1 | /**************************************************************************/ |
2 | /* easing_equations.h */ |
3 | /**************************************************************************/ |
4 | /* This file is part of: */ |
5 | /* GODOT ENGINE */ |
6 | /* https://godotengine.org */ |
7 | /**************************************************************************/ |
8 | /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ |
9 | /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ |
10 | /* */ |
11 | /* Permission is hereby granted, free of charge, to any person obtaining */ |
12 | /* a copy of this software and associated documentation files (the */ |
13 | /* "Software"), to deal in the Software without restriction, including */ |
14 | /* without limitation the rights to use, copy, modify, merge, publish, */ |
15 | /* distribute, sublicense, and/or sell copies of the Software, and to */ |
16 | /* permit persons to whom the Software is furnished to do so, subject to */ |
17 | /* the following conditions: */ |
18 | /* */ |
19 | /* The above copyright notice and this permission notice shall be */ |
20 | /* included in all copies or substantial portions of the Software. */ |
21 | /* */ |
22 | /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ |
23 | /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ |
24 | /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ |
25 | /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ |
26 | /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ |
27 | /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ |
28 | /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ |
29 | /**************************************************************************/ |
30 | |
31 | #ifndef EASING_EQUATIONS_H |
32 | #define EASING_EQUATIONS_H |
33 | |
34 | /* |
35 | * Derived from Robert Penner's easing equations: http://robertpenner.com/easing/ |
36 | * |
37 | * Copyright (c) 2001 Robert Penner |
38 | * |
39 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
40 | * of this software and associated documentation files (the "Software"), to deal |
41 | * in the Software without restriction, including without limitation the rights |
42 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
43 | * copies of the Software, and to permit persons to whom the Software is |
44 | * furnished to do so, subject to the following conditions: |
45 | * |
46 | * The above copyright notice and this permission notice shall be included in all |
47 | * copies or substantial portions of the Software. |
48 | * |
49 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
50 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
51 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
52 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
53 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
54 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
55 | * SOFTWARE. |
56 | */ |
57 | |
58 | namespace linear { |
59 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
60 | return c * t / d + b; |
61 | } |
62 | }; // namespace linear |
63 | |
64 | namespace sine { |
65 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
66 | return -c * cos(t / d * (Math_PI / 2)) + c + b; |
67 | } |
68 | |
69 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
70 | return c * sin(t / d * (Math_PI / 2)) + b; |
71 | } |
72 | |
73 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
74 | return -c / 2 * (cos(Math_PI * t / d) - 1) + b; |
75 | } |
76 | |
77 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
78 | if (t < d / 2) { |
79 | return out(t * 2, b, c / 2, d); |
80 | } |
81 | real_t h = c / 2; |
82 | return in(t * 2 - d, b + h, h, d); |
83 | } |
84 | }; // namespace sine |
85 | |
86 | namespace quint { |
87 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
88 | return c * pow(t / d, 5) + b; |
89 | } |
90 | |
91 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
92 | return c * (pow(t / d - 1, 5) + 1) + b; |
93 | } |
94 | |
95 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
96 | t = t / d * 2; |
97 | |
98 | if (t < 1) { |
99 | return c / 2 * pow(t, 5) + b; |
100 | } |
101 | return c / 2 * (pow(t - 2, 5) + 2) + b; |
102 | } |
103 | |
104 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
105 | if (t < d / 2) { |
106 | return out(t * 2, b, c / 2, d); |
107 | } |
108 | real_t h = c / 2; |
109 | return in(t * 2 - d, b + h, h, d); |
110 | } |
111 | }; // namespace quint |
112 | |
113 | namespace quart { |
114 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
115 | return c * pow(t / d, 4) + b; |
116 | } |
117 | |
118 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
119 | return -c * (pow(t / d - 1, 4) - 1) + b; |
120 | } |
121 | |
122 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
123 | t = t / d * 2; |
124 | |
125 | if (t < 1) { |
126 | return c / 2 * pow(t, 4) + b; |
127 | } |
128 | return -c / 2 * (pow(t - 2, 4) - 2) + b; |
129 | } |
130 | |
131 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
132 | if (t < d / 2) { |
133 | return out(t * 2, b, c / 2, d); |
134 | } |
135 | real_t h = c / 2; |
136 | return in(t * 2 - d, b + h, h, d); |
137 | } |
138 | }; // namespace quart |
139 | |
140 | namespace quad { |
141 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
142 | return c * pow(t / d, 2) + b; |
143 | } |
144 | |
145 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
146 | t /= d; |
147 | return -c * t * (t - 2) + b; |
148 | } |
149 | |
150 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
151 | t = t / d * 2; |
152 | |
153 | if (t < 1) { |
154 | return c / 2 * pow(t, 2) + b; |
155 | } |
156 | return -c / 2 * ((t - 1) * (t - 3) - 1) + b; |
157 | } |
158 | |
159 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
160 | if (t < d / 2) { |
161 | return out(t * 2, b, c / 2, d); |
162 | } |
163 | real_t h = c / 2; |
164 | return in(t * 2 - d, b + h, h, d); |
165 | } |
166 | }; // namespace quad |
167 | |
168 | namespace expo { |
169 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
170 | if (t == 0) { |
171 | return b; |
172 | } |
173 | return c * pow(2, 10 * (t / d - 1)) + b - c * 0.001; |
174 | } |
175 | |
176 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
177 | if (t == d) { |
178 | return b + c; |
179 | } |
180 | return c * 1.001 * (-pow(2, -10 * t / d) + 1) + b; |
181 | } |
182 | |
183 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
184 | if (t == 0) { |
185 | return b; |
186 | } |
187 | |
188 | if (t == d) { |
189 | return b + c; |
190 | } |
191 | |
192 | t = t / d * 2; |
193 | |
194 | if (t < 1) { |
195 | return c / 2 * pow(2, 10 * (t - 1)) + b - c * 0.0005; |
196 | } |
197 | return c / 2 * 1.0005 * (-pow(2, -10 * (t - 1)) + 2) + b; |
198 | } |
199 | |
200 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
201 | if (t < d / 2) { |
202 | return out(t * 2, b, c / 2, d); |
203 | } |
204 | real_t h = c / 2; |
205 | return in(t * 2 - d, b + h, h, d); |
206 | } |
207 | }; // namespace expo |
208 | |
209 | namespace elastic { |
210 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
211 | if (t == 0) { |
212 | return b; |
213 | } |
214 | |
215 | t /= d; |
216 | if (t == 1) { |
217 | return b + c; |
218 | } |
219 | |
220 | t -= 1; |
221 | float p = d * 0.3f; |
222 | float a = c * pow(2, 10 * t); |
223 | float s = p / 4; |
224 | |
225 | return -(a * sin((t * d - s) * (2 * Math_PI) / p)) + b; |
226 | } |
227 | |
228 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
229 | if (t == 0) { |
230 | return b; |
231 | } |
232 | |
233 | t /= d; |
234 | if (t == 1) { |
235 | return b + c; |
236 | } |
237 | |
238 | float p = d * 0.3f; |
239 | float s = p / 4; |
240 | |
241 | return (c * pow(2, -10 * t) * sin((t * d - s) * (2 * Math_PI) / p) + c + b); |
242 | } |
243 | |
244 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
245 | if (t == 0) { |
246 | return b; |
247 | } |
248 | |
249 | if ((t /= d / 2) == 2) { |
250 | return b + c; |
251 | } |
252 | |
253 | float p = d * (0.3f * 1.5f); |
254 | float a = c; |
255 | float s = p / 4; |
256 | |
257 | if (t < 1) { |
258 | t -= 1; |
259 | a *= pow(2, 10 * t); |
260 | return -0.5f * (a * sin((t * d - s) * (2 * Math_PI) / p)) + b; |
261 | } |
262 | |
263 | t -= 1; |
264 | a *= pow(2, -10 * t); |
265 | return a * sin((t * d - s) * (2 * Math_PI) / p) * 0.5f + c + b; |
266 | } |
267 | |
268 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
269 | if (t < d / 2) { |
270 | return out(t * 2, b, c / 2, d); |
271 | } |
272 | real_t h = c / 2; |
273 | return in(t * 2 - d, b + h, h, d); |
274 | } |
275 | }; // namespace elastic |
276 | |
277 | namespace cubic { |
278 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
279 | t /= d; |
280 | return c * t * t * t + b; |
281 | } |
282 | |
283 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
284 | t = t / d - 1; |
285 | return c * (t * t * t + 1) + b; |
286 | } |
287 | |
288 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
289 | t /= d / 2; |
290 | if (t < 1) { |
291 | return c / 2 * t * t * t + b; |
292 | } |
293 | |
294 | t -= 2; |
295 | return c / 2 * (t * t * t + 2) + b; |
296 | } |
297 | |
298 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
299 | if (t < d / 2) { |
300 | return out(t * 2, b, c / 2, d); |
301 | } |
302 | real_t h = c / 2; |
303 | return in(t * 2 - d, b + h, h, d); |
304 | } |
305 | }; // namespace cubic |
306 | |
307 | namespace circ { |
308 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
309 | t /= d; |
310 | return -c * (sqrt(1 - t * t) - 1) + b; |
311 | } |
312 | |
313 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
314 | t = t / d - 1; |
315 | return c * sqrt(1 - t * t) + b; |
316 | } |
317 | |
318 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
319 | t /= d / 2; |
320 | if (t < 1) { |
321 | return -c / 2 * (sqrt(1 - t * t) - 1) + b; |
322 | } |
323 | |
324 | t -= 2; |
325 | return c / 2 * (sqrt(1 - t * t) + 1) + b; |
326 | } |
327 | |
328 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
329 | if (t < d / 2) { |
330 | return out(t * 2, b, c / 2, d); |
331 | } |
332 | real_t h = c / 2; |
333 | return in(t * 2 - d, b + h, h, d); |
334 | } |
335 | }; // namespace circ |
336 | |
337 | namespace bounce { |
338 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
339 | t /= d; |
340 | |
341 | if (t < (1 / 2.75f)) { |
342 | return c * (7.5625f * t * t) + b; |
343 | } |
344 | |
345 | if (t < (2 / 2.75f)) { |
346 | t -= 1.5f / 2.75f; |
347 | return c * (7.5625f * t * t + 0.75f) + b; |
348 | } |
349 | |
350 | if (t < (2.5 / 2.75)) { |
351 | t -= 2.25f / 2.75f; |
352 | return c * (7.5625f * t * t + 0.9375f) + b; |
353 | } |
354 | |
355 | t -= 2.625f / 2.75f; |
356 | return c * (7.5625f * t * t + 0.984375f) + b; |
357 | } |
358 | |
359 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
360 | return c - out(d - t, 0, c, d) + b; |
361 | } |
362 | |
363 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
364 | if (t < d / 2) { |
365 | return in(t * 2, b, c / 2, d); |
366 | } |
367 | real_t h = c / 2; |
368 | return out(t * 2 - d, b + h, h, d); |
369 | } |
370 | |
371 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
372 | if (t < d / 2) { |
373 | return out(t * 2, b, c / 2, d); |
374 | } |
375 | real_t h = c / 2; |
376 | return in(t * 2 - d, b + h, h, d); |
377 | } |
378 | }; // namespace bounce |
379 | |
380 | namespace back { |
381 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
382 | float s = 1.70158f; |
383 | t /= d; |
384 | |
385 | return c * t * t * ((s + 1) * t - s) + b; |
386 | } |
387 | |
388 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
389 | float s = 1.70158f; |
390 | t = t / d - 1; |
391 | |
392 | return c * (t * t * ((s + 1) * t + s) + 1) + b; |
393 | } |
394 | |
395 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
396 | float s = 1.70158f * 1.525f; |
397 | t /= d / 2; |
398 | |
399 | if (t < 1) { |
400 | return c / 2 * (t * t * ((s + 1) * t - s)) + b; |
401 | } |
402 | |
403 | t -= 2; |
404 | return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b; |
405 | } |
406 | |
407 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
408 | if (t < d / 2) { |
409 | return out(t * 2, b, c / 2, d); |
410 | } |
411 | real_t h = c / 2; |
412 | return in(t * 2 - d, b + h, h, d); |
413 | } |
414 | }; // namespace back |
415 | |
416 | namespace spring { |
417 | static real_t out(real_t t, real_t b, real_t c, real_t d) { |
418 | t /= d; |
419 | real_t s = 1.0 - t; |
420 | t = (sin(t * Math_PI * (0.2 + 2.5 * t * t * t)) * pow(s, 2.2) + t) * (1.0 + (1.2 * s)); |
421 | return c * t + b; |
422 | } |
423 | |
424 | static real_t in(real_t t, real_t b, real_t c, real_t d) { |
425 | return c - out(d - t, 0, c, d) + b; |
426 | } |
427 | |
428 | static real_t in_out(real_t t, real_t b, real_t c, real_t d) { |
429 | if (t < d / 2) { |
430 | return in(t * 2, b, c / 2, d); |
431 | } |
432 | real_t h = c / 2; |
433 | return out(t * 2 - d, b + h, h, d); |
434 | } |
435 | |
436 | static real_t out_in(real_t t, real_t b, real_t c, real_t d) { |
437 | if (t < d / 2) { |
438 | return out(t * 2, b, c / 2, d); |
439 | } |
440 | real_t h = c / 2; |
441 | return in(t * 2 - d, b + h, h, d); |
442 | } |
443 | }; // namespace spring |
444 | |
445 | #endif // EASING_EQUATIONS_H |
446 | |