| 1 | /* |
| 2 | * ==================================================== |
| 3 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 4 | * |
| 5 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 6 | * Permission to use, copy, modify, and distribute this |
| 7 | * software is freely granted, provided that this notice |
| 8 | * is preserved. |
| 9 | * ==================================================== |
| 10 | */ |
| 11 | |
| 12 | /* Long double expansions are |
| 13 | Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| 14 | and are incorporated herein by permission of the author. The author |
| 15 | reserves the right to distribute this material elsewhere under different |
| 16 | copying permissions. These modifications are distributed here under |
| 17 | the following terms: |
| 18 | |
| 19 | This library is free software; you can redistribute it and/or |
| 20 | modify it under the terms of the GNU Lesser General Public |
| 21 | License as published by the Free Software Foundation; either |
| 22 | version 2.1 of the License, or (at your option) any later version. |
| 23 | |
| 24 | This library is distributed in the hope that it will be useful, |
| 25 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 26 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 27 | Lesser General Public License for more details. |
| 28 | |
| 29 | You should have received a copy of the GNU Lesser General Public |
| 30 | License along with this library; if not, see |
| 31 | <https://www.gnu.org/licenses/>. */ |
| 32 | |
| 33 | /* double erf(double x) |
| 34 | * double erfc(double x) |
| 35 | * x |
| 36 | * 2 |\ |
| 37 | * erf(x) = --------- | exp(-t*t)dt |
| 38 | * sqrt(pi) \| |
| 39 | * 0 |
| 40 | * |
| 41 | * erfc(x) = 1-erf(x) |
| 42 | * Note that |
| 43 | * erf(-x) = -erf(x) |
| 44 | * erfc(-x) = 2 - erfc(x) |
| 45 | * |
| 46 | * Method: |
| 47 | * 1. For |x| in [0, 0.84375] |
| 48 | * erf(x) = x + x*R(x^2) |
| 49 | * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] |
| 50 | * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] |
| 51 | * Remark. The formula is derived by noting |
| 52 | * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) |
| 53 | * and that |
| 54 | * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 |
| 55 | * is close to one. The interval is chosen because the fix |
| 56 | * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is |
| 57 | * near 0.6174), and by some experiment, 0.84375 is chosen to |
| 58 | * guarantee the error is less than one ulp for erf. |
| 59 | * |
| 60 | * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and |
| 61 | * c = 0.84506291151 rounded to single (24 bits) |
| 62 | * erf(x) = sign(x) * (c + P1(s)/Q1(s)) |
| 63 | * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 |
| 64 | * 1+(c+P1(s)/Q1(s)) if x < 0 |
| 65 | * Remark: here we use the taylor series expansion at x=1. |
| 66 | * erf(1+s) = erf(1) + s*Poly(s) |
| 67 | * = 0.845.. + P1(s)/Q1(s) |
| 68 | * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] |
| 69 | * |
| 70 | * 3. For x in [1.25,1/0.35(~2.857143)], |
| 71 | * erfc(x) = (1/x)*exp(-x*x-0.5625+R1(z)/S1(z)) |
| 72 | * z=1/x^2 |
| 73 | * erf(x) = 1 - erfc(x) |
| 74 | * |
| 75 | * 4. For x in [1/0.35,107] |
| 76 | * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 |
| 77 | * = 2.0 - (1/x)*exp(-x*x-0.5625+R2(z)/S2(z)) |
| 78 | * if -6.666<x<0 |
| 79 | * = 2.0 - tiny (if x <= -6.666) |
| 80 | * z=1/x^2 |
| 81 | * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6.666, else |
| 82 | * erf(x) = sign(x)*(1.0 - tiny) |
| 83 | * Note1: |
| 84 | * To compute exp(-x*x-0.5625+R/S), let s be a single |
| 85 | * precision number and s := x; then |
| 86 | * -x*x = -s*s + (s-x)*(s+x) |
| 87 | * exp(-x*x-0.5626+R/S) = |
| 88 | * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); |
| 89 | * Note2: |
| 90 | * Here 4 and 5 make use of the asymptotic series |
| 91 | * exp(-x*x) |
| 92 | * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) |
| 93 | * x*sqrt(pi) |
| 94 | * |
| 95 | * 5. For inf > x >= 107 |
| 96 | * erf(x) = sign(x) *(1 - tiny) (raise inexact) |
| 97 | * erfc(x) = tiny*tiny (raise underflow) if x > 0 |
| 98 | * = 2 - tiny if x<0 |
| 99 | * |
| 100 | * 7. Special case: |
| 101 | * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, |
| 102 | * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, |
| 103 | * erfc/erf(NaN) is NaN |
| 104 | */ |
| 105 | |
| 106 | |
| 107 | #include <errno.h> |
| 108 | #include <float.h> |
| 109 | #include <math.h> |
| 110 | #include <math_private.h> |
| 111 | #include <math-underflow.h> |
| 112 | #include <libm-alias-ldouble.h> |
| 113 | |
| 114 | static const long double |
| 115 | tiny = 1e-4931L, |
| 116 | half = 0.5L, |
| 117 | one = 1.0L, |
| 118 | two = 2.0L, |
| 119 | /* c = (float)0.84506291151 */ |
| 120 | erx = 0.845062911510467529296875L, |
| 121 | /* |
| 122 | * Coefficients for approximation to erf on [0,0.84375] |
| 123 | */ |
| 124 | /* 2/sqrt(pi) - 1 */ |
| 125 | efx = 1.2837916709551257389615890312154517168810E-1L, |
| 126 | |
| 127 | pp[6] = { |
| 128 | 1.122751350964552113068262337278335028553E6L, |
| 129 | -2.808533301997696164408397079650699163276E6L, |
| 130 | -3.314325479115357458197119660818768924100E5L, |
| 131 | -6.848684465326256109712135497895525446398E4L, |
| 132 | -2.657817695110739185591505062971929859314E3L, |
| 133 | -1.655310302737837556654146291646499062882E2L, |
| 134 | }, |
| 135 | |
| 136 | qq[6] = { |
| 137 | 8.745588372054466262548908189000448124232E6L, |
| 138 | 3.746038264792471129367533128637019611485E6L, |
| 139 | 7.066358783162407559861156173539693900031E5L, |
| 140 | 7.448928604824620999413120955705448117056E4L, |
| 141 | 4.511583986730994111992253980546131408924E3L, |
| 142 | 1.368902937933296323345610240009071254014E2L, |
| 143 | /* 1.000000000000000000000000000000000000000E0 */ |
| 144 | }, |
| 145 | |
| 146 | /* |
| 147 | * Coefficients for approximation to erf in [0.84375,1.25] |
| 148 | */ |
| 149 | /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x) |
| 150 | -0.15625 <= x <= +.25 |
| 151 | Peak relative error 8.5e-22 */ |
| 152 | |
| 153 | pa[8] = { |
| 154 | -1.076952146179812072156734957705102256059E0L, |
| 155 | 1.884814957770385593365179835059971587220E2L, |
| 156 | -5.339153975012804282890066622962070115606E1L, |
| 157 | 4.435910679869176625928504532109635632618E1L, |
| 158 | 1.683219516032328828278557309642929135179E1L, |
| 159 | -2.360236618396952560064259585299045804293E0L, |
| 160 | 1.852230047861891953244413872297940938041E0L, |
| 161 | 9.394994446747752308256773044667843200719E-2L, |
| 162 | }, |
| 163 | |
| 164 | qa[7] = { |
| 165 | 4.559263722294508998149925774781887811255E2L, |
| 166 | 3.289248982200800575749795055149780689738E2L, |
| 167 | 2.846070965875643009598627918383314457912E2L, |
| 168 | 1.398715859064535039433275722017479994465E2L, |
| 169 | 6.060190733759793706299079050985358190726E1L, |
| 170 | 2.078695677795422351040502569964299664233E1L, |
| 171 | 4.641271134150895940966798357442234498546E0L, |
| 172 | /* 1.000000000000000000000000000000000000000E0 */ |
| 173 | }, |
| 174 | |
| 175 | /* |
| 176 | * Coefficients for approximation to erfc in [1.25,1/0.35] |
| 177 | */ |
| 178 | /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2)) |
| 179 | 1/2.85711669921875 < 1/x < 1/1.25 |
| 180 | Peak relative error 3.1e-21 */ |
| 181 | |
| 182 | ra[] = { |
| 183 | 1.363566591833846324191000679620738857234E-1L, |
| 184 | 1.018203167219873573808450274314658434507E1L, |
| 185 | 1.862359362334248675526472871224778045594E2L, |
| 186 | 1.411622588180721285284945138667933330348E3L, |
| 187 | 5.088538459741511988784440103218342840478E3L, |
| 188 | 8.928251553922176506858267311750789273656E3L, |
| 189 | 7.264436000148052545243018622742770549982E3L, |
| 190 | 2.387492459664548651671894725748959751119E3L, |
| 191 | 2.220916652813908085449221282808458466556E2L, |
| 192 | }, |
| 193 | |
| 194 | sa[] = { |
| 195 | -1.382234625202480685182526402169222331847E1L, |
| 196 | -3.315638835627950255832519203687435946482E2L, |
| 197 | -2.949124863912936259747237164260785326692E3L, |
| 198 | -1.246622099070875940506391433635999693661E4L, |
| 199 | -2.673079795851665428695842853070996219632E4L, |
| 200 | -2.880269786660559337358397106518918220991E4L, |
| 201 | -1.450600228493968044773354186390390823713E4L, |
| 202 | -2.874539731125893533960680525192064277816E3L, |
| 203 | -1.402241261419067750237395034116942296027E2L, |
| 204 | /* 1.000000000000000000000000000000000000000E0 */ |
| 205 | }, |
| 206 | /* |
| 207 | * Coefficients for approximation to erfc in [1/.35,107] |
| 208 | */ |
| 209 | /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2)) |
| 210 | 1/6.6666259765625 < 1/x < 1/2.85711669921875 |
| 211 | Peak relative error 4.2e-22 */ |
| 212 | rb[] = { |
| 213 | -4.869587348270494309550558460786501252369E-5L, |
| 214 | -4.030199390527997378549161722412466959403E-3L, |
| 215 | -9.434425866377037610206443566288917589122E-2L, |
| 216 | -9.319032754357658601200655161585539404155E-1L, |
| 217 | -4.273788174307459947350256581445442062291E0L, |
| 218 | -8.842289940696150508373541814064198259278E0L, |
| 219 | -7.069215249419887403187988144752613025255E0L, |
| 220 | -1.401228723639514787920274427443330704764E0L, |
| 221 | }, |
| 222 | |
| 223 | sb[] = { |
| 224 | 4.936254964107175160157544545879293019085E-3L, |
| 225 | 1.583457624037795744377163924895349412015E-1L, |
| 226 | 1.850647991850328356622940552450636420484E0L, |
| 227 | 9.927611557279019463768050710008450625415E0L, |
| 228 | 2.531667257649436709617165336779212114570E1L, |
| 229 | 2.869752886406743386458304052862814690045E1L, |
| 230 | 1.182059497870819562441683560749192539345E1L, |
| 231 | /* 1.000000000000000000000000000000000000000E0 */ |
| 232 | }, |
| 233 | /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2)) |
| 234 | 1/107 <= 1/x <= 1/6.6666259765625 |
| 235 | Peak relative error 1.1e-21 */ |
| 236 | rc[] = { |
| 237 | -8.299617545269701963973537248996670806850E-5L, |
| 238 | -6.243845685115818513578933902532056244108E-3L, |
| 239 | -1.141667210620380223113693474478394397230E-1L, |
| 240 | -7.521343797212024245375240432734425789409E-1L, |
| 241 | -1.765321928311155824664963633786967602934E0L, |
| 242 | -1.029403473103215800456761180695263439188E0L, |
| 243 | }, |
| 244 | |
| 245 | sc[] = { |
| 246 | 8.413244363014929493035952542677768808601E-3L, |
| 247 | 2.065114333816877479753334599639158060979E-1L, |
| 248 | 1.639064941530797583766364412782135680148E0L, |
| 249 | 4.936788463787115555582319302981666347450E0L, |
| 250 | 5.005177727208955487404729933261347679090E0L, |
| 251 | /* 1.000000000000000000000000000000000000000E0 */ |
| 252 | }; |
| 253 | |
| 254 | long double |
| 255 | __erfl (long double x) |
| 256 | { |
| 257 | long double R, S, P, Q, s, y, z, r; |
| 258 | int32_t ix, i; |
| 259 | uint32_t se, i0, i1; |
| 260 | |
| 261 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
| 262 | ix = se & 0x7fff; |
| 263 | |
| 264 | if (ix >= 0x7fff) |
| 265 | { /* erf(nan)=nan */ |
| 266 | i = ((se & 0xffff) >> 15) << 1; |
| 267 | return (long double) (1 - i) + one / x; /* erf(+-inf)=+-1 */ |
| 268 | } |
| 269 | |
| 270 | ix = (ix << 16) | (i0 >> 16); |
| 271 | if (ix < 0x3ffed800) /* |x|<0.84375 */ |
| 272 | { |
| 273 | if (ix < 0x3fde8000) /* |x|<2**-33 */ |
| 274 | { |
| 275 | if (ix < 0x00080000) |
| 276 | { |
| 277 | /* Avoid spurious underflow. */ |
| 278 | long double ret = 0.0625 * (16.0 * x + (16.0 * efx) * x); |
| 279 | math_check_force_underflow (ret); |
| 280 | return ret; |
| 281 | } |
| 282 | return x + efx * x; |
| 283 | } |
| 284 | z = x * x; |
| 285 | r = pp[0] + z * (pp[1] |
| 286 | + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); |
| 287 | s = qq[0] + z * (qq[1] |
| 288 | + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); |
| 289 | y = r / s; |
| 290 | return x + x * y; |
| 291 | } |
| 292 | if (ix < 0x3fffa000) /* 1.25 */ |
| 293 | { /* 0.84375 <= |x| < 1.25 */ |
| 294 | s = fabsl (x) - one; |
| 295 | P = pa[0] + s * (pa[1] + s * (pa[2] |
| 296 | + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); |
| 297 | Q = qa[0] + s * (qa[1] + s * (qa[2] |
| 298 | + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); |
| 299 | if ((se & 0x8000) == 0) |
| 300 | return erx + P / Q; |
| 301 | else |
| 302 | return -erx - P / Q; |
| 303 | } |
| 304 | if (ix >= 0x4001d555) /* 6.6666259765625 */ |
| 305 | { /* inf>|x|>=6.666 */ |
| 306 | if ((se & 0x8000) == 0) |
| 307 | return one - tiny; |
| 308 | else |
| 309 | return tiny - one; |
| 310 | } |
| 311 | x = fabsl (x); |
| 312 | s = one / (x * x); |
| 313 | if (ix < 0x4000b6db) /* 2.85711669921875 */ |
| 314 | { |
| 315 | R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + |
| 316 | s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); |
| 317 | S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + |
| 318 | s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); |
| 319 | } |
| 320 | else |
| 321 | { /* |x| >= 1/0.35 */ |
| 322 | R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + |
| 323 | s * (rb[5] + s * (rb[6] + s * rb[7])))))); |
| 324 | S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + |
| 325 | s * (sb[5] + s * (sb[6] + s)))))); |
| 326 | } |
| 327 | z = x; |
| 328 | GET_LDOUBLE_WORDS (i, i0, i1, z); |
| 329 | i1 = 0; |
| 330 | SET_LDOUBLE_WORDS (z, i, i0, i1); |
| 331 | r = |
| 332 | __ieee754_expl (-z * z - 0.5625) * __ieee754_expl ((z - x) * (z + x) + |
| 333 | R / S); |
| 334 | if ((se & 0x8000) == 0) |
| 335 | return one - r / x; |
| 336 | else |
| 337 | return r / x - one; |
| 338 | } |
| 339 | |
| 340 | libm_alias_ldouble (__erf, erf) |
| 341 | long double |
| 342 | __erfcl (long double x) |
| 343 | { |
| 344 | int32_t hx, ix; |
| 345 | long double R, S, P, Q, s, y, z, r; |
| 346 | uint32_t se, i0, i1; |
| 347 | |
| 348 | GET_LDOUBLE_WORDS (se, i0, i1, x); |
| 349 | ix = se & 0x7fff; |
| 350 | if (ix >= 0x7fff) |
| 351 | { /* erfc(nan)=nan */ |
| 352 | /* erfc(+-inf)=0,2 */ |
| 353 | return (long double) (((se & 0xffff) >> 15) << 1) + one / x; |
| 354 | } |
| 355 | |
| 356 | ix = (ix << 16) | (i0 >> 16); |
| 357 | if (ix < 0x3ffed800) /* |x|<0.84375 */ |
| 358 | { |
| 359 | if (ix < 0x3fbe0000) /* |x|<2**-65 */ |
| 360 | return one - x; |
| 361 | z = x * x; |
| 362 | r = pp[0] + z * (pp[1] |
| 363 | + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5])))); |
| 364 | s = qq[0] + z * (qq[1] |
| 365 | + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z))))); |
| 366 | y = r / s; |
| 367 | if (ix < 0x3ffd8000) /* x<1/4 */ |
| 368 | { |
| 369 | return one - (x + x * y); |
| 370 | } |
| 371 | else |
| 372 | { |
| 373 | r = x * y; |
| 374 | r += (x - half); |
| 375 | return half - r; |
| 376 | } |
| 377 | } |
| 378 | if (ix < 0x3fffa000) /* 1.25 */ |
| 379 | { /* 0.84375 <= |x| < 1.25 */ |
| 380 | s = fabsl (x) - one; |
| 381 | P = pa[0] + s * (pa[1] + s * (pa[2] |
| 382 | + s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7])))))); |
| 383 | Q = qa[0] + s * (qa[1] + s * (qa[2] |
| 384 | + s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s)))))); |
| 385 | if ((se & 0x8000) == 0) |
| 386 | { |
| 387 | z = one - erx; |
| 388 | return z - P / Q; |
| 389 | } |
| 390 | else |
| 391 | { |
| 392 | z = erx + P / Q; |
| 393 | return one + z; |
| 394 | } |
| 395 | } |
| 396 | if (ix < 0x4005d600) /* 107 */ |
| 397 | { /* |x|<107 */ |
| 398 | x = fabsl (x); |
| 399 | s = one / (x * x); |
| 400 | if (ix < 0x4000b6db) /* 2.85711669921875 */ |
| 401 | { /* |x| < 1/.35 ~ 2.857143 */ |
| 402 | R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] + |
| 403 | s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8]))))))); |
| 404 | S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] + |
| 405 | s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s)))))))); |
| 406 | } |
| 407 | else if (ix < 0x4001d555) /* 6.6666259765625 */ |
| 408 | { /* 6.666 > |x| >= 1/.35 ~ 2.857143 */ |
| 409 | R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] + |
| 410 | s * (rb[5] + s * (rb[6] + s * rb[7])))))); |
| 411 | S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] + |
| 412 | s * (sb[5] + s * (sb[6] + s)))))); |
| 413 | } |
| 414 | else |
| 415 | { /* |x| >= 6.666 */ |
| 416 | if (se & 0x8000) |
| 417 | return two - tiny; /* x < -6.666 */ |
| 418 | |
| 419 | R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] + |
| 420 | s * (rc[4] + s * rc[5])))); |
| 421 | S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + |
| 422 | s * (sc[4] + s)))); |
| 423 | } |
| 424 | z = x; |
| 425 | GET_LDOUBLE_WORDS (hx, i0, i1, z); |
| 426 | i1 = 0; |
| 427 | i0 &= 0xffffff00; |
| 428 | SET_LDOUBLE_WORDS (z, hx, i0, i1); |
| 429 | r = __ieee754_expl (-z * z - 0.5625) * |
| 430 | __ieee754_expl ((z - x) * (z + x) + R / S); |
| 431 | if ((se & 0x8000) == 0) |
| 432 | { |
| 433 | long double ret = r / x; |
| 434 | if (ret == 0) |
| 435 | __set_errno (ERANGE); |
| 436 | return ret; |
| 437 | } |
| 438 | else |
| 439 | return two - r / x; |
| 440 | } |
| 441 | else |
| 442 | { |
| 443 | if ((se & 0x8000) == 0) |
| 444 | { |
| 445 | __set_errno (ERANGE); |
| 446 | return tiny * tiny; |
| 447 | } |
| 448 | else |
| 449 | return two - tiny; |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | libm_alias_ldouble (__erfc, erfc) |
| 454 | |