9f0b0de18112ac18p-64L }, |
| 31 | { -0x4.fdd5de9bbabf351p+0L, -0xd.0aa4076988501d8p-68L }, |
| 32 | { -0x5.021a95fc2db64328p+0L, -0x2.4c56e595394decc8p-64L }, |
| 33 | { -0x5.ffa4bd647d0357ep+0L, 0x2.b129d342ce12071cp-64L }, |
| 34 | { -0x6.005ac9625f233b6p+0L, -0x7.c2d96d16385cb868p-68L }, |
| 35 | { -0x6.fff2fddae1bbff4p+0L, 0x2.9d949a3dc02de0cp-64L }, |
| 36 | { -0x7.000cff7b7f87adf8p+0L, 0x3.b7d23246787d54d8p-64L }, |
| 37 | { -0x7.fffe5fe05673c3c8p+0L, -0x2.9e82b522b0ca9d3p-64L }, |
| 38 | { -0x8.0001a01459fc9f6p+0L, -0xc.b3cec1cec857667p-68L }, |
| 39 | { -0x8.ffffd1c425e81p+0L, 0x3.79b16a8b6da6181cp-64L }, |
| 40 | { -0x9.00002e3bb47d86dp+0L, -0x6.d843fedc351deb78p-64L }, |
| 41 | { -0x9.fffffb606bdfdcdp+0L, -0x6.2ae77a50547c69dp-68L }, |
| 42 | { -0xa.0000049f93bb992p+0L, -0x7.b45d95e15441e03p-64L }, |
| 43 | { -0xa.ffffff9466e9f1bp+0L, -0x3.6dacd2adbd18d05cp-64L }, |
| 44 | { -0xb.0000006b9915316p+0L, 0x2.69a590015bf1b414p-64L }, |
| 45 | { -0xb.fffffff70893874p+0L, 0x7.821be533c2c36878p-64L }, |
| 46 | { -0xc.00000008f76c773p+0L, -0x1.567c0f0250f38792p-64L }, |
| 47 | { -0xc.ffffffff4f6dcf6p+0L, -0x1.7f97a5ffc757d548p-64L }, |
| 48 | { -0xd.00000000b09230ap+0L, 0x3.f997c22e46fc1c9p-64L }, |
| 49 | { -0xd.fffffffff36345bp+0L, 0x4.61e7b5c1f62ee89p-64L }, |
| 50 | { -0xe.000000000c9cba5p+0L, -0x4.5e94e75ec5718f78p-64L }, |
| 51 | { -0xe.ffffffffff28c06p+0L, -0xc.6604ef30371f89dp-68L }, |
| 52 | { -0xf.0000000000d73fap+0L, 0xc.6642f1bdf07a161p-68L }, |
| 53 | { -0xf.fffffffffff28cp+0L, -0x6.0c6621f512e72e5p-64L }, |
| 54 | { -0x1.000000000000d74p+4L, 0x6.0c6625ebdb406c48p-64L }, |
| 55 | { -0x1.0ffffffffffff356p+4L, -0x9.c47e7a93e1c46a1p-64L }, |
| 56 | { -0x1.1000000000000caap+4L, 0x9.c47e7a97778935ap-64L }, |
| 57 | { -0x1.1fffffffffffff4cp+4L, 0x1.3c31dcbecd2f74d4p-64L }, |
| 58 | { -0x1.20000000000000b4p+4L, -0x1.3c31dcbeca4c3b3p-64L }, |
| 59 | { -0x1.2ffffffffffffff6p+4L, -0x8.5b25cbf5f545ceep-64L }, |
| 60 | { -0x1.300000000000000ap+4L, 0x8.5b25cbf5f547e48p-64L }, |
| 61 | { -0x1.4p+4L, 0x7.950ae90080894298p-64L }, |
| 62 | { -0x1.4p+4L, -0x7.950ae9008089414p-64L }, |
| 63 | { -0x1.5p+4L, 0x5.c6e3bdb73d5c63p-68L }, |
| 64 | { -0x1.5p+4L, -0x5.c6e3bdb73d5c62f8p-68L }, |
| 65 | { -0x1.6p+4L, 0x4.338e5b6dfe14a518p-72L }, |
| 66 | { -0x1.6p+4L, -0x4.338e5b6dfe14a51p-72L }, |
| 67 | { -0x1.7p+4L, 0x2.ec368262c7033b3p-76L }, |
| 68 | { -0x1.7p+4L, -0x2.ec368262c7033b3p-76L }, |
| 69 | { -0x1.8p+4L, 0x1.f2cf01972f577ccap-80L }, |
| 70 | { -0x1.8p+4L, -0x1.f2cf01972f577ccap-80L }, |
| 71 | { -0x1.9p+4L, 0x1.3f3ccdd165fa8d4ep-84L }, |
| 72 | { -0x1.9p+4L, -0x1.3f3ccdd165fa8d4ep-84L }, |
| 73 | { -0x1.ap+4L, 0xc.4742fe35272cd1cp-92L }, |
| 74 | { -0x1.ap+4L, -0xc.4742fe35272cd1cp-92L }, |
| 75 | { -0x1.bp+4L, 0x7.46ac70b733a8c828p-96L }, |
| 76 | { -0x1.bp+4L, -0x7.46ac70b733a8c828p-96L }, |
| 77 | { -0x1.cp+4L, 0x4.2862898d42174ddp-100L }, |
| 78 | { -0x1.cp+4L, -0x4.2862898d42174ddp-100L }, |
| 79 | { -0x1.dp+4L, 0x2.4b3f31686b15af58p-104L }, |
| 80 | { -0x1.dp+4L, -0x2.4b3f31686b15af58p-104L }, |
| 81 | { -0x1.ep+4L, 0x1.3932c5047d60e60cp-108L }, |
| 82 | { -0x1.ep+4L, -0x1.3932c5047d60e60cp-108L }, |
| 83 | { -0x1.fp+4L, 0xa.1a6973c1fade217p-116L }, |
| 84 | { -0x1.fp+4L, -0xa.1a6973c1fade217p-116L }, |
| 85 | { -0x2p+4L, 0x5.0d34b9e0fd6f10b8p-120L }, |
| 86 | { -0x2p+4L, -0x5.0d34b9e0fd6f10b8p-120L }, |
| 87 | { -0x2.1p+4L, 0x2.73024a9ba1aa36a8p-124L }, |
| 88 | }; |
| 89 | |
| 90 | static const long double e_hi = 0x2.b7e151628aed2a6cp+0L; |
| 91 | static const long double e_lo = -0x1.408ea77f630b0c38p-64L; |
| 92 | |
| 93 | /* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's |
| 94 | approximation to lgamma function. */ |
| 95 | |
| 96 | static const long double lgamma_coeff[] = |
| 97 | { |
| 98 | 0x1.5555555555555556p-4L, |
| 99 | -0xb.60b60b60b60b60bp-12L, |
| 100 | 0x3.4034034034034034p-12L, |
| 101 | -0x2.7027027027027028p-12L, |
| 102 | 0x3.72a3c5631fe46aep-12L, |
| 103 | -0x7.daac36664f1f208p-12L, |
| 104 | 0x1.a41a41a41a41a41ap-8L, |
| 105 | -0x7.90a1b2c3d4e5f708p-8L, |
| 106 | 0x2.dfd2c703c0cfff44p-4L, |
| 107 | -0x1.6476701181f39edcp+0L, |
| 108 | 0xd.672219167002d3ap+0L, |
| 109 | -0x9.cd9292e6660d55bp+4L, |
| 110 | 0x8.911a740da740da7p+8L, |
| 111 | -0x8.d0cc570e255bf5ap+12L, |
| 112 | 0xa.8d1044d3708d1c2p+16L, |
| 113 | -0xe.8844d8a169abbc4p+20L, |
| 114 | }; |
| 115 | |
| 116 | #define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0])) |
| 117 | |
| 118 | /* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is |
| 119 | the integer end-point of the half-integer interval containing x and |
| 120 | x0 is the zero of lgamma in that half-integer interval. Each |
| 121 | polynomial is expressed in terms of x-xm, where xm is the midpoint |
| 122 | of the interval for which the polynomial applies. */ |
| 123 | |
| 124 | static const long double poly_coeff[] = |
| 125 | { |
| 126 | /* Interval [-2.125, -2] (polynomial degree 13). */ |
| 127 | -0x1.0b71c5c54d42eb6cp+0L, |
| 128 | -0xc.73a1dc05f349517p-4L, |
| 129 | -0x1.ec841408528b6baep-4L, |
| 130 | -0xe.37c9da26fc3b492p-4L, |
| 131 | -0x1.03cd87c5178991ap-4L, |
| 132 | -0xe.ae9ada65ece2f39p-4L, |
| 133 | 0x9.b1185505edac18dp-8L, |
| 134 | -0xe.f28c130b54d3cb2p-4L, |
| 135 | 0x2.6ec1666cf44a63bp-4L, |
| 136 | -0xf.57cb2774193bbd5p-4L, |
| 137 | 0x4.5ae64671a41b1c4p-4L, |
| 138 | -0xf.f48ea8b5bd3a7cep-4L, |
| 139 | 0x6.7d73788a8d30ef58p-4L, |
| 140 | -0x1.11e0e4b506bd272ep+0L, |
| 141 | /* Interval [-2.25, -2.125] (polynomial degree 13). */ |
| 142 | -0xf.2930890d7d675a8p-4L, |
| 143 | -0xc.a5cfde054eab5cdp-4L, |
| 144 | 0x3.9c9e0fdebb0676e4p-4L, |
| 145 | -0x1.02a5ad35605f0d8cp+0L, |
| 146 | 0x9.6e9b1185d0b92edp-4L, |
| 147 | -0x1.4d8332f3d6a3959p+0L, |
| 148 | 0x1.1c0c8cacd0ced3eap+0L, |
| 149 | -0x1.c9a6f592a67b1628p+0L, |
| 150 | 0x1.d7e9476f96aa4bd6p+0L, |
| 151 | -0x2.921cedb488bb3318p+0L, |
| 152 | 0x2.e8b3fd6ca193e4c8p+0L, |
| 153 | -0x3.cb69d9d6628e4a2p+0L, |
| 154 | 0x4.95f12c73b558638p+0L, |
| 155 | -0x5.d392d0b97c02ab6p+0L, |
| 156 | /* Interval [-2.375, -2.25] (polynomial degree 14). */ |
| 157 | -0xd.7d28d505d618122p-4L, |
| 158 | -0xe.69649a304098532p-4L, |
| 159 | 0xb.0d74a2827d055c5p-4L, |
| 160 | -0x1.924b09228531c00ep+0L, |
| 161 | 0x1.d49b12bccee4f888p+0L, |
| 162 | -0x3.0898bb7dbb21e458p+0L, |
| 163 | 0x4.207a6cad6fa10a2p+0L, |
| 164 | -0x6.39ee630b46093ad8p+0L, |
| 165 | 0x8.e2e25211a3fb5ccp+0L, |
| 166 | -0xd.0e85ccd8e79c08p+0L, |
| 167 | 0x1.2e45882bc17f9e16p+4L, |
| 168 | -0x1.b8b6e841815ff314p+4L, |
| 169 | 0x2.7ff8bf7504fa04dcp+4L, |
| 170 | -0x3.c192e9c903352974p+4L, |
| 171 | 0x5.8040b75f4ef07f98p+4L, |
| 172 | /* Interval [-2.5, -2.375] (polynomial degree 15). */ |
| 173 | -0xb.74ea1bcfff94b2cp-4L, |
| 174 | -0x1.2a82bd590c375384p+0L, |
| 175 | 0x1.88020f828b968634p+0L, |
| 176 | -0x3.32279f040eb80fa4p+0L, |
| 177 | 0x5.57ac825175943188p+0L, |
| 178 | -0x9.c2aedcfe10f129ep+0L, |
| 179 | 0x1.12c132f2df02881ep+4L, |
| 180 | -0x1.ea94e26c0b6ffa6p+4L, |
| 181 | 0x3.66b4a8bb0290013p+4L, |
| 182 | -0x6.0cf735e01f5990bp+4L, |
| 183 | 0xa.c10a8db7ae99343p+4L, |
| 184 | -0x1.31edb212b315feeap+8L, |
| 185 | 0x2.1f478592298b3ebp+8L, |
| 186 | -0x3.c546da5957ace6ccp+8L, |
| 187 | 0x7.0e3d2a02579ba4bp+8L, |
| 188 | -0xc.b1ea961c39302f8p+8L, |
| 189 | /* Interval [-2.625, -2.5] (polynomial degree 16). */ |
| 190 | -0x3.d10108c27ebafad4p-4L, |
| 191 | 0x1.cd557caff7d2b202p+0L, |
| 192 | 0x3.819b4856d3995034p+0L, |
| 193 | 0x6.8505cbad03dd3bd8p+0L, |
| 194 | 0xb.c1b2e653aa0b924p+0L, |
| 195 | 0x1.50a53a38f05f72d6p+4L, |
| 196 | 0x2.57ae00cbd06efb34p+4L, |
| 197 | 0x4.2b1563077a577e9p+4L, |
| 198 | 0x7.6989ed790138a7f8p+4L, |
| 199 | 0xd.2dd28417b4f8406p+4L, |
| 200 | 0x1.76e1b71f0710803ap+8L, |
| 201 | 0x2.9a7a096254ac032p+8L, |
| 202 | 0x4.a0e6109e2a039788p+8L, |
| 203 | 0x8.37ea17a93c877b2p+8L, |
| 204 | 0xe.9506a641143612bp+8L, |
| 205 | 0x1.b680ed4ea386d52p+12L, |
| 206 | 0x3.28a2130c8de0ae84p+12L, |
| 207 | /* Interval [-2.75, -2.625] (polynomial degree 15). */ |
| 208 | -0x6.b5d252a56e8a7548p-4L, |
| 209 | 0x1.28d60383da3ac72p+0L, |
| 210 | 0x1.db6513ada8a6703ap+0L, |
| 211 | 0x2.e217118f9d34aa7cp+0L, |
| 212 | 0x4.450112c5cbd6256p+0L, |
| 213 | 0x6.4af99151e972f92p+0L, |
| 214 | 0x9.2db598b5b183cd6p+0L, |
| 215 | 0xd.62bef9c9adcff6ap+0L, |
| 216 | 0x1.379f290d743d9774p+4L, |
| 217 | 0x1.c58271ff823caa26p+4L, |
| 218 | 0x2.93a871b87a06e73p+4L, |
| 219 | 0x3.bf9db66103d7ec98p+4L, |
| 220 | 0x5.73247c111fbf197p+4L, |
| 221 | 0x7.ec8b9973ba27d008p+4L, |
| 222 | 0xb.eca5f9619b39c03p+4L, |
| 223 | 0x1.18f2e46411c78b1cp+8L, |
| 224 | /* Interval [-2.875, -2.75] (polynomial degree 14). */ |
| 225 | -0x8.a41b1e4f36ff88ep-4L, |
| 226 | 0xc.da87d3b69dc0f34p-4L, |
| 227 | 0x1.1474ad5c36158ad2p+0L, |
| 228 | 0x1.761ecb90c5553996p+0L, |
| 229 | 0x1.d279bff9ae234f8p+0L, |
| 230 | 0x2.4e5d0055a16c5414p+0L, |
| 231 | 0x2.d57545a783902f8cp+0L, |
| 232 | 0x3.8514eec263aa9f98p+0L, |
| 233 | 0x4.5235e338245f6fe8p+0L, |
| 234 | 0x5.562b1ef200b256c8p+0L, |
| 235 | 0x6.8ec9782b93bd565p+0L, |
| 236 | 0x8.14baf4836483508p+0L, |
| 237 | 0x9.efaf35dc712ea79p+0L, |
| 238 | 0xc.8431f6a226507a9p+0L, |
| 239 | 0xf.80358289a768401p+0L, |
| 240 | /* Interval [-3, -2.875] (polynomial degree 13). */ |
| 241 | -0xa.046d667e468f3e4p-4L, |
| 242 | 0x9.70b88dcc006c216p-4L, |
| 243 | 0xa.a8a39421c86ce9p-4L, |
| 244 | 0xd.2f4d1363f321e89p-4L, |
| 245 | 0xd.ca9aa1a3ab2f438p-4L, |
| 246 | 0xf.cf09c31f05d02cbp-4L, |
| 247 | 0x1.04b133a195686a38p+0L, |
| 248 | 0x1.22b54799d0072024p+0L, |
| 249 | 0x1.2c5802b869a36ae8p+0L, |
| 250 | 0x1.4aadf23055d7105ep+0L, |
| 251 | 0x1.5794078dd45c55d6p+0L, |
| 252 | 0x1.7759069da18bcf0ap+0L, |
| 253 | 0x1.8e672cefa4623f34p+0L, |
| 254 | 0x1.b2acfa32c17145e6p+0L, |
| 255 | }; |
| 256 | |
| 257 | static const size_t poly_deg[] = |
| 258 | { |
| 259 | 13, |
| 260 | 13, |
| 261 | 14, |
| 262 | 15, |
| 263 | 16, |
| 264 | 15, |
| 265 | 14, |
| 266 | 13, |
| 267 | }; |
| 268 | |
| 269 | static const size_t poly_end[] = |
| 270 | { |
| 271 | 13, |
| 272 | 27, |
| 273 | 42, |
| 274 | 58, |
| 275 | 75, |
| 276 | 91, |
| 277 | 106, |
| 278 | 120, |
| 279 | }; |
| 280 | |
| 281 | /* Compute sin (pi * X) for -0.25 <= X <= 0.5. */ |
| 282 | |
| 283 | static long double |
| 284 | lg_sinpi (long double x) |
| 285 | { |
| 286 | if (x <= 0.25L) |
| 287 | return __sinl (M_PIl * x); |
| 288 | else |
| 289 | return __cosl (M_PIl * (0.5L - x)); |
| 290 | } |
| 291 | |
| 292 | /* Compute cos (pi * X) for -0.25 <= X <= 0.5. */ |
| 293 | |
| 294 | static long double |
| 295 | lg_cospi (long double x) |
| 296 | { |
| 297 | if (x <= 0.25L) |
| 298 | return __cosl (M_PIl * x); |
| 299 | else |
| 300 | return __sinl (M_PIl * (0.5L - x)); |
| 301 | } |
| 302 | |
| 303 | /* Compute cot (pi * X) for -0.25 <= X <= 0.5. */ |
| 304 | |
| 305 | static long double |
| 306 | lg_cotpi (long double x) |
| 307 | { |
| 308 | return lg_cospi (x) / lg_sinpi (x); |
| 309 | } |
| 310 | |
| 311 | /* Compute lgamma of a negative argument -33 < X < -2, setting |
| 312 | *SIGNGAMP accordingly. */ |
| 313 | |
| 314 | long double |
| 315 | __lgamma_negl (long double x, int *signgamp) |
| 316 | { |
| 317 | /* Determine the half-integer region X lies in, handle exact |
| 318 | integers and determine the sign of the result. */ |
| 319 | int i = floorl (-2 * x); |
| 320 | if ((i & 1) == 0 && i == -2 * x) |
| 321 | return 1.0L / 0.0L; |
| 322 | long double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2); |
| 323 | i -= 4; |
| 324 | *signgamp = ((i & 2) == 0 ? -1 : 1); |
| 325 | |
| 326 | SET_RESTORE_ROUNDL (FE_TONEAREST); |
| 327 | |
| 328 | /* Expand around the zero X0 = X0_HI + X0_LO. */ |
| 329 | long double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1]; |
| 330 | long double xdiff = x - x0_hi - x0_lo; |
| 331 | |
| 332 | /* For arguments in the range -3 to -2, use polynomial |
| 333 | approximations to an adjusted version of the gamma function. */ |
| 334 | if (i < 2) |
| 335 | { |
| 336 | int j = floorl (-8 * x) - 16; |
| 337 | long double xm = (-33 - 2 * j) * 0.0625L; |
| 338 | long double x_adj = x - xm; |
| 339 | size_t deg = poly_deg[j]; |
| 340 | size_t end = poly_end[j]; |
| 341 | long double g = poly_coeff[end]; |
| 342 | for (size_t j = 1; j <= deg; j++) |
| 343 | g = g * x_adj + poly_coeff[end - j]; |
| 344 | return __log1pl (g * xdiff / (x - xn)); |
| 345 | } |
| 346 | |
| 347 | /* The result we want is log (sinpi (X0) / sinpi (X)) |
| 348 | + log (gamma (1 - X0) / gamma (1 - X)). */ |
| 349 | long double x_idiff = fabsl (xn - x), x0_idiff = fabsl (xn - x0_hi - x0_lo); |
| 350 | long double log_sinpi_ratio; |
| 351 | if (x0_idiff < x_idiff * 0.5L) |
| 352 | /* Use log not log1p to avoid inaccuracy from log1p of arguments |
| 353 | close to -1. */ |
| 354 | log_sinpi_ratio = __ieee754_logl (lg_sinpi (x0_idiff) |
| 355 | / lg_sinpi (x_idiff)); |
| 356 | else |
| 357 | { |
| 358 | /* Use log1p not log to avoid inaccuracy from log of arguments |
| 359 | close to 1. X0DIFF2 has positive sign if X0 is further from |
| 360 | XN than X is from XN, negative sign otherwise. */ |
| 361 | long double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5L; |
| 362 | long double sx0d2 = lg_sinpi (x0diff2); |
| 363 | long double cx0d2 = lg_cospi (x0diff2); |
| 364 | log_sinpi_ratio = __log1pl (2 * sx0d2 |
| 365 | * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff))); |
| 366 | } |
| 367 | |
| 368 | long double log_gamma_ratio; |
| 369 | long double y0 = 1 - x0_hi; |
| 370 | long double y0_eps = -x0_hi + (1 - y0) - x0_lo; |
| 371 | long double y = 1 - x; |
| 372 | long double y_eps = -x + (1 - y); |
| 373 | /* We now wish to compute LOG_GAMMA_RATIO |
| 374 | = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF |
| 375 | accurately approximates the difference Y0 + Y0_EPS - Y - |
| 376 | Y_EPS. Use Stirling's approximation. First, we may need to |
| 377 | adjust into the range where Stirling's approximation is |
| 378 | sufficiently accurate. */ |
| 379 | long double log_gamma_adj = 0; |
| 380 | if (i < 8) |
| 381 | { |
| 382 | int n_up = (9 - i) / 2; |
| 383 | long double ny0, ny0_eps, ny, ny_eps; |
| 384 | ny0 = y0 + n_up; |
| 385 | ny0_eps = y0 - (ny0 - n_up) + y0_eps; |
| 386 | y0 = ny0; |
| 387 | y0_eps = ny0_eps; |
| 388 | ny = y + n_up; |
| 389 | ny_eps = y - (ny - n_up) + y_eps; |
| 390 | y = ny; |
| 391 | y_eps = ny_eps; |
| 392 | long double prodm1 = __lgamma_productl (xdiff, y - n_up, y_eps, n_up); |
| 393 | log_gamma_adj = -__log1pl (prodm1); |
| 394 | } |
| 395 | long double log_gamma_high |
| 396 | = (xdiff * __log1pl ((y0 - e_hi - e_lo + y0_eps) / e_hi) |
| 397 | + (y - 0.5L + y_eps) * __log1pl (xdiff / y) + log_gamma_adj); |
| 398 | /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */ |
| 399 | long double y0r = 1 / y0, yr = 1 / y; |
| 400 | long double y0r2 = y0r * y0r, yr2 = yr * yr; |
| 401 | long double rdiff = -xdiff / (y * y0); |
| 402 | long double bterm[NCOEFF]; |
| 403 | long double dlast = rdiff, elast = rdiff * yr * (yr + y0r); |
| 404 | bterm[0] = dlast * lgamma_coeff[0]; |
| 405 | for (size_t j = 1; j < NCOEFF; j++) |
| 406 | { |
| 407 | long double dnext = dlast * y0r2 + elast; |
| 408 | long double enext = elast * yr2; |
| 409 | bterm[j] = dnext * lgamma_coeff[j]; |
| 410 | dlast = dnext; |
| 411 | elast = enext; |
| 412 | } |
| 413 | long double log_gamma_low = 0; |
| 414 | for (size_t j = 0; j < NCOEFF; j++) |
| 415 | log_gamma_low += bterm[NCOEFF - 1 - j]; |
| 416 | log_gamma_ratio = log_gamma_high + log_gamma_low; |
| 417 | |
| 418 | return log_sinpi_ratio + log_gamma_ratio; |
| 419 | } |
| 420 | |