| 1 | /**************************************************************************/ |
| 2 | /* easing_equations.h */ |
| 3 | /**************************************************************************/ |
| 4 | /* This file is part of: */ |
| 5 | /* GODOT ENGINE */ |
| 6 | /* https://godotengine.org */ |
| 7 | /**************************************************************************/ |
| 8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
| 9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
| 10 | /* */ |
| 11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
| 12 | /* a copy of this software and associated documentation files (the */ |
| 13 | /* "Software"), to deal in the Software without restriction, including */ |
| 14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
| 15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
| 16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
| 17 | /* the following conditions: */ |
| 18 | /* */ |
| 19 | /* The above copyright notice and this permission notice shall be */ |
| 20 | /* included in all copies or substantial portions of the Software. */ |
| 21 | /* */ |
| 22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
| 23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
| 24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
| 25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
| 26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
| 27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
| 28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
| 29 | /**************************************************************************/ |
| 30 | |
| 31 | #ifndef EASING_EQUATIONS_H |
| 32 | #define EASING_EQUATIONS_H |
| 33 | |
| 34 | /* |
| 35 | * Derived from Robert Penner's easing equations: http://robertpenner.com/easing/ |
| 36 | * |
| 37 | * Copyright (c) 2001 Robert Penner |
| 38 | * |
| 39 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 40 | * of this software and associated documentation files (the "Software"), to deal |
| 41 | * in the Software without restriction, including without limitation the rights |
| 42 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 43 | * copies of the Software, and to permit persons to whom the Software is |
| 44 | * furnished to do so, subject to the following conditions: |
| 45 | * |
| 46 | * The above copyright notice and this permission notice shall be included in all |
| 47 | * copies or substantial portions of the Software. |
| 48 | * |
| 49 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 50 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 51 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 52 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 53 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 54 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 55 | * SOFTWARE. |
| 56 | */ |
| 57 | |
| 58 | namespace linear { |
| 59 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 60 | return c * t / d + b; |
| 61 | } |
| 62 | }; // namespace linear |
| 63 | |
| 64 | namespace sine { |
| 65 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 66 | return -c * cos(t / d * (Math_PI / 2)) + c + b; |
| 67 | } |
| 68 | |
| 69 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 70 | return c * sin(t / d * (Math_PI / 2)) + b; |
| 71 | } |
| 72 | |
| 73 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 74 | return -c / 2 * (cos(Math_PI * t / d) - 1) + b; |
| 75 | } |
| 76 | |
| 77 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 78 | if (t < d / 2) { |
| 79 | return out(t * 2, b, c / 2, d); |
| 80 | } |
| 81 | real_t h = c / 2; |
| 82 | return in(t * 2 - d, b + h, h, d); |
| 83 | } |
| 84 | }; // namespace sine |
| 85 | |
| 86 | namespace quint { |
| 87 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 88 | return c * pow(t / d, 5) + b; |
| 89 | } |
| 90 | |
| 91 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 92 | return c * (pow(t / d - 1, 5) + 1) + b; |
| 93 | } |
| 94 | |
| 95 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 96 | t = t / d * 2; |
| 97 | |
| 98 | if (t < 1) { |
| 99 | return c / 2 * pow(t, 5) + b; |
| 100 | } |
| 101 | return c / 2 * (pow(t - 2, 5) + 2) + b; |
| 102 | } |
| 103 | |
| 104 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 105 | if (t < d / 2) { |
| 106 | return out(t * 2, b, c / 2, d); |
| 107 | } |
| 108 | real_t h = c / 2; |
| 109 | return in(t * 2 - d, b + h, h, d); |
| 110 | } |
| 111 | }; // namespace quint |
| 112 | |
| 113 | namespace quart { |
| 114 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 115 | return c * pow(t / d, 4) + b; |
| 116 | } |
| 117 | |
| 118 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 119 | return -c * (pow(t / d - 1, 4) - 1) + b; |
| 120 | } |
| 121 | |
| 122 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 123 | t = t / d * 2; |
| 124 | |
| 125 | if (t < 1) { |
| 126 | return c / 2 * pow(t, 4) + b; |
| 127 | } |
| 128 | return -c / 2 * (pow(t - 2, 4) - 2) + b; |
| 129 | } |
| 130 | |
| 131 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 132 | if (t < d / 2) { |
| 133 | return out(t * 2, b, c / 2, d); |
| 134 | } |
| 135 | real_t h = c / 2; |
| 136 | return in(t * 2 - d, b + h, h, d); |
| 137 | } |
| 138 | }; // namespace quart |
| 139 | |
| 140 | namespace quad { |
| 141 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 142 | return c * pow(t / d, 2) + b; |
| 143 | } |
| 144 | |
| 145 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 146 | t /= d; |
| 147 | return -c * t * (t - 2) + b; |
| 148 | } |
| 149 | |
| 150 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 151 | t = t / d * 2; |
| 152 | |
| 153 | if (t < 1) { |
| 154 | return c / 2 * pow(t, 2) + b; |
| 155 | } |
| 156 | return -c / 2 * ((t - 1) * (t - 3) - 1) + b; |
| 157 | } |
| 158 | |
| 159 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 160 | if (t < d / 2) { |
| 161 | return out(t * 2, b, c / 2, d); |
| 162 | } |
| 163 | real_t h = c / 2; |
| 164 | return in(t * 2 - d, b + h, h, d); |
| 165 | } |
| 166 | }; // namespace quad |
| 167 | |
| 168 | namespace expo { |
| 169 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 170 | if (t == 0) { |
| 171 | return b; |
| 172 | } |
| 173 | return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001; |
| 174 | } |
| 175 | |
| 176 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 177 | if (t == d) { |
| 178 | return b + c; |
| 179 | } |
| 180 | return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b; |
| 181 | } |
| 182 | |
| 183 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 184 | if (t == 0) { |
| 185 | return b; |
| 186 | } |
| 187 | |
| 188 | if (t == d) { |
| 189 | return b + c; |
| 190 | } |
| 191 | |
| 192 | t = t / d * 2; |
| 193 | |
| 194 | if (t < 1) { |
| 195 | return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005; |
| 196 | } |
| 197 | return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b; |
| 198 | } |
| 199 | |
| 200 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 201 | if (t < d / 2) { |
| 202 | return out(t * 2, b, c / 2, d); |
| 203 | } |
| 204 | real_t h = c / 2; |
| 205 | return in(t * 2 - d, b + h, h, d); |
| 206 | } |
| 207 | }; // namespace expo |
| 208 | |
| 209 | namespace elastic { |
| 210 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 211 | if (t == 0) { |
| 212 | return b; |
| 213 | } |
| 214 | |
| 215 | t /= d; |
| 216 | if (t == 1) { |
| 217 | return b + c; |
| 218 | } |
| 219 | |
| 220 | t -= 1; |
| 221 | float p = d * 0.3f; |
| 222 | float a = c * pow(2, 10 * t); |
| 223 | float s = p / 4; |
| 224 | |
| 225 | return -(a * sin((t * d - s) * (2 * Math_PI) / p)) + b; |
| 226 | } |
| 227 | |
| 228 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 229 | if (t == 0) { |
| 230 | return b; |
| 231 | } |
| 232 | |
| 233 | t /= d; |
| 234 | if (t == 1) { |
| 235 | return b + c; |
| 236 | } |
| 237 | |
| 238 | float p = d * 0.3f; |
| 239 | float s = p / 4; |
| 240 | |
| 241 | return (c * pow(2, -10 * t) * sin((t * d - s) * (2 * Math_PI) / p) + c + b); |
| 242 | } |
| 243 | |
| 244 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 245 | if (t == 0) { |
| 246 | return b; |
| 247 | } |
| 248 | |
| 249 | if ((t /= d / 2) == 2) { |
| 250 | return b + c; |
| 251 | } |
| 252 | |
| 253 | float p = d * (0.3f * 1.5f); |
| 254 | float a = c; |
| 255 | float s = p / 4; |
| 256 | |
| 257 | if (t < 1) { |
| 258 | t -= 1; |
| 259 | a *= pow(2, 10 * t); |
| 260 | return -0.5f * (a * sin((t * d - s) * (2 * Math_PI) / p)) + b; |
| 261 | } |
| 262 | |
| 263 | t -= 1; |
| 264 | a *= pow(2, -10 * t); |
| 265 | return a * sin((t * d - s) * (2 * Math_PI) / p) * 0.5f + c + b; |
| 266 | } |
| 267 | |
| 268 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 269 | if (t < d / 2) { |
| 270 | return out(t * 2, b, c / 2, d); |
| 271 | } |
| 272 | real_t h = c / 2; |
| 273 | return in(t * 2 - d, b + h, h, d); |
| 274 | } |
| 275 | }; // namespace elastic |
| 276 | |
| 277 | namespace cubic { |
| 278 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 279 | t /= d; |
| 280 | return c * t * t * t + b; |
| 281 | } |
| 282 | |
| 283 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 284 | t = t / d - 1; |
| 285 | return c * (t * t * t + 1) + b; |
| 286 | } |
| 287 | |
| 288 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 289 | t /= d / 2; |
| 290 | if (t < 1) { |
| 291 | return c / 2 * t * t * t + b; |
| 292 | } |
| 293 | |
| 294 | t -= 2; |
| 295 | return c / 2 * (t * t * t + 2) + b; |
| 296 | } |
| 297 | |
| 298 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 299 | if (t < d / 2) { |
| 300 | return out(t * 2, b, c / 2, d); |
| 301 | } |
| 302 | real_t h = c / 2; |
| 303 | return in(t * 2 - d, b + h, h, d); |
| 304 | } |
| 305 | }; // namespace cubic |
| 306 | |
| 307 | namespace circ { |
| 308 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 309 | t /= d; |
| 310 | return -c * (sqrt(1 - t * t) - 1) + b; |
| 311 | } |
| 312 | |
| 313 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 314 | t = t / d - 1; |
| 315 | return c * sqrt(1 - t * t) + b; |
| 316 | } |
| 317 | |
| 318 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 319 | t /= d / 2; |
| 320 | if (t < 1) { |
| 321 | return -c / 2 * (sqrt(1 - t * t) - 1) + b; |
| 322 | } |
| 323 | |
| 324 | t -= 2; |
| 325 | return c / 2 * (sqrt(1 - t * t) + 1) + b; |
| 326 | } |
| 327 | |
| 328 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 329 | if (t < d / 2) { |
| 330 | return out(t * 2, b, c / 2, d); |
| 331 | } |
| 332 | real_t h = c / 2; |
| 333 | return in(t * 2 - d, b + h, h, d); |
| 334 | } |
| 335 | }; // namespace circ |
| 336 | |
| 337 | namespace bounce { |
| 338 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 339 | t /= d; |
| 340 | |
| 341 | if (t < (1 / 2.75f)) { |
| 342 | return c * (7.5625f * t * t) + b; |
| 343 | } |
| 344 | |
| 345 | if (t < (2 / 2.75f)) { |
| 346 | t -= 1.5f / 2.75f; |
| 347 | return c * (7.5625f * t * t + 0.75f) + b; |
| 348 | } |
| 349 | |
| 350 | if (t < (2.5 / 2.75)) { |
| 351 | t -= 2.25f / 2.75f; |
| 352 | return c * (7.5625f * t * t + 0.9375f) + b; |
| 353 | } |
| 354 | |
| 355 | t -= 2.625f / 2.75f; |
| 356 | return c * (7.5625f * t * t + 0.984375f) + b; |
| 357 | } |
| 358 | |
| 359 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 360 | return c - out(d - t, 0, c, d) + b; |
| 361 | } |
| 362 | |
| 363 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 364 | if (t < d / 2) { |
| 365 | return in(t * 2, b, c / 2, d); |
| 366 | } |
| 367 | real_t h = c / 2; |
| 368 | return out(t * 2 - d, b + h, h, d); |
| 369 | } |
| 370 | |
| 371 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 372 | if (t < d / 2) { |
| 373 | return out(t * 2, b, c / 2, d); |
| 374 | } |
| 375 | real_t h = c / 2; |
| 376 | return in(t * 2 - d, b + h, h, d); |
| 377 | } |
| 378 | }; // namespace bounce |
| 379 | |
| 380 | namespace back { |
| 381 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 382 | float s = 1.70158f; |
| 383 | t /= d; |
| 384 | |
| 385 | return c * t * t * ((s + 1) * t - s) + b; |
| 386 | } |
| 387 | |
| 388 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 389 | float s = 1.70158f; |
| 390 | t = t / d - 1; |
| 391 | |
| 392 | return c * (t * t * ((s + 1) * t + s) + 1) + b; |
| 393 | } |
| 394 | |
| 395 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 396 | float s = 1.70158f * 1.525f; |
| 397 | t /= d / 2; |
| 398 | |
| 399 | if (t < 1) { |
| 400 | return c / 2 * (t * t * ((s + 1) * t - s)) + b; |
| 401 | } |
| 402 | |
| 403 | t -= 2; |
| 404 | return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b; |
| 405 | } |
| 406 | |
| 407 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 408 | if (t < d / 2) { |
| 409 | return out(t * 2, b, c / 2, d); |
| 410 | } |
| 411 | real_t h = c / 2; |
| 412 | return in(t * 2 - d, b + h, h, d); |
| 413 | } |
| 414 | }; // namespace back |
| 415 | |
| 416 | namespace spring { |
| 417 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
| 418 | t /= d; |
| 419 | real_t s = 1.0 - t; |
| 420 | t = (sin(t * Math_PI * (0.2 + 2.5 * t * t * t)) * pow(s, 2.2) + t) * (1.0 + (1.2 * s)); |
| 421 | return c * t + b; |
| 422 | } |
| 423 | |
| 424 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
| 425 | return c - out(d - t, 0, c, d) + b; |
| 426 | } |
| 427 | |
| 428 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
| 429 | if (t < d / 2) { |
| 430 | return in(t * 2, b, c / 2, d); |
| 431 | } |
| 432 | real_t h = c / 2; |
| 433 | return out(t * 2 - d, b + h, h, d); |
| 434 | } |
| 435 | |
| 436 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
| 437 | if (t < d / 2) { |
| 438 | return out(t * 2, b, c / 2, d); |
| 439 | } |
| 440 | real_t h = c / 2; |
| 441 | return in(t * 2 - d, b + h, h, d); |
| 442 | } |
| 443 | }; // namespace spring |
| 444 | |
| 445 | #endif // EASING_EQUATIONS_H |
| 446 | |