| 1 | /**************************************************************************/ |
| 2 | /* pool_allocator.cpp */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #include "pool_allocator.h" |
| 32 | |
| 33 | #include "core/error/error_macros.h" |
| 34 | #include "core/os/memory.h" |
| 35 | #include "core/os/os.h" |
| 36 | #include "core/string/print_string.h" |
| 37 | |
| 38 | #define COMPACT_CHUNK(m_entry, m_to_pos) \ |
| 39 | do { \ |
| 40 | void *_dst = &((unsigned char *)pool)[m_to_pos]; \ |
| 41 | void *_src = &((unsigned char *)pool)[(m_entry).pos]; \ |
| 42 | memmove(_dst, _src, aligned((m_entry).len)); \ |
| 43 | (m_entry).pos = m_to_pos; \ |
| 44 | } while (0); |
| 45 | |
| 46 | void PoolAllocator::mt_lock() const { |
| 47 | } |
| 48 | |
| 49 | void PoolAllocator::mt_unlock() const { |
| 50 | } |
| 51 | |
| 52 | bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) { |
| 53 | if (entry_count == entry_max) { |
| 54 | return false; |
| 55 | } |
| 56 | |
| 57 | for (int i = 0; i < entry_max; i++) { |
| 58 | if (entry_array[i].len == 0) { |
| 59 | *p_pos = i; |
| 60 | return true; |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | ERR_PRINT("Out of memory Chunks!" ); |
| 65 | |
| 66 | return false; // |
| 67 | } |
| 68 | |
| 69 | /** |
| 70 | * Find a hole |
| 71 | * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end |
| 72 | * @param p_for_size hole size |
| 73 | * @return false if hole found, true if no hole found |
| 74 | */ |
| 75 | bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) { |
| 76 | /* position where previous entry ends. Defaults to zero (begin of pool) */ |
| 77 | |
| 78 | int prev_entry_end_pos = 0; |
| 79 | |
| 80 | for (int i = 0; i < entry_count; i++) { |
| 81 | Entry &entry = entry_array[entry_indices[i]]; |
| 82 | |
| 83 | /* determine hole size to previous entry */ |
| 84 | |
| 85 | int hole_size = entry.pos - prev_entry_end_pos; |
| 86 | |
| 87 | /* determine if what we want fits in that hole */ |
| 88 | if (hole_size >= p_for_size) { |
| 89 | *p_pos = i; |
| 90 | return true; |
| 91 | } |
| 92 | |
| 93 | /* prepare for next one */ |
| 94 | prev_entry_end_pos = entry_end(entry); |
| 95 | } |
| 96 | |
| 97 | /* No holes between entries, check at the end..*/ |
| 98 | |
| 99 | if ((pool_size - prev_entry_end_pos) >= p_for_size) { |
| 100 | *p_pos = entry_count; |
| 101 | return true; |
| 102 | } |
| 103 | |
| 104 | return false; |
| 105 | } |
| 106 | |
| 107 | void PoolAllocator::compact(int p_up_to) { |
| 108 | uint32_t prev_entry_end_pos = 0; |
| 109 | |
| 110 | if (p_up_to < 0) { |
| 111 | p_up_to = entry_count; |
| 112 | } |
| 113 | for (int i = 0; i < p_up_to; i++) { |
| 114 | Entry &entry = entry_array[entry_indices[i]]; |
| 115 | |
| 116 | /* determine hole size to previous entry */ |
| 117 | |
| 118 | int hole_size = entry.pos - prev_entry_end_pos; |
| 119 | |
| 120 | /* if we can compact, do it */ |
| 121 | if (hole_size > 0 && !entry.lock) { |
| 122 | COMPACT_CHUNK(entry, prev_entry_end_pos); |
| 123 | } |
| 124 | |
| 125 | /* prepare for next one */ |
| 126 | prev_entry_end_pos = entry_end(entry); |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | void PoolAllocator::compact_up(int p_from) { |
| 131 | uint32_t next_entry_end_pos = pool_size; // - static_area_size; |
| 132 | |
| 133 | for (int i = entry_count - 1; i >= p_from; i--) { |
| 134 | Entry &entry = entry_array[entry_indices[i]]; |
| 135 | |
| 136 | /* determine hole size for next entry */ |
| 137 | |
| 138 | int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len)); |
| 139 | |
| 140 | /* if we can compact, do it */ |
| 141 | if (hole_size > 0 && !entry.lock) { |
| 142 | COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len))); |
| 143 | } |
| 144 | |
| 145 | /* prepare for next one */ |
| 146 | next_entry_end_pos = entry.pos; |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, const Entry *p_entry) { |
| 151 | EntryArrayPos entry_pos = entry_max; |
| 152 | |
| 153 | for (int i = 0; i < entry_count; i++) { |
| 154 | if (&entry_array[entry_indices[i]] == p_entry) { |
| 155 | entry_pos = i; |
| 156 | break; |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | if (entry_pos == entry_max) { |
| 161 | return false; |
| 162 | } |
| 163 | |
| 164 | *p_map_pos = entry_pos; |
| 165 | return true; |
| 166 | } |
| 167 | |
| 168 | PoolAllocator::ID PoolAllocator::alloc(int p_size) { |
| 169 | ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID); |
| 170 | ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID); |
| 171 | |
| 172 | mt_lock(); |
| 173 | |
| 174 | if (entry_count == entry_max) { |
| 175 | mt_unlock(); |
| 176 | ERR_PRINT("entry_count==entry_max" ); |
| 177 | return POOL_ALLOCATOR_INVALID_ID; |
| 178 | } |
| 179 | |
| 180 | int size_to_alloc = aligned(p_size); |
| 181 | |
| 182 | EntryIndicesPos new_entry_indices_pos; |
| 183 | |
| 184 | if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { |
| 185 | /* No hole could be found, try compacting mem */ |
| 186 | compact(); |
| 187 | /* Then search again */ |
| 188 | |
| 189 | if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { |
| 190 | mt_unlock(); |
| 191 | ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "Memory can't be compacted further." ); |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | EntryArrayPos new_entry_array_pos; |
| 196 | |
| 197 | bool found_free_entry = get_free_entry(&new_entry_array_pos); |
| 198 | |
| 199 | if (!found_free_entry) { |
| 200 | mt_unlock(); |
| 201 | ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "No free entry found in PoolAllocator." ); |
| 202 | } |
| 203 | |
| 204 | /* move all entry indices up, make room for this one */ |
| 205 | for (int i = entry_count; i > new_entry_indices_pos; i--) { |
| 206 | entry_indices[i] = entry_indices[i - 1]; |
| 207 | } |
| 208 | |
| 209 | entry_indices[new_entry_indices_pos] = new_entry_array_pos; |
| 210 | |
| 211 | entry_count++; |
| 212 | |
| 213 | Entry &entry = entry_array[entry_indices[new_entry_indices_pos]]; |
| 214 | |
| 215 | entry.len = p_size; |
| 216 | entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous |
| 217 | entry.lock = 0; |
| 218 | entry.check = (check_count++) & CHECK_MASK; |
| 219 | free_mem -= size_to_alloc; |
| 220 | if (free_mem < free_mem_peak) { |
| 221 | free_mem_peak = free_mem; |
| 222 | } |
| 223 | |
| 224 | ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check; |
| 225 | mt_unlock(); |
| 226 | |
| 227 | //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval ); |
| 228 | |
| 229 | return retval; |
| 230 | } |
| 231 | |
| 232 | PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) { |
| 233 | unsigned int check = p_mem & CHECK_MASK; |
| 234 | int entry = p_mem >> CHECK_BITS; |
| 235 | ERR_FAIL_INDEX_V(entry, entry_max, nullptr); |
| 236 | ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr); |
| 237 | ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr); |
| 238 | |
| 239 | return &entry_array[entry]; |
| 240 | } |
| 241 | |
| 242 | const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const { |
| 243 | unsigned int check = p_mem & CHECK_MASK; |
| 244 | int entry = p_mem >> CHECK_BITS; |
| 245 | ERR_FAIL_INDEX_V(entry, entry_max, nullptr); |
| 246 | ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr); |
| 247 | ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr); |
| 248 | |
| 249 | return &entry_array[entry]; |
| 250 | } |
| 251 | |
| 252 | void PoolAllocator::free(ID p_mem) { |
| 253 | mt_lock(); |
| 254 | Entry *e = get_entry(p_mem); |
| 255 | if (!e) { |
| 256 | mt_unlock(); |
| 257 | ERR_PRINT("!e" ); |
| 258 | return; |
| 259 | } |
| 260 | if (e->lock) { |
| 261 | mt_unlock(); |
| 262 | ERR_PRINT("e->lock" ); |
| 263 | return; |
| 264 | } |
| 265 | |
| 266 | EntryIndicesPos entry_indices_pos; |
| 267 | |
| 268 | bool index_found = find_entry_index(&entry_indices_pos, e); |
| 269 | if (!index_found) { |
| 270 | mt_unlock(); |
| 271 | ERR_FAIL_COND(!index_found); |
| 272 | } |
| 273 | |
| 274 | for (int i = entry_indices_pos; i < (entry_count - 1); i++) { |
| 275 | entry_indices[i] = entry_indices[i + 1]; |
| 276 | } |
| 277 | |
| 278 | entry_count--; |
| 279 | free_mem += aligned(e->len); |
| 280 | e->clear(); |
| 281 | mt_unlock(); |
| 282 | } |
| 283 | |
| 284 | int PoolAllocator::get_size(ID p_mem) const { |
| 285 | int size; |
| 286 | mt_lock(); |
| 287 | |
| 288 | const Entry *e = get_entry(p_mem); |
| 289 | if (!e) { |
| 290 | mt_unlock(); |
| 291 | ERR_PRINT("!e" ); |
| 292 | return 0; |
| 293 | } |
| 294 | |
| 295 | size = e->len; |
| 296 | |
| 297 | mt_unlock(); |
| 298 | |
| 299 | return size; |
| 300 | } |
| 301 | |
| 302 | Error PoolAllocator::resize(ID p_mem, int p_new_size) { |
| 303 | mt_lock(); |
| 304 | Entry *e = get_entry(p_mem); |
| 305 | |
| 306 | if (!e) { |
| 307 | mt_unlock(); |
| 308 | ERR_FAIL_NULL_V(e, ERR_INVALID_PARAMETER); |
| 309 | } |
| 310 | |
| 311 | if (needs_locking && e->lock) { |
| 312 | mt_unlock(); |
| 313 | ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE); |
| 314 | } |
| 315 | |
| 316 | uint32_t alloc_size = aligned(p_new_size); |
| 317 | |
| 318 | if ((uint32_t)aligned(e->len) == alloc_size) { |
| 319 | e->len = p_new_size; |
| 320 | mt_unlock(); |
| 321 | return OK; |
| 322 | } else if (e->len > (uint32_t)p_new_size) { |
| 323 | free_mem += aligned(e->len); |
| 324 | free_mem -= alloc_size; |
| 325 | e->len = p_new_size; |
| 326 | mt_unlock(); |
| 327 | return OK; |
| 328 | } |
| 329 | |
| 330 | //p_new_size = align(p_new_size) |
| 331 | int _free = free_mem; // - static_area_size; |
| 332 | |
| 333 | if (uint32_t(_free + aligned(e->len)) < alloc_size) { |
| 334 | mt_unlock(); |
| 335 | ERR_FAIL_V(ERR_OUT_OF_MEMORY); |
| 336 | } |
| 337 | |
| 338 | EntryIndicesPos entry_indices_pos; |
| 339 | |
| 340 | bool index_found = find_entry_index(&entry_indices_pos, e); |
| 341 | |
| 342 | if (!index_found) { |
| 343 | mt_unlock(); |
| 344 | ERR_FAIL_COND_V(!index_found, ERR_BUG); |
| 345 | } |
| 346 | |
| 347 | //no need to move stuff around, it fits before the next block |
| 348 | uint32_t next_pos; |
| 349 | if (entry_indices_pos + 1 == entry_count) { |
| 350 | next_pos = pool_size; // - static_area_size; |
| 351 | } else { |
| 352 | next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos; |
| 353 | } |
| 354 | |
| 355 | if ((next_pos - e->pos) > alloc_size) { |
| 356 | free_mem += aligned(e->len); |
| 357 | e->len = p_new_size; |
| 358 | free_mem -= alloc_size; |
| 359 | mt_unlock(); |
| 360 | return OK; |
| 361 | } |
| 362 | //it doesn't fit, compact around BEFORE current index (make room behind) |
| 363 | |
| 364 | compact(entry_indices_pos + 1); |
| 365 | |
| 366 | if ((next_pos - e->pos) > alloc_size) { |
| 367 | //now fits! hooray! |
| 368 | free_mem += aligned(e->len); |
| 369 | e->len = p_new_size; |
| 370 | free_mem -= alloc_size; |
| 371 | mt_unlock(); |
| 372 | if (free_mem < free_mem_peak) { |
| 373 | free_mem_peak = free_mem; |
| 374 | } |
| 375 | return OK; |
| 376 | } |
| 377 | |
| 378 | //STILL doesn't fit, compact around AFTER current index (make room after) |
| 379 | |
| 380 | compact_up(entry_indices_pos + 1); |
| 381 | |
| 382 | if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) { |
| 383 | //now fits! hooray! |
| 384 | free_mem += aligned(e->len); |
| 385 | e->len = p_new_size; |
| 386 | free_mem -= alloc_size; |
| 387 | mt_unlock(); |
| 388 | if (free_mem < free_mem_peak) { |
| 389 | free_mem_peak = free_mem; |
| 390 | } |
| 391 | return OK; |
| 392 | } |
| 393 | |
| 394 | mt_unlock(); |
| 395 | ERR_FAIL_V(ERR_OUT_OF_MEMORY); |
| 396 | } |
| 397 | |
| 398 | Error PoolAllocator::lock(ID p_mem) { |
| 399 | if (!needs_locking) { |
| 400 | return OK; |
| 401 | } |
| 402 | mt_lock(); |
| 403 | Entry *e = get_entry(p_mem); |
| 404 | if (!e) { |
| 405 | mt_unlock(); |
| 406 | ERR_PRINT("!e" ); |
| 407 | return ERR_INVALID_PARAMETER; |
| 408 | } |
| 409 | e->lock++; |
| 410 | mt_unlock(); |
| 411 | return OK; |
| 412 | } |
| 413 | |
| 414 | bool PoolAllocator::is_locked(ID p_mem) const { |
| 415 | if (!needs_locking) { |
| 416 | return false; |
| 417 | } |
| 418 | |
| 419 | mt_lock(); |
| 420 | const Entry *e = const_cast<PoolAllocator *>(this)->get_entry(p_mem); |
| 421 | if (!e) { |
| 422 | mt_unlock(); |
| 423 | ERR_PRINT("!e" ); |
| 424 | return false; |
| 425 | } |
| 426 | bool locked = e->lock; |
| 427 | mt_unlock(); |
| 428 | return locked; |
| 429 | } |
| 430 | |
| 431 | const void *PoolAllocator::get(ID p_mem) const { |
| 432 | if (!needs_locking) { |
| 433 | const Entry *e = get_entry(p_mem); |
| 434 | ERR_FAIL_NULL_V(e, nullptr); |
| 435 | return &pool[e->pos]; |
| 436 | } |
| 437 | |
| 438 | mt_lock(); |
| 439 | const Entry *e = get_entry(p_mem); |
| 440 | |
| 441 | if (!e) { |
| 442 | mt_unlock(); |
| 443 | ERR_FAIL_NULL_V(e, nullptr); |
| 444 | } |
| 445 | if (e->lock == 0) { |
| 446 | mt_unlock(); |
| 447 | ERR_PRINT("e->lock == 0" ); |
| 448 | return nullptr; |
| 449 | } |
| 450 | |
| 451 | if ((int)e->pos >= pool_size) { |
| 452 | mt_unlock(); |
| 453 | ERR_PRINT("e->pos<0 || e->pos>=pool_size" ); |
| 454 | return nullptr; |
| 455 | } |
| 456 | const void *ptr = &pool[e->pos]; |
| 457 | |
| 458 | mt_unlock(); |
| 459 | |
| 460 | return ptr; |
| 461 | } |
| 462 | |
| 463 | void *PoolAllocator::get(ID p_mem) { |
| 464 | if (!needs_locking) { |
| 465 | Entry *e = get_entry(p_mem); |
| 466 | ERR_FAIL_NULL_V(e, nullptr); |
| 467 | return &pool[e->pos]; |
| 468 | } |
| 469 | |
| 470 | mt_lock(); |
| 471 | Entry *e = get_entry(p_mem); |
| 472 | |
| 473 | if (!e) { |
| 474 | mt_unlock(); |
| 475 | ERR_FAIL_NULL_V(e, nullptr); |
| 476 | } |
| 477 | if (e->lock == 0) { |
| 478 | mt_unlock(); |
| 479 | ERR_PRINT("e->lock == 0" ); |
| 480 | return nullptr; |
| 481 | } |
| 482 | |
| 483 | if ((int)e->pos >= pool_size) { |
| 484 | mt_unlock(); |
| 485 | ERR_PRINT("e->pos<0 || e->pos>=pool_size" ); |
| 486 | return nullptr; |
| 487 | } |
| 488 | void *ptr = &pool[e->pos]; |
| 489 | |
| 490 | mt_unlock(); |
| 491 | |
| 492 | return ptr; |
| 493 | } |
| 494 | |
| 495 | void PoolAllocator::unlock(ID p_mem) { |
| 496 | if (!needs_locking) { |
| 497 | return; |
| 498 | } |
| 499 | mt_lock(); |
| 500 | Entry *e = get_entry(p_mem); |
| 501 | if (!e) { |
| 502 | mt_unlock(); |
| 503 | ERR_FAIL_NULL(e); |
| 504 | } |
| 505 | if (e->lock == 0) { |
| 506 | mt_unlock(); |
| 507 | ERR_PRINT("e->lock == 0" ); |
| 508 | return; |
| 509 | } |
| 510 | e->lock--; |
| 511 | mt_unlock(); |
| 512 | } |
| 513 | |
| 514 | int PoolAllocator::get_used_mem() const { |
| 515 | return pool_size - free_mem; |
| 516 | } |
| 517 | |
| 518 | int PoolAllocator::get_free_peak() { |
| 519 | return free_mem_peak; |
| 520 | } |
| 521 | |
| 522 | int PoolAllocator::get_free_mem() { |
| 523 | return free_mem; |
| 524 | } |
| 525 | |
| 526 | void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) { |
| 527 | pool = (uint8_t *)p_mem; |
| 528 | pool_size = p_size; |
| 529 | |
| 530 | entry_array = memnew_arr(Entry, p_max_entries); |
| 531 | entry_indices = memnew_arr(int, p_max_entries); |
| 532 | entry_max = p_max_entries; |
| 533 | entry_count = 0; |
| 534 | |
| 535 | free_mem = p_size; |
| 536 | free_mem_peak = p_size; |
| 537 | |
| 538 | check_count = 0; |
| 539 | } |
| 540 | |
| 541 | PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) { |
| 542 | mem_ptr = memalloc(p_size); |
| 543 | ERR_FAIL_NULL(mem_ptr); |
| 544 | align = 1; |
| 545 | create_pool(mem_ptr, p_size, p_max_entries); |
| 546 | needs_locking = p_needs_locking; |
| 547 | } |
| 548 | |
| 549 | PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) { |
| 550 | if (p_align > 1) { |
| 551 | uint8_t *mem8 = (uint8_t *)p_mem; |
| 552 | uint64_t ofs = (uint64_t)mem8; |
| 553 | if (ofs % p_align) { |
| 554 | int dif = p_align - (ofs % p_align); |
| 555 | mem8 += p_align - (ofs % p_align); |
| 556 | p_size -= dif; |
| 557 | p_mem = (void *)mem8; |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | create_pool(p_mem, p_size, p_max_entries); |
| 562 | needs_locking = p_needs_locking; |
| 563 | align = p_align; |
| 564 | mem_ptr = nullptr; |
| 565 | } |
| 566 | |
| 567 | PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) { |
| 568 | ERR_FAIL_COND(p_align < 1); |
| 569 | mem_ptr = Memory::alloc_static(p_size + p_align, true); |
| 570 | uint8_t *mem8 = (uint8_t *)mem_ptr; |
| 571 | uint64_t ofs = (uint64_t)mem8; |
| 572 | if (ofs % p_align) { |
| 573 | mem8 += p_align - (ofs % p_align); |
| 574 | } |
| 575 | create_pool(mem8, p_size, p_max_entries); |
| 576 | needs_locking = p_needs_locking; |
| 577 | align = p_align; |
| 578 | } |
| 579 | |
| 580 | PoolAllocator::~PoolAllocator() { |
| 581 | if (mem_ptr) { |
| 582 | memfree(mem_ptr); |
| 583 | } |
| 584 | |
| 585 | memdelete_arr(entry_array); |
| 586 | memdelete_arr(entry_indices); |
| 587 | } |
| 588 | |